CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
NairU R, AsthanaS N, RaoA S, et al. Advances in high energy materials[J]. Defence Science Journal, 2010, 60(2): 137-151.
参考文献 2
GaoH, ShreeveJ M. Azole‑based energetic salts[J]. Chemical Reviews, 2011, 111(11): 7377-7436.
参考文献 3
ChavezD E, HiskeyM A, NaudD L. Tetrazine explosives[J]. Propellants, Explosives, Pyrotechnics,2004,29(4): 209-215.
参考文献 4
KlapötkeT M, MartinF A, StierstorferJ. C2N14: An energetic and highly sensitive binary azidotetrazole[J]. Angewandte Chemie International Edition, 2011, 50(18): 4227-4229.
参考文献 5
SunC, ZhangC, JiangC, et al. Synthesis of AgN5 and its extended 3D energetic framework[J]. Nature communications, 2018, 9(1): 1269: 1-7.
参考文献 6
KlapötkeT M, SabatéC M. Bistetrazoles: nitrogen‑rich, high‑performing, insensitive energetic compounds[J]. Chemistry of Materials, 2008, 20(11): 3629-3637.
参考文献 7
FischerN, FischerD, KlapötkeT M, et al. Pushing the limits of energetic materials‑the synthesis and characterization of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422.
参考文献 8
FischerN, KlapötkeT M, MušanićS M, et al. TKX‑50[C]//New Trends in Researsh of Energetic Materials, Czech Republic, 2013: 566‑577.
参考文献 9
赵廷兴, 田均均, 李磊,等. 5,5′‑联四唑‑1,1′‑二氧二羟铵(TKX‑50)50克量级制备放大工艺[J]. 含能材料, 2014(6): 744-747.
ZHAOTing‑xing, TIANJun‑jun, LILei, et al. Up‑sizing 50 grams‑scale synthesis technology of dihydroxylammounium 5,5′‑bistetrazole‑1,1′diolate (TKX‑50)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014(6): 744-747.
参考文献 10
朱周朔, 姜振明, 王鹏程, 等. 5,5′‑联四唑‑1,1′‑二氧二羟铵的合成及其性能[J]. 含能材料, 2014, 22(3): 332-336.
ZHUZhou‑shuo, JIANGZhen‑ming, WANGPeng‑cheng, et al. Synthesis and properties of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(3): 332-336.
参考文献 11
BadgujarD, TalawarM. Thermal and sensitivity study of dihydroxyl ammonium 5,5′‑bistetrazole‑1,1′‑diolate(TKX‑50) based melt cast explosive formulations[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 883-888.
参考文献 12
GottfriedJ L, KlapötkeT M, WitkowskiT G. Estimated detonation velocities for TKX‑50, MAD‑X1, BDNAPM, BTNPM, TKX‑55, and DAAF using the laser‑induced air shock from energetic materials technique[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4): 353-359.
参考文献 13
KlapötkeT M, WitkowskiT G, WilkZ, et al. Determination of the initiating capability of detonators containing TKX‑50, MAD‑X1, PETNC, DAAF, RDX, HMX or PETN as a base charge by underwater explosion test[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(1): 92-97.
参考文献 14
毕福强, 付小龙, 劭重斌, 等. 高能单元推进剂TKX‑50能量特性计算研究[J].化学推进剂与高分子材料, 2013, 11(5): 70-73.
BIFu‑qiang, FUXiao‑long, SHAOChong‑bin, et al. Calculation of energy characteristics of high energy monopropellant TKX‑50[J]. Chemical Propellants&Polymeric Materials, 2013, 11(5): 70-73.
参考文献 15
LiuJ H, YangZ J, LiuS J, et al. Effects of fluoropolymer binders on the mechanical properties of TATB‑based PBX[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(7): 664-670.
参考文献 16
StineJ R. On predicting properties of explosives‑detonation velocity[J]. Journal of Energetic Materials, 1990, 8(1-2): 41-73.
参考文献 17
XuR J, KangB, HuangH, et al. Characterization and properties of desensitized octogen[J]. Chinese Journal of Energetic Materials, 2010, 18(5): 518-522.
目录 contents

