CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
汪旭光. 乳化炸药 [M]. 北京:冶金工业出版社, 1993:12.
WangXu‑guang. Emulsion Explosives[M]. Beijing: Metallurgical Industry Press, 1993:12.
参考文献 2
Yixin Wang, Honghao Ma, Zhaowu Shen. Detonation characteristics of emulsion explosives sensitized by hydrogen‑storage glass microballoons[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(9): 939-947.
参考文献 3
颜事龙,王尹军. 冲击波作用下乳化炸药压力减敏度的表征方法[J]. 爆炸与冲击, 2006, 26(5): 441-447.
YANShi‑long, WANGYin‑jun. Characterization of pressure desensitization of emulsion explosive subjected to shock wave [J]. Explosion and Shock Waves, 2006, 26(5): 441-447.
参考文献 4
Yangfan Cheng, Shilong Yan, Honghao Ma, et al. A new type of functional chemical sensitizer MgH2 for improving pressure desensitization resistance of emulsion explosives[J]. Shock Waves, 2016, 26(2): 213-219
参考文献 5
Yangfan Cheng, Honghao Ma, RongLiu, et al. Explosion power and desensitization resisting property of emulsion explosives sensitized by MgH2[J]. Journal of Energetic Materials, 2014, 32(3): 207-218.
参考文献 6
Yangfan Cheng, Honghao Ma, RongLiu, et al. Pressure desensitization influential factors and mechanism of magnesium hydride sensitized emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(2): 267-274.
参考文献 7
Yangfan Cheng, Xiangrui Meng, Chengtao Feng, et al. The effect of hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585-591.
参考文献 8
Yangfan Cheng, QuanWang, FengLiu, et al. The effect of energetic additive of coated MgH2 on the power of emulsion explosives sensitized by glass microballoons[J]. Central European Journal of Energetic Materials, 2016, 13(3): 349-356.
参考文献 9
Yangfan Cheng, Honghao Ma, Zhaowu Shen. Detonation characteristics of emulsion explosives sensitized by MgH2[J]. Combustion, Explosion and Shock Waves, 2013,49(5): 614-619.
参考文献 10
Wenjin Liu, Yangfan Cheng, HuaFang, et al. Synthesis of multicore energetic hollow microspheres with an improved suspension polymerization‑thermal expansion method [J]. Powder Technology, 2019, 343: 326-329.
参考文献 11
Dingguan Wang, Lifen Xiao, Xinyue Zhang, et al. Emulsion templating cyclic polymers as microscopic particles with tunable porous morphology[J]. Langmuir, 2016, 32(6): 1460-1467.
参考文献 12
LebedevaNatalia V, SandersSamuel N, InaMaria, et al. Multicore expandable microbubbles: Controlling density and expansion temperature[J]. Polymer, 2016, 90: 45-52.
参考文献 13
BordzilovskiiS. A., KarakhanovS. M., PlastininA. V., et al. Detonation temperature of an emulsion explosive with a polymer sensitizer[J]. Combustion, Explosion, and Shock Waves, 2017, 53(6): 730-737.
参考文献 14
YunoshevA S, PlastininA V, RafeichikS I. Detonation velocity of an emulsion explosive sensitized with polymer microballoons[J]. Combustion, Explosion, and Shock Waves, 2017, 53(6): 738-743.
参考文献 15
Sil’vestrovV V, BordzilovskiiS A,KarakhanovS M, et al. Temperature of the detonation front of an emulsion explosive[J]. Combustion, Explosion, and Shock Waves, 2015, 51(1): 116-123.
参考文献 16
YunoshevaA S, Sil’vestrovV V,A Vet alPlastinin. Influence of artificial pores on the detonation parameters of an emulsion explosive[J]. Combustion, Explosion, and Shock Waves, 2017, 53(2): 205-210.
参考文献 17
ZlobinaB S,KiselevV V, ShterzerA A, et al. Use of emulsion explosives in experimental studies of flows in the bonding zone in explosive welding[J]. Combustion, Explosion, and Shock Waves, 2018, 54(2): 231-237.
参考文献 18
Zhixiang Xu, QianWang, Xiaoqi Fu. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite[J]. Journal of Hazardous Materials, 2015, 300: 702-710.
参考文献 19
MiaoYao, WenDing, Guoning Rao, et al. Effects of MgH2/Mg(BH4)2 powders on the mechanical sensitivity of conventional explosive compounds[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(3): 274-279.
参考文献 20
Zhixiang Xu, Guisheng Xu, Xiaoqi Fu, et al. The mechanism of nano‑CuO and CuFe2O4 catalyzed thermal decomposition of ammonium nitrate[J]. Nanomaterials and Nanotechnology, 2016, 6: 1-10.
参考文献 21
YuanK J, ZhouY, SunW C. A polymer‑coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability[J].Composites Science and Technology,2018,156: 78-86.
参考文献 22
WeldonD G. Differential Scanning Calorimetry[J]. Journal of Protective Coatings and Linings, 2014, 31(6): 21-23.
参考文献 23
国家技术监督局. GB/T 12440-1990: 炸药猛度试验铅柱压缩法[S]. 上海:华东工学院民用爆破器材, 1990.
参考文献 24
国家技术监督局. GB/T 13288-91: 工业炸药爆速测定[S]. 北京:中国标准出版社, 1991.
目录 contents

