1 引 言
对硝基酚(p‑nitrophenol,PNP)作为重要的化工原料应用于火炸药、医药、合成材料、机械、染料和木材防腐等领域。在火药制造中加入PNP,可以有效降低机械、静电感度,获得较好的真空安定性,增加药剂制造、使用和储运过程的安全
性[1] 。随着工业发展,在生产过程以及军事上的一些不恰当操作,容易导致PNP污染周边的土壤和水体,而且PNP具有显著的毒性(小鼠经口LD50 467 mg·kg-1 ,大鼠经口LD50 616 mg·kg-1 ),美国环境保护署已经将其列为优先控制污染物名单[2,3,4] 。近年来,国内外利用生物法降解PNP一直受到广泛的关
注[5] ,已经报道能够降解PNP的菌属有:红球菌属(Rhodococcus sp.)[6] 、节杆菌属(Arthrobacter sp.)[7] 、假单胞菌属(Pseudomonas sp.)[8] 、伯克氏菌属(Burkholdria sp.)[9] ,但球形红细菌(Rhodobacter sphaeroides)降解PNP的研究少见报道。球形红细菌对于环境的适应能力较强,不仅能在厌氧光照的条件下进行光能异养生长,还能在好氧黑暗条件下进行好氧异养生长[10] ,而且可以随着生存环境灵活改变代谢类型。因此,球形红细菌广泛用于处理有机废水[11,12,13,14] 。目前研究生物法降解污染物主要采用的是正交实验法和响应面法。正交实验法采用的是线性模型,无法给出整个区域上因素的最佳组合以及交互作用,预测值与实际偏差较
大[15] 。响应面法结合了实验设计、数理统计、最优化技术、回归方法估算,可以优化降解条件,广泛应用于生物降解实验[16] 。响应面法在单因素实验基础上筛选影响显著的因素,对影响显著的因素的实验数据拟合回归方程,得出不同因素之间的交互作用,最后预测优化条件进而提升实验效果[17] 。为此,本研究首先选取PNP初始浓度、接种量、pH值和温度进行单因素实验,筛选出对球形红细菌(Rhodobacter sphaeroides)H菌株降解PNP影响显著的因素,在此基础上采用响应面优化降解条件;同时,在优化后条件下拟合一级动力学方程模型,为该H菌株在酚类化合物废水污染治理中的应用提供依据。2 材料与实验
2.1 试剂及仪器
对硝基苯酚(p‑nitrophenol,PNP,纯度98%),淡黄色结晶,常温下微溶于水,不易随蒸汽挥发,易溶于乙醇和乙醚,购自天津市凯通化学试剂公司;苹果酸、酵母膏、(N
H4 )2 SO4 均为分析纯,购自天津市科密欧化学试剂开发中心;实验用水为二次去离子水。主要仪器有UV2100型分光光度计(上海尤尼柯公司),高压蒸汽灭菌锅(上海博讯实业有限公司医疗设备厂),分析天平(梅特勒‑托利多仪器上海有限公司),超净操作台(苏州安泰空气技术有限公司),人工气候箱(上海——恒科学仪器有限公司),HC‑3018高速离心机(安徽中科中佳科学仪器有限公司)。
2.2 菌种及培养基
菌株:球形红细菌(Rhodobactersphaeroides)H菌株系紫色非硫菌群红细菌属光合细菌,由山西大学光合细菌研究室分离、鉴定并保
存[18] 。基础培养基:苹果酸2.5 g、酵母膏1.0 g、(N
H4 )2 SO4 1.25 g、MgSO4 0.2 g、CaCl2 0.07 g、K2 HPO4 0.9 g、KH2 PO4 0.6 g、蒸馏水1000 mL。驯化培养基:在基础培养基中分别加入PNP,使之终浓度分别为40,60,80,100 mg·
L-1 和120 mg·L-1 。2.3 实验方法
2.3.1 驯化菌种及菌悬液制备
在驯化培养基中,接入15%的H菌株,在30 ℃下将光照强度设定为2500 lux,培养基中PNP终浓度由40,60,80,100 mg·