    摘要

    为了研究5,5′‑联四唑‑1,1′‑二氧二羟胺盐(TKX‑50)基混合炸药的爆轰及安全性能,以F2314氟橡胶为粘结剂,采用淤浆捏合法制备了典型TKX‑50基混合炸药。按照国军标(GJB‑772A-1997)和自建的标准测试方法对炸药的爆轰性能(爆速、爆压、爆热、圆筒比动能)和安全性能(撞击感度、冲击波感度、热刺激感度)进行了测试,并将实测性能与PBX‑9501等炸药进行了对比分析。结果表明,在爆轰性能方面,与PBX‑9501相比,制备的TKX‑50基混合炸药实测爆速值为9037 m·s-1(密度1.860 g·cm-3),但其爆热(5055 J·g-1)、爆压(26.4 GPa)和做功能力(1.377 kJ·g-1)较低。在安全性能方面,TKX‑50原材料经重结晶后撞击感度可显著降低,最低撞击能由5J提高至32J,TKX‑50基混合炸药的冲击波感度(L50=15.1 mm)低于HMX基混合炸药(L50=22.6 mm)。此外,TKX‑50的热分解温度(240 ℃)、5 s爆发点(277 ℃)均低于HMX(285 ℃,327 ℃),以TKX‑50为基的混合炸药在热刺激下更容易发生剧烈反应。

    Abstract

    In order to study the detonation and safety performances of dihydroxylammonium 5,5'‑bistetrazole‑1,1'‑diolate (TKX‑50) based polymer bonded explosives (PBX), the TKX‑50 based PBX was prepared by a slurry kneading method, using fluororesin F2314 as the polymer binder. The detonation performance (detonation velocity, detonation pressure, detonation heat and cylinder expansion tests) and safety performance (impact sensitivity, shock wave sensitivity and thermal sensitivity) were carried out according to the National Military Standard (GJB‑772A-1997) and self‑built standard test method, and the results were compared with PBX‑9501, etc. The results showed that, comparing with PBX‑9501, the detonation velocity of TKX‑50 based PBX was as high as 9037 m·s-1 (density of 1.860 g·cm-3), while the detonation heat (5055 J·g-1), detonation pressure (26.4 GPa) and the work capacity (1.377 kJ·g-1) were lower. For the safety performances, the minimum impact energy of raw TKX‑50 was only 5 J, while that of recrystallized product was 32 J. The shock wave sensitivity of TKX‑50 based PBX was lower (L50=15.1 mm) than that of HMX‑based PBX (L50=22.6 mm). Besides, the thermal decomposition temperature (240 ℃) and 5 s explosion temperature (277 ℃) of TKX‑50 was lower than HMX (285 ℃, 327 ℃). In this case, TKX‑50 based PBX would react more violently under thermal stimulation.

  • 1 引 言

    安全弹药伴随着炸药材料的发展而不断发展,制备并应用具有高能量水平和良好安全性能的单质炸药,是目前国内外新型高能量密度材料(HEDM)的重要发展方[1,2,3,4,5,6]。5,5′‑联四唑‑1,1′‑二氧二羟胺(TKX‑50)自2012年德国Klapötke[7,8]合成并报道以来,就以高爆速(9698 m·s-1)、高爆压(42.4 GPa)、低感度(撞击感度20 J,摩擦感度120 N)等优异性能引起了含能材料领域众多学者的跟踪研究。赵廷[9]等研究了TKX‑50的50 g量级制备放大工艺,实现了单步反应收率80.1%,合成路线总收率为41.5%。朱周[10]等研究了TKX‑50的合成工艺,将收率提升至73.2%。Badgujar[11]对TKX‑50/TNT熔铸炸药和RDX/TNT熔铸炸药的热稳定性、机械感度、爆速等进行比较,发现TKX‑50/TNT熔铸炸药爆速与RDX/TNT熔铸炸药相当,撞击感度相对偏高,但摩擦感度得到了降低,热稳定性更优。Gottfried[12]通过构建圆筒试验模型计算比较了TKX‑50与RDX、HMX的能量,结果表明TKX‑50能量高于RDX,在某些特定情况下,能量与HMX相当甚至高于HMX。Klapötke[13]采用水下爆炸试验研究了小药量下TKX‑50与其它炸药为基的装药的爆轰性能,发现TKX‑50基炸药相对密度较低时(1.22~1.45 g·cm-3),其在水下的气泡能与冲击波能偏低,不及RDX和HMX。目前,关于TKX‑50的研究主要集中于合成工艺优化、晶体调控、热分解性能、热安定性等工作,以及TKX‑50在推进剂领域的应用可行性分析研[14]。然而,TKX‑50基混合炸药的爆轰性能多见于理论计算数据,实测爆轰性能较[7,13],TKX‑50基混合炸药的爆轰性能、冲击波感度及快烤试验等安全性能相关的实测结果报道较少。

    为了充分研究TKX‑50基混合炸药的爆轰及安全性能,本研究采用国军标方法和自建的标准方法测试了典型TKX‑50基混合炸药的圆筒比动能、爆速、爆压、爆热,对撞击感度、冲击波感度、热刺激感度等安全性能进行了测试,并将其与黑索今(RDX)、奥克托今(HMX)、1,3,5‑三氨基‑2,4,6‑三硝基苯(TATB)、1,1‑二氨基‑2,2‑二硝基乙烯(FOX‑7)、1‑氧‑2,6‑二氨基‑3,5‑二硝基吡嗪(LLM‑105)等几种炸药进行了对比分析,为TKX‑50在高能钝感混合炸药中的应用提供参考。

