1 引 言
电控固体推进剂(ECSP)是近年来发展的一种不需要点火药,可直接通过外接电源点火燃烧的新型固体推进剂。通过调节外加电源电压不仅可以实现推进剂的多次点火与熄灭,还能实现推进剂燃速的实时调
节[1,2] 。电控固体推进剂微小型固体发动机具有结构简单、响应快、易于控制的优点,在姿态控制系统、火箭助推系统、导弹防御系统和空间推进点火系统中得到了一定的应用[3,4,5,6] 。金属燃料是电控固体推进剂的主要成分之一,包括镁、铝、硼、钨等。铝粉,尤其是微米或纳米铝粉,因其高密度和高燃烧焓的特性可以显著提高ECSP的燃速及比冲;铝粉良好的导电性还有助于提高ECSP的导电性,改善其电点火性能,缩短点火延迟时间,降低点火功率。但是,铝粉含量与粒径的变化以及对静电放电的敏感特性无疑会对推进剂的感度产生一定影响[7,8,9,10,11] 。关于电控固体推进剂的安全性能,国外已进行了部分研究。据美国Digital Solid State Propulsion公司报道,基于硝酸羟胺(HAN)的高性能电控固体推进剂“HIPEP”安全等级可以满足美国国军标弹药火箭与导弹发动机点火系统安全设计规范(MI‑STD‑1901A)要求1.4
级[12] ,该推进剂在制备、使用、运输以及贮存方面都具有较高的安全性。虽然HAN基电控固体推进剂具有比冲高、产物无毒以及电控性能好的优点,但存在断电后不能完全熄灭,长期储存性能下降的缺点,且当环境压力≥1.4 MPa时,其燃烧转变为自维持进行[13] ,失去了电控特性。高氯酸盐基ECSP是在HAN基ECSP基础上发展的新一代电控固体推进剂,具有更好的电控特性及热稳定性。目前,尚未见有关含高氯酸盐ECSP感度特性研究的文献报道。本研究采用高氯酸盐为氧化剂,制备了高氯酸盐基电控固体推进剂,探究了铝粉含量及粒径对高氯酸盐基ECSP撞击感度、摩擦感度、静电火花感度以及火焰感度的影响,以为高氯酸盐基ECSP的安全性评价提供依据。
2 实验部分
2.1 试样制备
本研究中所采用的电控固体推进剂组成主要包括高氯酸锂(LiCl
O4 )、硝酸铵(AN)、聚乙烯醇(PVA)、铝粉(粒径分别为0.05,5,25,65,105 µm),交联剂和增塑剂等。以电控固体推进剂配方为基础,采用浇注工艺制备了推进剂样品,即将高氯酸锂、硝酸铵、聚乙烯醇、铝粉和其它助剂加入到溶剂中混合搅拌40 min,然后将浆液浇注至模具中,于35~50 ℃下固化5~7天,脱模后即可得到ECSP固体推进剂。含不同Al粒径的高氯酸盐基ECSP样品的具体配方为:LiClO4 55%,AN 5%,PVA 15%,Al 15%,其它10%。固定LiClO4 和铝粉总含量为70%,其它各组分的含量保持不变,通过改变LiClO4 与铝粉的相对含量制备得到铝粉含量为0%,5%,10%,15%,20%的ECSP样品。由于Al含量过高会降低高氯酸盐基电控固体推进剂浆液的流动性,不利于推进剂的浇铸成型;高铝含量还会降低推进剂配方组分混合均匀度,导致推进剂干燥成型后产生裂纹,燃烧性能降低。因此,本研究中推进剂的Al含量≤20%。2.2 感度测试
撞击感度:参照GJB772A-1997方法601.
2[14] ,用WL‑1型撞击感度仪测试推进剂试样的撞击感度。测试条件:落锤重量2 kg;样品质量30 mg。撞击感度以样品50%爆炸特性落高H50(cm)表示。摩擦感度:参照GJB772A-1997方法602.
1[14] ,用WM‑1型摩擦感度仪测试推进剂试样的摩擦感度。测试条件:摆角66°,样品质量20 mg,压强2.45 MPa。摩擦感度以样品爆炸概率P(%)表示。静电火花感度:参照GJB5891.27-2006方法6.
1[15] ,先向500 pF电容器充电至10 kV,试验30发。继而采用方法6.2,依次选用四个不同电极间隙和电阻,向10000 pF电容器充电至10 kV,试验30发。电极间隙为0.12,0.18,0.25 mm 和 0.50 mm,环境温度24 ℃,湿度40%,单次用药量25 mg。采用JGY‑50II静电火花感度仪进行测试,并以样品50%发火电压V50(kV)表示。火焰感度:参照GJB772A-1997方法604.