L-1 增加到120 mg·L-1 ,培养驯化5个周期。在离心管中取10 mL驯化后的菌液,在9500 r·min-1 下离心10 min,弃去上清液后,用磷酸缓冲溶液冲洗两次,将菌体重新悬于基础培养基中,备用。2.3.2 不同体系中PNP的降解实验
为了证明H菌株是降解PNP的主体,设置不同的实验体系进行4组平行实验:(1)含有80 mg·
L-1 PNP的培养基和H菌株;(2)只含有80 mg·L-1 PNP的培养基;(3)含有80 mg·L-1 PNP的培养基和灭活H菌株;(4)蒸馏水中含有 80 mg·L-1 PNP和H菌株。通过接种一定量的H菌株,使培养基中的H菌株生物量达到OD590 为0.182。用橡胶塞将血清瓶密封置于30 ℃的人工气候箱中,光照强度为2500 lux,每隔24 h取样检测,每个样品重复测定三次,取其平均值。研究氧含量和光照条件对H菌株生长和降解PNP效率的影响,设置4种培养条件:厌氧光照、厌氧黑暗、好氧光照和好氧黑暗,光照度为2500 lux,好氧条件采用摇床(振荡速度为130 r·mi
n-1 )、黑暗条件(用7层黑布包裹),每隔24 h取样检测。2.3.3 H菌株降解PNP的单因素实验
控制实验中的单因素:在20,25,30,35,40 ℃下,pH值为7.0含有80 mg·
L-1 的PNP培养基中,按照15%的接菌量接种菌悬液,进行降解实验研究。然后分别设置pH值5.0、6.0、7.0、8.0、9.0,PNP初始浓度60,80,100,120 mg·L-1 ,接种量5%、10%、15%、20%、25%,进行单因素实验。每隔24 h取5 mL菌液,在9500 r·min-1 下离心10 min,在波长400 nm处测定样品上清液中PNP的含量[19] 。考察不同氮源对H菌株降解PNP的影响,分别以0.45 g·
L-1 的酵母膏、牛肉膏、蛋白胨、尿素、(NH4 )2 SO4 、NH4 NO3 、KNO3 作为培养基中的氮源,选出影响最大的有机氮源和无机氮源,作为培养基中的组合氮源,分析对H菌株降解PNP的影响。培养168 h后取样,测定上清液中残留的PNP浓度,将菌体沉淀物重新悬于5 mL蒸馏水中,在波长590 nm处测OD值,表示其生物量。2.3.4 响应面优化H菌株降解PNP的实验
依据以上单因素实验,选取对H菌株降解PNP的显著影响因素,设计不同水平的取值,进行响应面优化分析实验。利用软件Design Expert 10.0中的Box‑Behnken模型来设计响应面的优化实验方案,温度(A)、pH值(B)、PNP初始浓度(C)做自变量,响应面实验因素及水平设计见表1。
表1 响应面优化H菌株降解PNP的实验因素及水平
Table 1 Response surface methodology for optimizing the degradation of PNP by strain H
levels factor A B C low(-1) 25 7.0 75 middle(0) 30 8.0 80 high(1) 35 9.0 85 根据模型优化后的降解条件进行验证实验,测定PNP的浓度,验证响应面模型预测数据的可靠性。
2.3.5 H菌株生长与PNP降解动力学实验
在最优条件下进行H菌株降解PNP实验,每隔24 h取5 mL菌液,测定PNP浓度和菌体生物量,并考察PNP浓度和菌体生物量随时间的变化情况,同时,模拟H菌株降解PNP的动力学方程。
2.4 分析方法
PNP浓度的测定:
用UV2100型可见分光光度法测定PNP的残留
量[19] 。PNP降解率的计算公式如下:
式中,η为降解率,%;C0为初始浓度,mg·
L-1 ;C为剩余浓度,mg·L-1 。利用软件Design Expert 10.