  • 2 实验部分

  • 2.1 原材料与仪器

    原材料:TKX‑50、LLM‑105、TATB,中国工程物理研究院化工材料研究所;RDX、HMX、FOX‑7,甘肃银光化学工业集团有限公司,所有炸药原材料纯度均>98%。含氟粘结剂F2314,中昊晨光化工研究院有限公司;乙酸乙酯、乙酸丁酯、石油醚、甲醇、二甲基亚砜,分析纯,成都市科龙化学品有限公司;石蜡(W),辽宁抚顺石化有限公司;蒸馏水,自制。

    仪器:ZEISS场发射扫描电镜,德国卡尔蔡司公司;DSC 2型热分析仪,德国梅特勒‑托利多有限公司;WL‑1型撞击感度仪,陕西秦川机床厂;BFH 10型BAM落锤撞击感度仪,捷克OZM公司。

  • 2.2 样品制备

    RDX、HMX、FOX‑7、LLM‑105、TATB为基的混合炸药:均采用水悬浮[15]制备,分别标记为PBX‑RDX、PBX‑HMX、PBX‑FOX、PBX‑LLM、PBX‑TATB。

    TKX‑50基混合炸药:TKX‑50在水中具有微溶解性,且随着温度的升高溶解度逐渐变大,所以为了保证炸药组分含量的准确性,采用淤浆捏合法制备TKX‑50基混合炸药(标记为PBX‑TKX)。按照配方TKX‑50/F2314=95/5,称取相应质量的TKX‑50与F2314待用;在60~70 ℃的水浴环境下,将TKX‑50投入盛有乙酸乙酯/乙酸丁酯溶剂的造粒釜中,搅拌分散5 min;将浓度为8%的F2314粘结剂溶液加入造粒釜中,搅拌、抽真空处理,待溶剂逐渐挥发、浆料逐渐变干后,出料,分散,并在60 ℃下烘干,即可得到PBX‑TKX造型粉,用于混合炸药的药柱压制。

    采用预热模压的方式进行药柱压制及性能测试。具体的操作步骤为:根据所需药柱尺寸,称取一定质量炸药造型粉,采用120 ℃预热1 h,再进行压制。直径为Φ20 mm药柱压制条件为:120 kN,保压5 min,复压2次。直径为Φ25 mm药柱压制条件为:160 kN,保压5 min,复压2次,直径为Φ50 mm药柱压制条件为:320 kN,保压12 min,复压3次。各种尺寸药柱的实际密度可达1.86 g·cm-3,约为理论密度的97.3%。图1所示为PBX‑TKX炸药造型粉及其小药光学照片。

    html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F002.png

    a. powder

    html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F003.png

    b. pellets

    图1 PBX‑TKX造型粉及小药柱照片

    Fig.1 The photos of PBX‑TKX molding powder and pellets

    TKX‑50包覆石蜡样品的制备:按照TKX‑50/W=98.8/1.2的质量比,将TKX‑50搅拌分散在石油醚中,加热至52 ℃,再将浓度为4%的石蜡/石油醚溶液滴加其中,待石油醚完全挥发后,得到经石蜡表面包覆的样品(TKX‑50‑W)。TKX‑50重结晶样品的制备过程为:以丙酮为溶剂,将TKX‑50完全溶解配制成饱和溶液后,加入甲醇溶剂,通过蒸发混合溶剂,获得重结晶后样品TKX‑50‑a;以二甲基亚砜为溶剂,水为非溶剂,采用溶剂/非溶剂重结晶法制备样品TKX‑50‑b。