    摘要

    针对传统乳化炸药在工程应用中存在的含能添加剂安全性问题和“压力减敏”问题,分别研制了乳化炸药中空含能微囊和中空耐压微囊。中空含能微囊将含能添加剂和敏化剂合二为一,中空耐压微囊具有“自敏化”和“化学敏化”功能。采用扫描电镜、光学显微镜和激光粒度分析仪,对制备的中空含能微囊和中空耐压微囊微观结构进行了表征,采用热分析实验、爆轰性能测试实验、相容性实验,对中空含能微囊敏化的乳化炸药热安全性、爆轰特性和储存稳定性进行了表征,利用光学显微镜对中空耐压微囊受压后,敏化气泡的再生现象进行了验证。实验结果表明,中空含能微囊和中空耐压微囊具有球形形貌且粒径分布均匀,中空含能微囊能够显著提高乳化炸药的爆炸威力且不影响其安全性和储存稳定性,其敏化乳化炸药的猛度为23.20 mm铅柱压缩量,爆速为4797 m·s-1;当外界压力将中空耐压微囊压垮时,微囊内外壳所含物质会发生反应并生成新的敏化气泡,为避免乳化炸药的压力减敏现象提供了双重保障。中空功能微囊结合了敏化剂和功能添加剂的双重特点,能够有效解决传统添加剂存在的问题。

    Abstract

    Considering the safety problems of energetic additives and “pressure desensitization” in the engineering application of traditional emulsion explosives, hollow energetic microcapsules and hollow pressure‑resistant microcapsules were developed.Hollow energetic microcapsules integrated the functions of energetic additives and sensitizers, while hollow pressure‑resistant microcapsules had the functions of “self‑sensitization” and “chemical sensitization”. The microstructures of hollow energetic microcapsules and hollow pressure‑resistant microcapsules were characterized by scanning electron microscopy, optical microscope and laser particle size distribution analyzer. The thermal, detonation and storage stability properties of hollow energetic microcapsules sensitized emulsion explosive were characterized by thermal analysis test, explosion performance experiments and compatibility tests, respectively. The regeneration of sensitized bubbles was verified by observing compressed hollow pressure‑resistant microcapsules under an optical microscopy. Results show that the hollow energetic microcapsules and hollow pressure‑resistant microcapsules with spherical morphology, uniform particle size distribution, and hollow energetic microcapsules could significantly improve the detonation performance of emulsion explosive without affecting its safety and storage stability. The brisance and detonation speed of the hollow energetic microcapsules sensitized emulsion explosive are 23.20 mm and 4797 m·s-1 ,respectively. After collapse of the hollow pressure‑resistant microcapsule under external pressure, the inner and outer substances will react and generate new sensitized bubbles, which avoids the pressure desensitization of emulsion explosive. Hollow functional microcapsules can effectively solve the problems of traditional additives by integrating the characteristics of sensitizers and functional additives.