0[20] 对响应面设计实验结果进行分析。3 结果与分析
3.1 体系对PNP的降解率影响
体系对PNP降解的影响见图1a。由图1a可知,同时含有培养基和H菌株的体系对PNP降解率达到89.0%,其它体系中PNP的降解率仅为8.0%左右。因此,可以确定H菌株活细胞是降解PNP的主体。
图1 体系和供氧光照条件对PNP降解的影响
Fig.1 Effects of different systems and oxygen supplyand illumination on PNP degradation
活菌(H菌株)体系下,不同供氧光照条件对PNP降解的影响见图1b。由图1b可知,降解到168 h降解率基本稳定,H菌株在不同供氧光照条件下均可以降解PNP。在厌氧光照条件下降解率最高可以达到89.0%,好氧光照条件降解率82.1%也相对较高。H菌株可以将光能转化为化学能ATP,给细胞提供能量来降解底物PNP,而不同含氧量可能引起PNP的代谢途径不同,对降解率产生一定的影
响[21] 。因此,H菌株适合在厌氧光照条件下降解PNP,与胡筱敏[22] 等研究的光合细菌PSB‑1D对2‑氯苯酚的降解特性研究结论一致。实验证明H菌株的生长环境直接影响PNP的降解效率,在厌氧光照环境下PNP的降解率最高。3.2 环境单因素对PNP降解的影响
3.2.1 PNP初始浓度对降解的影响
PNP初始浓度对降解的影响见图2。由图2可知,PNP初始浓度的变化对降解的影响较大。当PNP初始浓度为60~80 mg·
L-1 H菌株的降解率较高,PNP初始浓度为80 mg·L-1 时降解效率最佳,为89.0%,将PNP初始浓度增加到100 mg·L-1 和120 mg·L-1 ,降解率只能维持在50.1%左右。分析原因,可能是当PNP初始浓度高于100 mg·L-1 时,PNP对H菌株产生较大的毒害作用,毒性抑制H菌株摄取营养物质,影响了正常的生长代谢。最后得出PNP的最适底物浓度为80 mg·L-1 ,该结果与董小军[23] 等人研究的Pseudomonas sp. PDS‑7菌降解PNP的特性的结论基本一致。3.2.2 接种量对PNP降解的影响
接种量对PNP降解的影响见图3。由图3可知,接种量为5%、10%、20%和25%时,降解率分别为76.1%、86.0%、80.2%和74.1%,接种量为15%时,降解率达到最佳为89.0%。分析原因,接入较少的H菌株时,能够适应PNP毒性的H菌株更少,导致H菌株很难生长繁殖。接入较多的H菌株时,培养基中营养成分更多的用于H菌株生长而不是降解PN
P[24] 。因此,选取最适接种量15%与刘雪莲等[25] 研究的接种量对药渣发酵的影响结果一致。3.2.3 pH值对PNP降解的影响
pH值对PNP降解的影响见图4。由图4可知,pH值为5.0、6.0、7.0、8.0、9.0 H菌株降解PNP的情况,结果显示pH值的变化对H菌株降解PNP存在显著的影响。pH 7.0~9.0有利于PNP的生物降解,降解率相对较高分别为89.0%、83.1%、和80.2%,在pH 6.0和pH 5.0的条件下降解率较低分别为34.1%和29.0%。一方面原因是酸碱条件改变了PNP的毒性,如董小军
等[23] 报道硝基苯酚类化合物的毒性随pH的升高而减弱,碱性的条件下(pH>7.0)其生物可降解性增大。另一方面可能是在不同的酸碱条件下,影响培养基中有机物的离子化程度,引起H菌株细胞膜表面所带电荷发生改变,变化的电荷通过细胞膜进入机体内,改变内部核酸以及酶蛋白所带电荷,影响H菌株的代谢活动和酶的活性,降低PNP的降解率[26] 。3.2.4 温度对PNP降解的影响
温度对PNP降解的影响见图5。由图5可知,温度对PNP的降解影响较大。H菌株在25~30 ℃能较好的降解PNP,并且随着温度的升高,H菌株对PNP的降解率为78.1%~89.0%呈上升趋势,在30 ℃时H菌株对PNP降解率最高,当温度达到40 ℃时降解率降低,因此,降解率并不是随着温度的升高而无限上升。只有在适当的温度范围才能够促进酶活,增强H菌株代谢、繁殖和降解PNP的能力,最后选取最适温度是30 ℃和郑永
良[27] 等研究的酚降解菌温度一致。3.2.5 不同种类氮源对PNP降解的影响
氮源对H菌株的生长和PNP的降解有着非常重要的影响,实验考察了不同种类的氮源及组合氮源对H菌株降解PNP的影响,结果见图6a。由图6a可知,有机氮源中酵母膏的生物量和降解率最高,无机氮源中(N