  • 2.3 性能测试

    药柱密度采用排水法进行测试,其相对密度为所测真实密度与理论密度的相对比值。比动能测试:采用GJB772A-1997方法705.2(标准圆筒试验法),药柱尺寸为Φ25 mm×25 mm;爆速测试:采用GJB772A-1997方法702.1(电测法),药柱尺寸为Φ20 mm×20 mm;爆压测试:采用板痕试验法(中物院化材所自建方法GTSP‑CS‑009),即通过板痕深度推算炸药爆压,药柱尺寸为Φ20 mm×20 mm;爆热测试:采用GJB772A-1997方法701.1(恒温法和绝热法),药柱尺寸为Φ25 mm×30 mm。撞击感度测试:BAM(Bundesanstalt für Materialprüfung)方法和GJB772A-1997方法601.2(特性落高法),分别获得最低撞击能EBAM和特性落高值。冲击波感度测试:采用GJB772A-1997方法605.1(卡片式隔板法),药柱尺寸为Φ20 mm×20 mm,获得50%起爆概率时的隔板厚度(L50);5s延滞爆发点测试:采用GJB772A-1997方法606.1(5 s延滞期法)。热分解温度测试:采用DSC方法,升温速率为10 ℃·min-1,载气为N2,流速为40 mL·min-1;快速烤燃试验:中物院化材所自建方法(GTSF‑CS‑321)测试,试验时,将Φ50 mm×100 mm的测试药柱采用钢壳约束装配成烤燃弹,使用2000 mL航空煤油作为燃料,通过考察炸药件在快速烤燃刺激条件下烤燃时间、烤燃温度、爆燃反应程度和实验残余物等的变化情况,评估炸药件热安全性能。炸药爆轰产物的理论分析采用EXPLO5 V.6.01软件计算获得。

  • 3 结果与讨论

  • 3.1 TKX‑50基混合炸药爆轰性能

    TKX‑50基混合炸药(PBX‑TKX)的爆速、爆压、爆热、圆筒比动能的测试结果见表1。为了将TKX‑50基炸药与常见的HMX、RDX、TATB基混合炸药爆轰性能进行对比,将Comp C‑4(91RDX/9binder)、PBX‑9501(95HMX/5binder)、PBX‑9502(95TATB/5binder)等典型炸药的文献结[7]也列于表1

    表1 PBX‑TKX的爆轰性能测试结果及与几种炸药的对比

    Table 1 The detonation performance comparison of TKX‑50 based PBX and some other explosives

    explosive

    density

    /g·cm-3

    relative density

    /%

    detonation velocity

    /m·s-1

    detonation pressure

    /GPa

    detonation heat

    /J·g-1

    specific energy of

    cylinder (E19)/kJ·g-1

    PBX‑9501[7]1.8498.0880037.060301.577
    PBX‑9502[7]1.9097.8771030.241801.037
    Comp C‑4[7]1.6698.0837025.758601.258
    PBX‑TKX1.8697.3903726.450551.377

    表1可以看出,TKX‑50基混合炸药的爆速高,但其爆压、爆热以及圆筒比动能均偏低。具体而言,PBX‑TKX的实测爆速达到9037 m·s,较PBX‑9501、PBX‑9502、Comp C‑4分别高出237,1327,667 m·s-1。采用Urizar经验算[16]进行单质炸药爆速换算,TKX‑50单质炸药的实测爆速为9460 m·s-1(密度为1.906 g·cm-3时),这与文献[7]报道的理论爆速基本一致。PBX‑TKX的实测爆压、爆热和圆筒比动能(E19)分别为26.4 GPa,5055 J·g-1和1.377 kJ·g-1,低于HMX基混合炸药PBX‑9501,表明TKX‑50为一种高爆速炸药,但其做功能力不足。

    与PBX‑9501相比,虽然PBX‑TKX的爆速提高了237 m·s-1,但其爆压降低了10.6 GPa,爆热降低了975 J·g-1,圆筒比动能下降了0.2 kJ·g-1。该结果表明:炸药的做功能力不仅与爆速有关,还与爆压和爆热密切相关。因此,当武器装药需要较高做功能力时,并不能将爆速作为高能的唯一评价依据,还需结合爆压和爆热进行综合评价,以圆筒试验结果为准。

    混合炸药的爆轰性能主要由其中的单质炸药决定,为了研究TKX‑50基混合炸药与RDX、HMX、TATB基混合炸药爆轰性能存在差异的原因,采用EXPLO5 V.6.01计算了上述4种单质炸药的主要爆轰产物组成及含量,结果见图2。由图2可见,在主要爆轰产物中,分子量相对较小的分子(N2、CO、H2O、NH3、C、H2等)在TKX‑50、RDX、HMX、TATB爆轰产物中的占比分别为97.9%、75.9%、73.3%和83.5%;分子量相对较大的分子(CO2、CH2O2)的占比分别为1.9%、24.0%、26.7%和16.5%。可见TKX‑50的爆轰产物主要集中在小分子,而小分子产物质量轻,这可能是TKX‑50做功能力偏低的原因之一,进一步的研究有待深入开展。总体上看,尽管TKX‑50爆速高于HMX,但其爆压和做功能力明显低于HMX,与RDX相当。

    图2
                            4种单质炸药主要爆轰产物含量对比图

    图2 4种单质炸药主要爆轰产物含量对比图

    Fig.2 Histogram for the main detonation products and their amount for four single‑compound explosives