    Graphic Abstract

    图文摘要

    Two kinds of energetic hollow microcapsules and a novel pressure resistant microcapsule were developed.

  • 1 引 言

    乳化技术在工业炸药中的应用与发展,导致了油包水型乳化炸药的诞生。近30年来,乳化炸药在工程爆破、爆炸加工和国防等领域得到了大规模推广和应[1],2018年我国胶状和粉状乳化炸药的总产量已达到270多万吨,占工业炸药总量的69%,在国民经济建设中发挥着越来越重要的作用。随着乳化炸药应用领域的不断拓展,人们对其性能的多样化需求也日益突出,在使用过程中存在的一些典型问题也亟待解决。例如,乳化炸药含水量在10%左右,水的加入虽然提高了其安全性,但同时也降低了爆炸威力。研究高威力乳化炸药一直是工业炸药研究领域的热点问[2],其中向乳化炸药中添加高能物质是最常用的一种方法。然而,高能物质的加入又会提高炸药的感度,严重影响乳化炸药的安全性。如何解决乳化炸药高威力和安全性之间的矛盾,一直是难点之一。在乳化基质中简单加入添加剂的传统方法,无法保证添加剂与乳化基质的相容性和安全性,有可能造成乳化炸药的破乳、析晶、分层和爆轰性能不稳定等问题,甚至发生意外爆炸。在工程爆破作业中,延时爆破和不耦合装药是工程爆破作业中最常用的两种技术。然而,延时爆破容易造成先起爆乳化炸药对后起爆乳化炸药的冲击波动压作用;深孔不耦合装药因空气间隙内产生超前于爆轰波传播的空气冲击波,使得炮孔底部的乳化炸药药柱受压变形。乳化炸药因受到冲击波压缩而发生爆轰性能下降的现象被称之为“动压减敏”,动压减敏容易造成乳化炸药的半爆甚至拒爆,而处理“哑炮”容易引发安全事[3]

    由此可见,传统乳化炸药虽然具有优良的抗水、环保、爆炸和贮存性能,但是随着其应用领域的不断拓展和爆破新技术的持续涌现,传统乳化炸药性能已很难满足人们对其日益多样化的需求。自2010年以来,本课题组一直从事高能钝感炸药、压力减敏和爆炸加工的相关研[4,5,6,7,8,9]。近年来,以敏化剂的设计为突破[10],使乳化炸药配方的研究逐步向精细化和功能化方向发展。在乳化基质中添加相应的功能微囊,可以有效地调节或提升乳化炸药的性能。微囊化技术是指将功能材料包裹于数微米至数百微米的微型容器中的方法,具有许多独特的功能,如:改变物质的物理状态和表面性质,提高物质的储存稳定性,将有毒有害物质与环境隔离,调节控制释放速率、挥发和溶解时间等,其应用研究主要涉及生物医学工程、药物控制释放、农业和化工等领[11]。聚合物壳体微囊的应用主要取决于其内部包覆的物质,通过调整微囊所处的外界环境,如温度、pH值、压力、超声波作用等,可以实现微囊内部物质的传递并控制其释放速[12]。乳化炸药的主要成分是乳化基质和敏化剂,乳化基质自身没有雷管感度,它必须经敏化剂敏化后才能被起爆。当受到冲击波绝热压缩,敏化剂会在乳化基质中形成“热点”并引爆炸[8]。空心微球具有粒度分布均匀、抗压性强和无敏化后效等优点,成为乳化炸药非常理想的物理敏化[13,14,15]。国内外研究人员在改善乳化炸药性能方面也做了大量的工作。Cheng[7]通过在乳化基质中加入金属氢化物来提高乳化炸药的威力。Yunoshev[16]研究了四种气体载体作为敏化剂对乳化炸药爆轰性能的影响。Zlobina[17]在乳化基质中加入TNT和玻璃微球,制备出适应用于爆炸焊接的低临界装药厚度和爆速的炸药。然而,在乳化炸药中添加功能物质同样也会影响其热稳定[18]、机械感[19]和相容[20]