H4 )2 SO4 和NH4 NO3 ,对PNP的降解率和生物量产生的效果没有太大差别。选取这三种氮源进一步研究组合氮源对降解率和H菌株生长量的影响,结果见图6b,由图6b可知,(NH4 )2 SO4 和酵母膏组合效果更佳。3.3 响应面优化H菌株降解PNP的实验分析
利用软件Design Expert 10.0中的Box‑Behnken模型来设计响应面的优化实验方案,通过单因素实验选取对H菌株降解PNP影响显著的因素,温度(A)、pH值(B)、PNP初始浓度(C)做自变量,响应面实验设计及结果见表2。
表2 响应面实验的设计及结果
Table 2 Design and results of response surface experiment
No. A B C degradation rate/% 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
0
1
1
-1
1
-1
1
0
-1
0
0
-1
0
0
0
0
0
0
1
0
1
0
1
-1
0
0
-1
1
0
0
-1
1
0
0
0
0
-1
0
1
0
0
0
-1
-1
-1
1
0
1
1
0
0
89.0
85.4
84.4
84.0
86.4
82.9
84.3
89.0
83.2
85.8
85.1
85.1
89.0
85.8
87.0
89.0
89.0
通过软件Design Expert 10.0对响应面方程进行方差分析,得出响应面二元回归方程方差分析结果,结果见表3。其中偏差平方和,指样本偏离样本平均值的量,偏差平方和比自由度即得出均方差值。F值表示数据拟合F分布的程度,数值大小同拟合模型之间呈正相关。P值表示显著性概率大小,当P<0.01时说明该因素对降解率有非常显著的影响,当P<0.05时说明该因素对于菌株的降解效率有显著的影响,当P>0.05时说明该因素对于菌株的降解效率无显著的影响。该模型的P<0.0001,因此该模型为显著模型,且失拟值为0.5010不显著。复相关系数R2表示软件预测的实验结果和实际测得实验结果之间的拟合度,R2=0.9906表明方程模型的拟合度良好、可信度高,能够对PNP的降解进行合理预测。
表3 响应面二元回归方程方差分析结果
Table 3 Analysis of variance of response surface binary regression equation
items sum of
squares
degrees of freedom mean
square
F P model 109.63 9 12.18 97.72 <0.0001 A 3.51 1 3.51 28.17 0.0007 B 0.91 1 0.91 7.31 0.0011 C 4.20 1 4.20 33.74 0.0305 AB 3.35 1 3.35 2.13 0.0310 AC 7.43 1 7.43 6.24 0.8914 BC 0.90 1 0.90 7.24 1.0000 A2 53.06 1 53.06 425.72 <0.0001 B2 24.25 1 24.25 194.58 <0.0001 C2 13.27 1 13.27 106.43 <0.0001 residual 0.87 7 0.12 lack of fit 0.87 3 0.29 0.94 0.5010 pure error 0 4 0.00 cor total 110.50 16 R2 0.9906 从表3中可知温度、pH值、PNP初始浓度的P值分别为0.0007、0.0011和0.0305,因此温度和pH值对PNP的降解有非常显著的影响、PNP初始浓度对降解有显著影响,并且温度、pH值、PNP初始浓度这三个单因素对PNP的降解影响依次减弱。三个因素两两交互作用,温度和pH值、温度和PNP初始浓度、pH值和PNP初始浓度组合后P值分别为0.0310、0.8914、1.0000,温度和pH值对PNP的降解有显著影响,温度和PNP初始浓度、pH值和PNP初始浓度的组合P>0.05均对PNP的降解无显著影响。