  • 3.2 TKX‑50基混合炸药安全性能

  • 3.2.1 TKX‑50原材料包覆及重结晶对撞击感度的影响

    为了研究TKX‑50的机械感度,采用包覆石蜡和重结晶对原材料进行了处理,不同方式处理后的TKX‑50晶体的扫描电镜照片见图3,样品的撞击感度见表2。由表2可见TKX‑50原材料的最低撞击能(BAM感度)仅为5 J,特性落高H50为16.6 cm,与HMX相当。由图3表2可见,表面包蜡处理后的样品TKX‑50‑W(图3b)保持了原材料(图3a)的晶体形貌与粒径,但最低撞击能提高至80 J(表2),表明通过包蜡处理可有效降低TKX‑50的撞击感度。重结晶样品TKX‑50‑a晶体(图3c)形貌为块状,颗粒粒径约为200 μm,其特性落高H50为87.7 cm(表2),最低撞击能为26 J(表2);重结晶样品TKX‑50‑b晶体(图3d)形貌为片状,颗粒粒径为20~30 μm,特性落高H50为105cm,最低撞击能为32 J(表2)。由此可见,TKX‑50的撞击感度与其晶体状态相关,经过重结晶或包覆降感处理后,撞击感度可显著降低。

    html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F006.png

    a. raw TKX‑50

    html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F007.png

    b. TKX‑50‑W

    html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F008.png

    c. TKX‑50‑a

    html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F009.png

    d. TKX‑50‑b

    图3 不同方式处理后的TKX‑50扫描电镜图

    Fig.3 SEM images of TKX‑50 after different treatments

    表2 不同方式处理后的TKX‑50撞击感度

    Table 2 The impact sensitivity of TKX‑50 after different treatments

    explosiveTKX‑50TKX‑WTKX‑50‑aTKX‑50‑b
    EBAM / J5802632
    H50 / cm16.6>11287.7105.9

    NOTE: EBAM is impact energy. H50 is impact sensitivity.

  • 3.2.2 6种混合炸药的冲击波感度

    以TKX‑50及其它典型单质炸药为基的混合炸药冲击波感度结果见表3,所有冲击波感度值均为采用同种方法获得的实测结果。表6结果表明,PBX‑TKX的冲击波感度较低,其L50为15.1 mm,显著低于PBX‑RDX和PBX‑HMX,仅比PBX‑TATB的冲击波感度高。混合炸药的冲击波感度虽然和粘结剂体系、钝感体系具有一定关联,但主体炸药对冲击波感度的影响最大。因此,冲击波感度测试结果表明,尽管TKX‑50炸药的撞击感度随原材料状态变化存在一定波动,但其对冲击波刺激较为钝感,优于RDX、HMX、FOX‑7和LLM‑105,仅次于钝感炸药TATB。

    表3 6种混合炸药的冲击波感度

    Table 3 The shock wave sensitivity of six kinds of PBXs

    explosiveformulationrelative density/%L50/mm
    PBX‑TKXTKX‑50/F2314 =95/597.315.1±1.0
    PBX‑RDXRDX/binder/additives=95.59/3.91/0.5096.722.9±0.3
    PBX‑HMXHMX/binder/additives =95/4.3/0.798.022.6±0.3
    PBX‑FOXFOX‑7/binder/additives =95/4.0/1.098.117.8±0.4
    PBX‑LLMLLM‑105/binder/additives =95/4.0/1.098.016.1±0.2
    PBX‑TATBTATB/binder =95/597.67.6±0.5
  • 3.2.3 TKX‑50及其它4种炸药在热刺激下的安全性能

    图4为PBX‑TKX快速烤燃试验后装置碎片。由图4可见,装置壳体炸裂产生大量较大破片,无炸药残留,温度传感器记录其爆响温度为700~750 ℃,爆响时间为99 s,表明PBX‑TKX在快速烤燃环境下发生较为剧烈的反应。为深入了解并比较几种混合炸药在热刺激下的安全性能,测试了TKX‑50、HMX、LLM‑105和TATB 4种单质炸药的5 s延滞爆发点和热分解温度。结果表明,TKX‑50、HMX、LLM‑105和TATB的5 s延滞爆发点分别为277, 327, 348 ℃和365 ℃,热分解峰温度分别为240, 285, 351 ℃和382 ℃;可见4种单质炸药5 s延滞爆发点与热分解温度高低排序一致,TKX‑50在热刺激下最易发生反应。