    为此,本研究设计了两种乳化炸药用功能微囊,按照结构和功能添加剂的不同,功能微囊分为中空含能微囊和中空耐压微囊。利用激光粒度分析仪、扫描电镜和光学显微镜对这两种功能微囊的物理性能进行了观测,并通过热分析、猛度和爆速测量实验、相容性实验和敏化气泡再生实验,对中空功能微囊改善乳化炸药爆轰性能的效果进行了验证。

  • 2 中空功能微囊的制备

    实验制备了中空含能微囊和中空耐压微囊这两种功能微囊,其中,因膨胀剂物态和制备方法的不同,中空含能微囊又分别可通过悬浮聚合‑固体热膨胀法和悬浮聚合‑液体热膨胀法制备。

  • 2.1 实验材料

    TiH2储氢量3.85%,宝鸡泉兴钛业有限公司,商业级;固体膨胀剂偶氮二甲酰胺(AC,97%)平均粒径5 μm,江苏索普有限公司,商业级;漂珠,平均粒径100 μm,河南义翔新材料有限公司,商业级;甲基丙烯酸甲酯(MMA,99%)、偶氮二异丁腈(AIBN,98%)、乙二醇二甲基丙烯酸酯(EGDMA,98%)、氢氧化钠(NaOH)、六水氯化镁(MgCl2·6H2O)、戊烷(99%)、氢氟酸(HF)、十八水合硫酸铝(硫酸铝,Al2(SO4)3·18H2O)、光引发剂907(2‑甲基‑1‑(4‑甲硫基苯基)‑2‑吗啉基‑1‑丙酮)、碳酸氢钠(NaHCO3)、疏水性纳米二氧化硅(SiO2)、硼粉(B)、十二烷基硫酸钠(SDS,98%),均为分析纯,购于上海麦克林生化科技有限公司;去离子水,自制。

  • 2.2 中空含能微囊

  • 2.2.1 悬浮聚合固体热膨胀法制备

    采用改进的悬浮聚合‑固体热膨胀法制备可膨胀的中空含能微囊。第一步是颗粒包覆,AC与TiH2加入球磨机球磨1 h,形成一种离散的AC包覆TiH2颗粒的核壳结构(图1a)。第二步是聚甲基丙烯酸甲酯外壳的制备:首先,在去离子水中依次加入NaOH、MgCl2·6H2O、1% SDS水溶液,剧烈搅拌1 h形成稳定的悬浮保护液;然后,将单体MMA、引发剂AIBN及交联剂EGDMA混合溶解形成油相,在75 ℃下预聚合15 min后用冰浴迅速将体系温度降低至25 ℃;随后,在生成的聚甲基丙烯酸甲酯(PMMA)预聚物中加入球磨包覆后的AC‑TiH2复合颗粒并混合均匀(图1b);将混合物转移到水相分散液中,在500 r·min-1的转速下搅拌分散5 min,形成稳定的悬浮液(图1c),然后升温至75 ℃熟化5 h,经冷却、过滤、冲洗和干燥后得到PMMA包裹多核AC‑TiH2的复合微球(图1d),混合搅拌过程均在N2的保护下进行。第三步是中空微球结构的形成,将制得的微球加热至一定温度,使其内部固体膨胀剂AC分解产生N2和CO2等气体,同时聚合物外壳受热软化并在内部气体的作用下向外膨胀形成空心结构,冷却固化后得到PMMA中空微球包裹TiH2颗粒的中空含能微囊(图1e)。

    图1
                            悬浮聚合‑固体热膨胀法制备中空含能微球的工艺流程示意图

    图1 悬浮聚合‑固体热膨胀法制备中空含能微球的工艺流程示意图

    Fig.1 Schematic diagram for the preparation of hollow energetic microcapsules with suspension polymerization‑solid thermal expansion method