通过软件Design Expert 10.0模拟,响应面可以直观地看出温度、pH、PNP初始浓度这三个因素交互作用对降解率的影响,结果见图7。图中曲面的弧度表示这两个因素一起作用对H菌株降解PNP的影响程度,弧度越大表明影响作用越强烈反之越弱。由图7可知,温度和pH对PNP的降解影响最强烈,温度和PNP初始浓度对降解影响较小,pH和PNP初始浓度作用下对降解的影响最小。
图7 温度、pH、PNP初始浓度相互作用对降解的影响
Fig.7 Influence of temperature, pH value and initial concentration of PNP on degradation
通过软件分析实验数据并预测H菌株降解PNP的最优条件,结果如表4所示。
表4 H菌株的响应面优化预测结果
Table 4 Prediction of strain H by response surface optimization
temperature / ℃ pH value initial concentration of PNP / mg· L-1 degradation rate / % 30.49 8.09 81.01 92.3 为验证响应面预测数据的可靠性,在预测出的最优条件下(PNP初始浓度81.01 mg·
L-1 、pH 8.09、温度为30.49 ℃)进行验证实验,取上清液测定PNP的降解率。结果表明,实验测定的降解率为91.1%,模型预测最高降解率为92.3%(表4),实际值比预测值小1.2%(<2%),因此响应面预测的优化条件数据可靠。3.4 PNP的降解与菌株生长的关系及模拟动力学方程
3.4.1 PNP的降解与菌株生长的关系
在最优降解条件下时,H菌株生长和降解PNP的曲线见图8。由图8可知,在培养96 h后H菌株处于适应期生长缓慢,随后H菌株生长迅速进入对数生长期,168 h后培养基内营养物质被大量消耗H菌株生长量也保持稳定。在96 h内PNP浓度快速从81.01 mg·
L-1 降低到20.33 mg·L-1 ,这可能是由于细胞对PNP的吸收或者吸附作用导致的[28] ,在120~168 h内随着H菌株的生长持续降解PNP,当生物量OD590 nm 超过2.0以后H菌株生长缓慢,而且PNP的降解也基本稳定降解率达到最大值91.1%。3.4.2 模拟动力学方程
一级动力学方程在生物降解污染物的研究中被广泛应
用[29] ,选用如下一级动力学模型来模拟PNP降解的动力学过程。式中,c0为PNP初始浓度,mg·
L-1 ;ct为t时刻PNP浓度,mg·L-1 ;t为降解时间,h;k为反应速率常数,方程拟合度由R2进行评估。将优化条件下的实验数据通过一级动力学模型进行拟合,可得到优化条件下H菌株对PNP降解的动力学方程。由以上动力学方程可以推出半衰期计算公式:
式中,t1/2为半衰期,k为拟合数据后得到的反应速率常数。
优化条件下PNP浓度随时间的变化符合一级动力学模型,表5是优化条件下拟合的动力学方程以及参数,由表5可知,相关性系数R2为0.9833,说明PNP浓度随时间的变化与一级动力学模型拟合度良好。
4 结 论
(1)在不同供氧光照条件下球形红细菌H菌株均可降解PNP,在光照厌氧条件下降解效果最好。由单因素实验得出最适降解条件,PNP初始浓度为80 mg·
L-1 、pH值7.0、温度30 ℃、接种量15%,降解效果最好的氮源组合是(NH4 )2 SO4 和酵母膏,并得出三个对H菌株降解PNP影响显著因素:PNP初始浓度、pH值和温度。(2)采用响应面优化法优化影响显著因素。响应面优化后得出三个显著因素对PNP降解的影响依次是:温度>pH值>PNP初始浓度;3D响应面能直观反映三个因素交互作用对PNP降解的影响,温度和pH值对PNP的降解影响最大;预测出优化条件为:pH值8.09、温度30.49 ℃、PNP初始浓度81.01 mg·
L-1 ;在优化后条件下实验测得菌株降解率为91.1%,比优化前提高2.1%,与预测的降解率92.3%相差1.2%(<2%),因此,响应面预测的数据可靠。(3)在响应面优化条件下H菌株生长初期PNP浓度迅速下降,可能由于吸附或吸收作用引起,H菌株持续降解PNP,降解率达到最大值91.1%,同时,利用一级动力学方程模拟优化条件下PNP浓度随时间的变化,模拟出最大速率反应常数0.0144
h-1 和最短半衰期43.3 h。(责编:张 琪)
参考文献
- 1
崔庆忠,焦清介,任慧,等. KNO3/C6H5NO3/NC点火药研究[J]. 含能材料,2007, 15(3):209-213.