    图4
                            TKX‑PBX快速烤燃试验后装置壳体碎片

    图4 TKX‑PBX快速烤燃试验后装置壳体碎片

    Fig. 4 Device fragments after Fast Cook‑off Test of PBX‑TKX

    另一方面,TKX‑50晶体实测密度为1.905 g·cm-3,与HMX相当(1.903 g·cm-3[17];TKX‑50相对分子量为236,HMX相对分子量分子量为296,参考图2中的TKX‑50、HMX主要爆轰产物质量分数,可知在相同体积的密闭装药空间内,TKX‑50炸药释放的气体摩尔量约为HMX炸药的1.35倍。因此,在密闭空间内炸药爆轰后生成的气体产生的压强更大,对安全性能更加不利。TKX‑50的热分解温度、5 s爆发点以及炸药件快速烤燃试验结果均表明,TKX‑50在热刺激下的安全性能不如HMX,更不及LLM‑105、TATB等耐热炸药,这在TKX‑50炸药的应用过程中需引起格外的关注。

    图5
                            四种单质炸药的DSC热分解曲线

    图5 四种单质炸药的DSC热分解曲线

    Fig.5 Thermal decomposition curves of four single‑compound explosives by DSC

  • 4 结 论

    (1)TKX‑50基混合炸药的实测爆速、爆压、爆热、圆筒比动能分别为9037 m·s-1、26.4 GPa、 5055 J·g-1、1.377 kJ·g-1,表明TKX‑50具有高爆速特征,但受爆热、爆轰产物分子量等因素影响,做功能力低于HMX炸药,与RDX相当。

    (2)安全性能方面,TKX‑50的撞击感度与晶体状态密切相关,冲击波感度低于FOX‑7和LLM‑105,具有典型的低感特征。但TKX‑50对热刺激较为敏感,在快速烤燃环境下发生爆炸,反应等级较高,热安全性不及HMX。

    (3)分析了TKX‑50基混合炸药爆速、爆热、爆轰产物、做功能力间的关系。值得关注的是,这种爆速高、但做功能力偏低的特征可能存在于以TKX‑50为代表的高氮类含能离子盐炸药中。因此,建议在此方面进行系统的深入研究,为武器用高能钝感炸药的设计和应用提供方向。

    (责编: 王艳秀)

  • 参考文献

    • 1

      Nair U R, Asthana S N, Rao A S, et al. Advances in high energy materials[J]. Defence Science Journal, 2010, 60(2): 137-151.

    • 2

      Gao H, Shreeve J M. Azole‑based energetic salts[J]. Chemical Reviews, 2011, 111(11): 7377-7436.

    • 3

      Chavez D E, Hiskey M A, Naud D L. Tetrazine explosives[J]. Propellants, Explosives, Pyrotechnics,2004,29(4): 209-215.

    • 4

      Klapötke T M, Martin F A, Stierstorfer J. C2N14: An energetic and highly sensitive binary azidotetrazole[J]. Angewandte Chemie International Edition, 2011, 50(18): 4227-4229.

    • 5

      Sun C, Zhang C, Jiang C, et al. Synthesis of AgN5 and its extended 3D energetic framework[J]. Nature communications, 2018, 9(1): 1269: 1-7.

    • 6

      Klapötke T M, Sabaté C M. Bistetrazoles: nitrogen‑rich, high‑performing, insensitive energetic compounds[J]. Chemistry of Materials, 2008, 20(11): 3629-3637.

    • 7

      Fischer N, Fischer D, Klapötke T M, et al. Pushing the limits of energetic materials‑the synthesis and characterization of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422.

    • 8

      Fischer N, Klapötke T M, Mušanić S M, et al. TKX‑50[C]//New Trends in Researsh of Energetic Materials, Czech Republic, 2013: 566‑577.

    • 9

      赵廷兴, 田均均, 李磊,等. 5,5′‑联四唑‑1,1′‑二氧二羟铵(TKX‑50)50克量级制备放大工艺[J]. 含能材料, 2014(6): 744-747.

      ZHAO Ting‑xing, TIAN Jun‑jun, LI Lei, et al. Up‑sizing 50 grams‑scale synthesis technology of dihydroxylammounium 5,5′‑bistetrazole‑1,1′diolate (TKX‑50)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014(6): 744-747.

    • 10

      朱周朔, 姜振明, 王鹏程, 等. 5,5′‑联四唑‑1,1′‑二氧二羟铵的合成及其性能[J]. 含能材料, 2014, 22(3): 332-336.

      ZHU Zhou‑shuo, JIANG Zhen‑ming, WANG Peng‑cheng, et al. Synthesis and properties of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(3): 332-336.

    • 11

      Badgujar D, Talawar M. Thermal and sensitivity study of dihydroxyl ammonium 5,5′‑bistetrazole‑1,1′‑diolate(TKX‑50) based melt cast explosive formulations[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 883-888.

    • 12

      Gottfried J L, Klapötke T M, Witkowski T G. Estimated detonation velocities for TKX‑50, MAD‑X1, BDNAPM, BTNPM, TKX‑55, and DAAF using the laser‑induced air shock from energetic materials technique[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4): 353-359.