1[14] ,采用导火索法测试推进剂试样的火焰感度。测试条件:常温常压下用7 cm导火索进行点火试验,底火壳为7.62枪弹通用底火壳。火焰感度以样品50%发火高度h50(cm)表示。3 结果与讨论
3.1 Al含量对高氯酸盐基ECSP推进剂的感度影响
不同Al含量高氯酸盐基ECSP的撞击感度(H50)、摩擦感度(P)以及静电火花感度(V50)测试结果见表1。
表1 Al含量对高氯酸盐基ECSP感度的影响
Table 1 Effects of Al content on the sensitivities of perchlorate‑based ECSP
Al diameter / µm Al content / % H50 / cm P / % V50 / kV 5 0 ≥125.8 0 >10 5 81.3 0 >10 10 80.9 4 >10 15 70.8 4 >10 20 56.2 4 >10 105 5 ≥125.8 0 >10 10 ≥125.8 0 >10 15 ≥125.8 0 >10 20 100.0 4 >10 NOTE: H50 is the impact sensitivity. P is the friction sensitivity. V50 is the electrostatic spark sensitivity.
由表1可知,含Al高氯酸盐基ECSP与非金属高氯酸基ECSP(Al%=0)相比,含20% Al(5 μm)推进剂H50值降至56.2 cm,P增至4 %;含20% Al(105 μm)推进剂H50值降至100.0 cm,P增至4%。当Al含量由5%增至20%时,高氯酸盐基ECSP的H50值减小而P增大,且Al粒径为5 μm时,该变化趋势比Al(105 μm)明显。这说明Al含量的增加导致推进剂撞击感度和摩擦感度增大,且撞击感度增加的幅度较摩擦感度大。不同Al含量的高氯酸盐基ECSP在10 kV条件下均未发生反应现象,其静电火花感度变化规律不明显。
分析认为氧化剂LiCl
O4 和AN在推进剂干燥成型过程中随溶剂的挥发而析出并填充于PVA交联网络结构中,在受到外界刺激时具有高比热容的PVA与氧化剂作用需要吸收更多的热量形成“热点”,因此,非金属系高氯酸盐基ECSP具有较低的撞击感度和摩擦感度。Al的加入降低了推进剂体系的比热容[16] ,且Al与氧化剂以及Al颗粒之间的碰撞、破碎几率随Al含量的增加而增大,导致在受到外界刺激时推进剂内部更易形成“热点”,推进剂的撞击感度增大。此外,Al含量的增加导致推进剂各组分之间通过摩擦形成的“热点”增加,推进剂摩擦感度增大,但是增幅较低。分析认为聚合物基质PVA的黏弹性降低了Al颗粒及其它固体填料之间的摩擦作用,因此高氯酸基ECSP摩擦感度较低。在10 kV的发火电压及0.12~0.5 mm电极间隙条件下,不同Al含量的高氯酸盐基ECSP均未发生明显的发火现象,这说明高氯酸盐基ECSP静电火花感度较低,但是Al含量对其静电火花感度的影响规律不明显。分析认为微纳米Al颗粒或团聚颗粒填充于PVA交联网络结构中并被PVA包覆,导致推进剂电阻增加,导电性较低,从而表现出较低的静电火花感度。
3.2 Al粒径对高氯酸盐基ECSP推进剂的感度影响
含不同Al粒径高氯酸盐基ECSP样品的撞击感度(H50)、摩擦感度(P)、静电火花感度(V50)以及火焰感度(h50)测试结果见表2。
表2 Al粒径对高氯酸盐基ECSP感度的影响
Table 2 Effects of particle size of Al power on the sensitivities of perchlorate‑based ECSP
Al diameter
/ µm
Al content
/ %
H50
/ cm
P
/ %
V50
/ kV
h50
/ cm
0.05 15 33.9 4 >10 1.5 5 70.8 4 >10 0.5 25 74.1 4 >10 - 65 97.7 4 >10 - 105 ≥125.8 0 >10 - NOTE: H50 is the impact sensitivity. P is the friction sensitivity. V50 is the electrostatic spark sensitivity. h50 is the flame sensitivity. “-” means no reaction.