CUI Qing‑zhong, JIAO Qing‑jie, REN Hui, et al. Study on KNO3/C6H5NO3/NC type composition[J].Chinese Journ‑al of Energetic Materials(Hanneng Cailiao),2007,15(3):209-213.
- 2
任磊,史延华,贾阳,等. 菌株Arthrobacter sp. CN2降解对硝基苯酚的特性与动力学[J]. 环境科学,2015, 36(5):1757-1762.
REN Lei, SHI Yan‑hua, JIA Yang, et al. Biodegradation characteristics and kinetics of p‑nitrophenol by strain Arthrobacter sp.CN2[J].Environmental Science,2015,36(5): 1757-1762.
- 3
郑凤英,钱沙华,李顺兴,等. 3,5‑二硝基水杨酸表面修饰纳米Ti O2吸附对硝基苯酚[J]. 环境科学,2006, 27(6):1140-1143.
ZHENG Feng‑ying, QIAN Sha‑hua, LI Shun‑xin, et al. Adsorption of p‑nitrophenol by nanosized titani‑um dioxide surface modified with 3,5‑dinitrosalicylic acid[J].Environmental Science, 2006, 27(6): 1140-1143.
- 4
万年升,顾继东,黄锦辉,等.Achromobacter xylosoxidans NS12的分离和对硝基苯酚的降解[J]. 环境科学,2007, 28(2):422‑426.
WAN Nian‑sheng, GU Ji‑dong, HUANG Jin‑hui, et al. Isolation of Achromobacter xylosoxidans NS12 and degradation of nitrophenols[J].Environmental Science,2007,28(2):422-426.
- 5
Zhilin Yang, Junxian Chen, Yang Zhou. Understanding the hydrogen transfer mechanism forthe biodegra‑dation of 2,4,6‑trinitrotoluene catalyzed by pentaerythritol tetranitrate reductase : molecular dynamics si‑mulations[J].Phys Chem Chem Phys, 2018, 20(7): 12157-12165.
- 6
Suresh R. Subashchandrabose Rhodococcus wratislaviensis strain 9 : an efficient p‑nitrophenol degader with a great potential for bioremediation[J].Journal of Hazardous Materials, 2018, 34(7): 176-183.
- 7
Sahoo NK, Pakshirajan K, Ghosh PK, et al. Batch biodegradation of para‑nitrophenol using Arthrobacterchlorophenolicus A6[J].Applied Biochemistry and Biotechnology, 2011, 165(7): 1587-1596.
- 8
黄强,张明强.固定化铜绿假单胞菌生物降解对硝基苯酚[J]. 环境工程技术学报,2012, 3(2):247-252.
HUANG Qiang, ZHANG Ming‑qiang. Biodegradation of p‑Nitrophenol by immobilized cells of Pseudomonas aeruginosa[J].Journal of Environmental Engineering Technology, 2012, 3(2): 247-252.
- 9
Bhaswati Chakraborty. Kinetic study of degradation of p‑nitrophenol by a mixed bacterial culture and it constituent pure strains[J].Materials Today:Proceedings,2016,10(3):3505-3524.
- 10
李可峰,陈海涛,吴龙飞,等.细菌的光响应及其机制研究进展[J]. 微生物学通报,2018, 45(7):1574-1587.
- 11
LI Ke‑feng, CHENG Hai‑tao, WU Long‑fei, et al. Behavior and mechanism of bacterial response to light illumination[J]. Microbiol. China, 2018, 45(7): 1574-1587.
- 12
LIANG Fang‑nan, BAI Hong‑juan, CHAI Chun‑jing, et al. Anaerobic biodegradation of 2,4‑dinitrotoluene by Rhodobactersphaeroides[J].Microbiology China, 2016, 43(2): 279-284.
- 13
王玉芬,张肇铭,胡筱敏,等.球形红细菌好氧降解氯代苯研究[J] . 环境工程学报, 2011, 5(5): 1187-1193.