    • 13

      Klapötke T M, Witkowski T G, Wilk Z, et al. Determination of the initiating capability of detonators containing TKX‑50, MAD‑X1, PETNC, DAAF, RDX, HMX or PETN as a base charge by underwater explosion test[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(1): 92-97.

    • 14

      毕福强, 付小龙, 劭重斌, 等. 高能单元推进剂TKX‑50能量特性计算研究[J].化学推进剂与高分子材料, 2013, 11(5): 70-73.

      BI Fu‑qiang, FU Xiao‑long, SHAO Chong‑bin, et al. Calculation of energy characteristics of high energy monopropellant TKX‑50[J]. Chemical Propellants&Polymeric Materials, 2013, 11(5): 70-73.

    • 15

      Liu J H, Yang Z J, Liu S J, et al. Effects of fluoropolymer binders on the mechanical properties of TATB‑based PBX[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(7): 664-670.

    • 16

      Stine J R. On predicting properties of explosives‑detonation velocity[J]. Journal of Energetic Materials, 1990, 8(1-2): 41-73.

    • 17

      Xu R J, Kang B, Huang H, et al. Characterization and properties of desensitized octogen[J]. Chinese Journal of Energetic Materials, 2010, 18(5): 518-522.

刘佳辉

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳,621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

邮 箱:huiihuii@163.com

作者简介:刘佳辉(1987-),男,助理研究员,主要从事混合炸药设计与应用研究。e‑mail:huiihuii@163.com

范桂娟

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳,621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

卢校军

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳,621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

徐容

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳,621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

杨光成

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳,621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

杨志剑

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳,621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

角 色:通讯作者

Role:Corresponding author

邮 箱:zhijianyang@caep.cn

作者简介:杨志剑(1986-),男,副研究员,主要从事含能材料制备及应用研究。e‑mail:zhijianyang@caep.cn

html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F002.png
html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F003.png
explosive

density

/g·cm-3

relative density

/%

detonation velocity

/m·s-1

detonation pressure

/GPa

detonation heat

/J·g-1

specific energy of

cylinder (E19)/kJ·g-1

PBX‑9501[7]1.8498.0880037.060301.577
PBX‑9502[7]1.9097.8771030.241801.037
Comp C‑4[7]1.6698.0837025.758601.258
PBX‑TKX1.8697.3903726.450551.377
html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F004.png
html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F006.png
html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F007.png
html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F008.png
html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F009.png
explosiveTKX‑50TKX‑WTKX‑50‑aTKX‑50‑b
EBAM / J5802632
H50 / cm16.6>11287.7105.9
explosiveformulationrelative density/%L50/mm
PBX‑TKXTKX‑50/F2314 =95/597.315.1±1.0
PBX‑RDXRDX/binder/additives=95.59/3.91/0.5096.722.9±0.3
PBX‑HMXHMX/binder/additives =95/4.3/0.798.022.6±0.3
PBX‑FOXFOX‑7/binder/additives =95/4.0/1.098.117.8±0.4
PBX‑LLMLLM‑105/binder/additives =95/4.0/1.098.016.1±0.2
PBX‑TATBTATB/binder =95/597.67.6±0.5
html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F010.png
html/hncl/CJEM2019052/alternativeImage/524ba38e-e835-40f2-bca7-3b52ef5bb1e8-F011.png

图1 PBX‑TKX造型粉及小药柱照片 -- a. powder

Fig.1 The photos of PBX‑TKX molding powder and pellets -- a. powder

图1 PBX‑TKX造型粉及小药柱照片 -- b. pellets

Fig.1 The photos of PBX‑TKX molding powder and pellets -- b. pellets

表1 PBX‑TKX的爆轰性能测试结果及与几种炸药的对比

Table 1 The detonation performance comparison of TKX‑50 based PBX and some other explosives

图2 4种单质炸药主要爆轰产物含量对比图

Fig.2 Histogram for the main detonation products and their amount for four single‑compound explosives

图3 不同方式处理后的TKX‑50扫描电镜图 -- a. raw TKX‑50

Fig.3 SEM images of TKX‑50 after different treatments -- a. raw TKX‑50

图3 不同方式处理后的TKX‑50扫描电镜图 -- b. TKX‑50‑W

Fig.3 SEM images of TKX‑50 after different treatments -- b. TKX‑50‑W

图3 不同方式处理后的TKX‑50扫描电镜图 -- c. TKX‑50‑a

Fig.3 SEM images of TKX‑50 after different treatments -- c. TKX‑50‑a

图3 不同方式处理后的TKX‑50扫描电镜图 -- d. TKX‑50‑b

Fig.3 SEM images of TKX‑50 after different treatments -- d. TKX‑50‑b

表2 不同方式处理后的TKX‑50撞击感度

Table 2 The impact sensitivity of TKX‑50 after different treatments

表3 6种混合炸药的冲击波感度

Table 3 The shock wave sensitivity of six kinds of PBXs

图4 TKX‑PBX快速烤燃试验后装置壳体碎片

Fig. 4 Device fragments after Fast Cook‑off Test of PBX‑TKX

图5 四种单质炸药的DSC热分解曲线

Fig.5 Thermal decomposition curves of four single‑compound explosives by DSC

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

EBAM is impact energy. H50 is impact sensitivity.