由表2可知,当Al粒径由纳米级(0.05 µm)增至微米级65 µm时,H50值由33.9 cm增至97.7 cm;当Al粒径增至105 µm 时,H50值增至125.8 cm以上,这说明高氯酸盐基ECSP的撞击感度随Al粒径的增大而降低。分析认为Al粒径越小,比表面积越大,活性越
高[17] ,增大了推进剂中颗粒间的碰撞摩擦几率,导致推进剂撞击感度增大。粗粒径Al粉的应用增大了颗粒间距,间隙中PVA的填充降低了Al颗粒之间的摩擦作用,从而导致推进剂的撞击感度降低。Al粒径为0.05~65 μm时高氯酸盐基ECSP的摩擦感度变化不明显,而当Al粒径增至105 µm时,其摩擦感度P降低了4%,这说明Al粒径的增大降低了高氯酸盐基ECSP的摩擦感度,但降幅平缓。分析认为颗粒间的扩散距离随Al粒径的减小而减小,增大了摩擦面积,导致推进剂内部组分间的反应活性增加,产生的热量增加,因而推进剂的摩擦感度增大。
当Al粒径由0.05 μm增至5 μm时,高氯酸盐基ECSP的h50值降低了66.67%,说明其火焰感度随Al粒径的增大而降低。当Al粒径由25 μm增至105 μm时,推进剂经导火索测试表现为不燃不爆,但变化规律不明显。非金属系高氯酸盐基ECSP具有良好的火焰钝感特性,而具有高表面活性的Al粉加入提高了推进剂的火焰敏感度,在受到外界高温刺激时,推进剂表面更容易发生反应产生放出热量,造成局部温度过高导致推进剂燃烧或爆炸,导致高氯酸盐基ECSP的火焰感度增大。
综上所述,高氯酸盐基ECSP表现出较低的感度特性,Al含量及粒径变化对其撞击感度的影响比对摩擦感度、静电火花感度及火焰感度的影响大。本研究结果为高氯酸盐基ECSP感度研究奠定了基础,但存在一定的局限性,通过改进实验方法可对高氯酸盐基ECSP的感度特性展开进一步的研究。
4 结 论
研究了不同铝粉含量及粒径对高氯酸盐基电控固体推进剂的撞击感度、摩擦感度、静电火花感度和火焰感度的影响,得到如下结论:
(1)高氯酸盐基ECSP的撞击感度随Al粉含量的增加而增大,随Al粉粒径的增大而减小。含纳米级Al粉高氯酸盐基ECSP的撞击感度比含微米级Al粉的高。
(2)高氯酸盐基ECSP的摩擦感度随Al粉含量的增加而增大,但是增加趋势平缓;其摩擦感度随Al粒径的增大呈降低的趋势,且Al粒径变化越大,该变化趋势越明显。
(3)高氯酸盐基ECSP的火焰感度随Al粒径的增大而降低。
(4)高氯酸盐基ECSP具有较低的静电火花感度,不同Al含量与粒径的高氯酸盐基ECSP发火电压V50均大于10 kV以上。
(责编: 高 毅)
参考文献
- 1
Dulligan M, Lake J, Adkison P, et al. Method of controlling solid propellant ignition, combustion, and extinguishment: US7770380[P], 2010.
- 2
Grix C, Katzakian A, McGehee D. Electrically controlled propellant: US2006/0011276[P], 2006.
- 3
CarIson R W. Method and system for controlling solid propellant thrust: US8584443[P], 2013.
- 4
Dulligan M, Lake J, Adkison P, et al. Electrically controlled extinguishable solid propellant motors: US2008/0092521[P], 2008.
- 5
Sawka W N. Physical destruction of electrical device and methods for triggering same: US2011/0226148[P], 2011.
- 6
Duchemin O, Yvart P M. Space vehicle with electric propulsion and solid propellant chemical propulsion: US2015/ 0021439[P], 2015.
- 7
程新丽, 赵孝彬, 李军. Al粉对NEPE推进剂感度的影响[J]. 含能材料, 2013, 21(1): 61-63.
CHENG Xin‑li, ZHAO Xiao‑bin, LI Jun. Effect of Al on sensitivity of NEPE propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013, 21(1): 61-63.
- 8
Covino J, Hudson F E. Current assessment methodology for electrostatic discharge hazards of energetic materials[J]. Journal of Propulsion and Power, 1991, 7(6): 897-898.
- 9
王彩玲,陈松,赵省向,等. Al粉对RDX机械感度的影晌[J]. 火工品, 2010(1): 32-34.
WANG Cai‑ling, CHEN Song, ZHAO Sheng‑xiang, et al. Influence of Al powder on mechanical sensitivity of RDX[J]. Initiators & Pyrotechnics, 2010(1): 32-34.
- 10
Azhagurajan A, Selvakumar N, Thanulingam T L. Thermal and sensitivity analysis of nano aluminium powder for firework application[J]. Journal of Thermal Analysis and Calorimetry, 2011, 105: 259-267.
- 11
秦超, 赵孝彬, 李军. 固体推进剂安全性能影响因素的灰色关联分析[J]. 含能材料, 2012, 20(6): 762-765.