WANG Yu‑fen, ZHANG Zhao‑ming, HU Xiao‑min, et al. Study on aerobic degradation of chlorobenzene by Rhodoba‑cter sphaeroides[J].Chinese Jouinal of Environmental Engineering, 2011, 5(5): 1187-1193.
- 14
康鹏洲,白红娟,罗征,等.球形红细菌对六价铬的生物还原与三价铬积累[J]. 国际药学研究杂志,2018, 45(4):380-386.
KANG Peng‑zhou,BAI Hong‑juan,LUO Zheng,et al. Biological reduction of hexavalent chromium and trivalent c‑hromium accumulation by Rhodobacter sphaeroides[J].Journal of International Pharmaceutical Research, 2018, 45(4): 380-386.
- 15
白红娟,王珊,柴春境,等.球形红细菌降解RDX的动力学及其机理研究[J]. 火炸药学报,2015, 38(6): 51-60.
BAI Hong‑juan,WANG Shan,CHAI Chun‑jing, et al. Study on degradation kinetics and mechanism of explosive hexahydro‑1,3,5‑trinitro‑1,3,5‑triazine(RDX) by Rhodobacter sphaeroides[J].Chinese Jouinal of Explosives & Propellants, 2015, 38(6):51-60.
- 16
齐永强,王红旗,刘敬奇,等.土壤石油微生物降解影响因子的正交实验分析[J]. 地球学报,2003, 24(3): 279-284.
QI Yong‑qiang, WANG Hong‑qi, LIU Jing‑qi,et al. Impact of several factors on the bioremediation of oil in soil[J]. Acta Geoscientia Sinica, 2003, 24(3): 279-284.
- 17
张东升,余丽胜,焦纬洲,等.基于响应面法的超声强化铁碳微电解处理硝基苯废水工艺优化研究[J]. 含能材料,2018, 26(2):178-184.
ZHANG Dong‑sheng, YU Li‑sheng, JIAO Wei‑zhou, et al. Treatment of nitrobenzene wastewater via ultrasonic enhanced iron‑carbon micro‑electrolysis with response surface methodology[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(2): 178-184.
- 18
曾茂贵,李颖.正交设计与响应面优化法对瓜蒌桂枝解痉颗粒提取工艺的比较[J]. 福建中医药大学学报,2014, 24(3):32-36.
ZENG Mao‑gui, LI Ying. Comparative study on orthogonal design and response surface optimiza‑tion used for extraction of gualou guizhi jiejing granules[J]. Journal of Fujian University of Tra‑ditional Chinese Medicine, 2014,24(3): 32-36.
- 19
姚竹云,张肇铭.几株光合细菌的表型特征及DNA‑DNA同源性分析[J]. 应用与环境生物学报,1996, 2(1):84-89.
YAO Zhu‑yun, ZHANG Zhao‑ming. Phenotypic features and DNA‑DNA homology analyses of some photosynthetic b‑acteria[J].Chinese Journal of Applied and Environmental Biology, 1996, 2(1): 84-89.
- 20
陈正军.黄河兰州段铬还原菌和对硝基酚降解菌的分离筛选及其在微生物燃料电池中的应用研究[D]. 兰州:兰州大学,2016.
CHEN Zheng‑jun. Isolation and screening of strains for chromate reduction and p‑nitrophenol degradati‑on from the Lanzhou reaches of the Yellow river and their applications in microbial fuel cells[D]. Lanzhou: Lanzhou University, 2016.
- 21
徐向宏.试验设计与Design‑Expert、SPSS应用[M]. 北京:科学出版社,2010.
XU Xiang‑hong.Test design and application of Design‑Expert and SPSS[M]. Beijing: Science Press, 2010.
- 22
丁丹,胡忠策,金赞芳,等.光合细菌降解废水中对硝基苯酚的研究[J]. 安徽农业科学,2010, 38(19):219-221.
DING Dan,HU Zhong‑ce,JIN Zan‑fang,et al. Study on degradation of p‑nitrophenol in wastewater by photosyntheticbacteria[J].Journal of Anhui Agricultural Sciences,2010,38(19):219-221.