无注解

无注解

无注解

  • 参考文献

    • 1

      Nair U R, Asthana S N, Rao A S, et al. Advances in high energy materials[J]. Defence Science Journal, 2010, 60(2): 137-151.

    • 2

      Gao H, Shreeve J M. Azole‑based energetic salts[J]. Chemical Reviews, 2011, 111(11): 7377-7436.

    • 3

      Chavez D E, Hiskey M A, Naud D L. Tetrazine explosives[J]. Propellants, Explosives, Pyrotechnics,2004,29(4): 209-215.

    • 4

      Klapötke T M, Martin F A, Stierstorfer J. C2N14: An energetic and highly sensitive binary azidotetrazole[J]. Angewandte Chemie International Edition, 2011, 50(18): 4227-4229.

    • 5

      Sun C, Zhang C, Jiang C, et al. Synthesis of AgN5 and its extended 3D energetic framework[J]. Nature communications, 2018, 9(1): 1269: 1-7.

    • 6

      Klapötke T M, Sabaté C M. Bistetrazoles: nitrogen‑rich, high‑performing, insensitive energetic compounds[J]. Chemistry of Materials, 2008, 20(11): 3629-3637.

    • 7

      Fischer N, Fischer D, Klapötke T M, et al. Pushing the limits of energetic materials‑the synthesis and characterization of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422.

    • 8

      Fischer N, Klapötke T M, Mušanić S M, et al. TKX‑50[C]//New Trends in Researsh of Energetic Materials, Czech Republic, 2013: 566‑577.

    • 9

      赵廷兴, 田均均, 李磊,等. 5,5′‑联四唑‑1,1′‑二氧二羟铵(TKX‑50)50克量级制备放大工艺[J]. 含能材料, 2014(6): 744-747.

      ZHAO Ting‑xing, TIAN Jun‑jun, LI Lei, et al. Up‑sizing 50 grams‑scale synthesis technology of dihydroxylammounium 5,5′‑bistetrazole‑1,1′diolate (TKX‑50)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014(6): 744-747.

    • 10

      朱周朔, 姜振明, 王鹏程, 等. 5,5′‑联四唑‑1,1′‑二氧二羟铵的合成及其性能[J]. 含能材料, 2014, 22(3): 332-336.

      ZHU Zhou‑shuo, JIANG Zhen‑ming, WANG Peng‑cheng, et al. Synthesis and properties of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(3): 332-336.

    • 11

      Badgujar D, Talawar M. Thermal and sensitivity study of dihydroxyl ammonium 5,5′‑bistetrazole‑1,1′‑diolate(TKX‑50) based melt cast explosive formulations[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 883-888.

    • 12

      Gottfried J L, Klapötke T M, Witkowski T G. Estimated detonation velocities for TKX‑50, MAD‑X1, BDNAPM, BTNPM, TKX‑55, and DAAF using the laser‑induced air shock from energetic materials technique[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4): 353-359.

    • 13

      Klapötke T M, Witkowski T G, Wilk Z, et al. Determination of the initiating capability of detonators containing TKX‑50, MAD‑X1, PETNC, DAAF, RDX, HMX or PETN as a base charge by underwater explosion test[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(1): 92-97.

    • 14

      毕福强, 付小龙, 劭重斌, 等. 高能单元推进剂TKX‑50能量特性计算研究[J].化学推进剂与高分子材料, 2013, 11(5): 70-73.

      BI Fu‑qiang, FU Xiao‑long, SHAO Chong‑bin, et al. Calculation of energy characteristics of high energy monopropellant TKX‑50[J]. Chemical Propellants&Polymeric Materials, 2013, 11(5): 70-73.

    • 15

      Liu J H, Yang Z J, Liu S J, et al. Effects of fluoropolymer binders on the mechanical properties of TATB‑based PBX[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(7): 664-670.

    • 16

      Stine J R. On predicting properties of explosives‑detonation velocity[J]. Journal of Energetic Materials, 1990, 8(1-2): 41-73.

    • 17

      Xu R J, Kang B, Huang H, et al. Characterization and properties of desensitized octogen[J]. Chinese Journal of Energetic Materials, 2010, 18(5): 518-522.