QIN Chao, ZHAO Xiao‑bin, LI Jun. Grey relational analysis in influencing factors of NEPE propellant sensitivity[J]. ChineseJournal of Energetic Materials(Hanneng Cailiao), 2012, 20(6): 762-765.
- 12
Sawka W, McPherso M. Electrical solid propellants: a safe, micro to macro propulsion technology[C]∥49th AIAA /ASME/SAE /ASEE Joint Propulsion Conference. AIAA, 2013: 4168-4189.
- 13
Grix C E, Sawka W N. Family of modifiable high performance electrically controlled propellants and explosives: US2011/0067789[P], 2011.
- 14
国防科学技术工业委员会. GJB/772A-1997: 感度和安全性试验方法[S]. 北京: 国防科工委军标出版社, 1997.
Commission of Science, Technology and Industry for National Defense. GJB/772A-1997: Test method of sensitivity and safety[S]. Beijing:
Military Standard Publishing Department of Commission of Science, Technology and Industry for National
Defense, 1997.
- 15
国防科学技术工业委员会. GJB/5891.27-2006: 火工品药剂试验方法[S]. 北京: 国防科工委军标出版社, 2006.
Commission of Science, Technology and Industry for National Defense. GJB/772A-1997: Test method of loading material for initiating explosive device[S]. Beijing: Military Standard Publishing Department of Commission of Science, Technology and Industry for National Defense, 2006.
- 16
安亭, 赵凤起, 高红旭, 等. 含超级铝热剂双基推进剂的感度特性[J]. 推进技术, 2013, 34(1): 129-134.
AN Ting, ZHAO Feng‑qi, GAO Hong‑xu, et al. Sensitivity characteristics of double base propellants containing super thermites[J]. Journal of Propulsion Technology, 2013, 34(1): 129-134.
- 17
吴家祥, 李裕春, 方向, 等. Al粒径对Al‑PTFE准静压反应和落锤撞击感度的影响[J]. 含能材料, 2018, 26(6): 524-529.
WU Jia‑xiang, LI Yu‑chun, FANG Xiang, et al. Effect of Al particle size on the quasi‑static compression reaction and drop hammer impact sensitvity of Al‑PTFE[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(6): 524-529.
- 1
摘要
为了探究含Al的高氯酸盐基电控固体推进剂(ECSP)的感度特性,采用浇注工艺制备了金属与非金属系高氯酸基ECSP,并依据国军标方法考察了Al含量(0%,5%,10%,15%,20%)及粒径(0.05,5,25,65,105 µm)对高氯酸盐基ECSP的撞击感度、摩擦感度、静电火花感度及火焰感度的影响。结果表明:高氯酸盐基ECSP的撞击感度随Al含量的增加而增大,随Al粒径的增大而减小;金属与非金属系高氯酸盐基ECSP的摩擦感度均较低,Al含量及粒径变化对其摩擦感度有一定的影响,但影响较小;高氯酸盐基ECSP的火焰感度随Al粒径的增加而降低;在10 kV电压下Al含量及粒径的变化均未导致高氯酸盐基ECSP出现明显的发火现象;含纳米级Al高氯酸盐基ECSP的撞击感度(H50=33.9 cm)高于含微米级Al高氯酸盐基ECSP(H50≥56.2 cm)。
Abstract
To investigate the sensitivity characteristics of an perchlorate‑based ECSP containing aluminum, metallic and non‑metallic perchlorate‑based ECSP with various Al content (0%, 5%, 10%, 15% and 20%) and particle size (0.05, 5, 25, 65 µm and 105 µm) were prepared by means of the casting process; the impact, friction, electrostatic spark, and flame sensitivities of the perchlorate‑based ECSP were investigated according to the national military standard methods. The results show that the impact sensitivity of the perchlorate‑based ECSP increases with the increase of the aluminum content and decreases with the increase of the particle size of the aluminum powder in the propellant. The metallic and non‑metallic perchlorate‑based ECSP show low friction sensitivity. The changes of the Al content and particle size have some influence on the friction sensitivity, but the effect is slightly presented. The flame sensitivity of the perchlorate‑based ECSP decreases with the increase of the particle size of the aluminum powder. Under the test voltage of 10 kV, the changes of content and particle size of the aluminum powder do not result in obvious combustion of perchlorate‑based ECSP. The impact sensitivity is larger for nano‑ECSP (H50=33.9 cm) than in the perchlorate‑based ECSP with the micro‑aluminum powder (H50≥33.9 cm).
Graphic Abstract
图文摘要
The perchlorate‑based electrical controlling solid propellant (ECSP) with various Al content and particle size were prepared by means of the casting process; the impact, friction, electrostatic spark and flame sensitivities of the perchlorate‑based ECSP were investigated according to the national military standard methods. The results show that the perchlorate‑based ECSP show low sensitivity characteristics.