- 23
胡筱敏,董怡华,李亮,等.光合细菌PSB‑1D对2‑氯苯酚的降解特性研究[J]. 环境科学,2010, 31(7):1672-1678.
HU Xiao‑min, DONG Yi‑hua, LI Liang,et al. Biodegradation characteristics of o‑chlorophenol with photosynthetic bacteria PSB‑1D[J].Environmental Science, 2010, 31(7): 1672-1678.
- 24
董小军,洪青,李恋,等.对硝基苯酚降解菌Pseudomonas sp. PDS‑7的降解特性及其降解相关基因的克隆[J]. 微生物学报,2008, 48(11):1486-1492.
DONG Xiao‑jun, HONG Qing, LI Lian, et al. Characterization of a p‑nitrophenol degrading bacterium Pseudom‑nas sp. PDS‑7 and cloning of degradation relevant genes[J].Acta Microbiologica Sinica, 2008, 48(11): 1486-1492.
- 25
尹园,马佳歌,倪春蕾,等.居间驹形氏杆菌发酵大豆糖蜜生产细菌纤维素条件的优化[J]. 食品科学,2017, 38(18):8-16.
YI Yuan, MA Jia‑ge, NI Chun‑lei, et al. Optimization of bacterial cellulose production by fermented soybean molas‑ses with Komagataeibacter intermedius[J].Acta Microbiologica Sinica, 2017, 38(18): 8-16.
- 26
刘雪莲.接种量对红景天药渣发酵制有机肥的影响[J]. 吉林农业,2014, 20(22):1674-1685.
LIU Xue‑lian. Effect of inoculation amount on the production of organic fertilizer from rhodiola‑sachalinensis residues[J]. Jilin Agriculture, 2014, 20(22): 1674-1685.
- 27
Samuel M. Bioremediation of p‑Nitrophenol by Pseudomonas putida strain[J].Journal of Environmental Health Science and Engineering, 2014, 12(1): 1-8.
- 28
郑永良,肖婷,钟玉林,等.一株酚降解菌株的分离鉴定及特性研究[J]. 湖北农业科学,2010, 20(9): 2097-2100.
ZHENG Liang‑yong, XIAO Ting, ZHONG Yu‑lin, et al. Isolation and identification of a phenol degra‑dation strain and its characteristics analysis[J]. Hubei Agricultural Sciences, 2010, 20(9): 2097-2100.
- 29
Tian L, Zhong J J. Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina[J].Process Biochemistry, 2002, 37(12): 1431-1437.
- 30
赵婷婷,白红娟,康鹏洲,等. 光合细菌球形红细菌降解HMX[J]. 含能材料,2018, 26(4):352-358.
ZHAO Ting‑ting, BAI Hong‑juan, KANG Peng‑zhou,et al. Degradation of HMX by photosynthetic bacteria Rhodobacter sphaeroides[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(4): 352-358.
- 1
摘要
以对硝基酚(PNP)为目标污染物,利用球形红细菌(Rhodobactersphaeroides)H菌株研究其对PNP的降解特性,通过单因素实验和响应面分析相结合的方法优化降解条件,以提高H菌株对PNP的降解能力。设置不同反应体系证明了H菌株活细胞是降解PNP主体,且在厌氧光照、厌氧黑暗、好氧光照和好氧黑暗四种条件下均能降解PNP。通过单因素实验得出显著影响因素为:PNP初始浓度、pH值和温度,响应面优化后的最优降解条件为:PNP初始浓度为81.01 mg·
Abstract
With p‑nitrophenol (PNP) as the target pollutant, the degradation characteristics of PNP by Rhodobacter sphaeroides H strain were studied. The degradation conditions were optimized by single factor test and response surface analysis, and the degradation ability of H strain to PNP was improved. Different reaction systems have been set up to prove that H strain living cells are the main body of degrading PNP, and can degrade PNP under anaerobic light, anaerobic darkness, aerobic light and aerobic darkness. The single factor experiments show that the significant influencing factors are initial concentration of PNP, pH value and temperature. The optimal degradation conditions after response surface optimization are: initial concentration of PNP is 81.01 mg·