  • 2.2.2 悬浮聚合液体热膨胀法制备

    采用改进的悬浮聚合‑液体膨胀法制备可膨胀的中空含能微囊,包括乳化聚合和热膨胀两个阶段(图2)。首先,在去离子水中溶解MgCl2·6H2O、NaOH稳定剂和乳化剂SDS(1%)水溶液,混合稳定剂与乳化剂形成水相;将单体MMA、引发剂AIBN、交联剂EGDMA和膨胀剂戊烷混合溶解形成油相,另外,在油相中加入不同质量比的TiH2作为芯材;将油相倒入水相,以1200 r·min-1的转速均化5 min,获得稳定的水包油(O/W)乳液,其中油滴中含有TiH2颗粒;立刻将悬浮溶液注入高压反应釜,在0.5 MPa的N2气氛中缓慢升温至75 ℃聚合5 h。聚合完成后,分别用稀盐酸和去离子水重复洗涤复合微囊,再在30 ℃下干燥24 h,最后将微囊在120 ℃干燥箱中加热膨胀2 min制备出最终的中空含能微囊。实验制备了MMA与TiH2质量比为1∶0(1#)、1∶0.5(2#)、1∶1(3#)、1∶1.5(4#)和1∶2(5#)的5组不同外壳结构和表面形貌的中空含能微囊,用于性能测试。

    图2
                            悬浮聚合‑液体热膨胀法制备中空含能微球的工艺流程示意图

    图2 悬浮聚合‑液体热膨胀法制备中空含能微球的工艺流程示意图

    Fig.2 Schematic diagram for the preparation of hollow energetic microcapsules with suspension polymerization‑liquid thermal expansion method

  • 2.3 高速剪切法制备中空耐压微囊

    中空耐压微囊的制备主要分为五步。第一步是对漂珠原料进行筛选(图3a),将漂珠浸没在去离子水中并间断搅拌5 h后,收集浮在水面上的漂珠并在105 ℃烘干24 h。第二步是对筛选后的漂珠进行穿孔(图3b),将筛选后的漂珠浸泡在0.6 mol·L-1的HF溶液中,以130 r·min-1的转速间断搅拌15 min后,过滤、洗涤、150 ℃干燥,得到外壳含有微/纳米级孔的多孔漂珠。第三步是漂珠内部浸入Al2(SO4)3(见图3c),将干燥后的多孔漂珠倒入锥形瓶中,置于80.5 kPa的真空压力下约2 h排出漂珠内部空气,然后将3倍漂珠体积的60 ℃饱和Al2(SO4)3溶液放入分液漏斗中,停止真空操作并打开分液漏斗阀门,让空气回流到烧瓶中将Al2(SO4)3溶液驱入锥形瓶中,静置约30 min,漂珠均沉淀在烧瓶底部时,在整个浸渍过程中锥形瓶被放置在80 ℃的加热板上加热,加载完成后迅速过筛,用80 ℃的去离子水清洗后,室温下干燥48 h,得到内腔部分填充Al2(SO4)3晶体的漂珠。第四步是PMMA包覆含Al2(SO4)3的漂珠(图3d),取MMA单体加入光引发剂907并搅拌均匀,倒入内腔部分填充Al2(SO4)3的漂珠,混合均匀后在液体石蜡溶液中分散,最后在UV固化机中通过强紫外光照射引发MMA单体聚合形成PMMA,得到PMMA包覆的漂珠。最后一步是旋转剪切制备出耐压微囊(图3e),将NaHCO3粉末完全溶解于去离子水中,然后加入疏水性纳米SiO2和聚合物PMMA包覆的漂珠,倒入高速剪切机中在12000 r·min-1的转速下剪切60 s,过150目筛,剔除未包覆的漂珠和剩余的疏水性纳米SiO2,最终得到具有双层壳体结构的中空耐压微囊。

    图3
                            高速剪切法制备中空耐压微囊的制备流程示意图

    图3 高速剪切法制备中空耐压微囊的制备流程示意图

    Fig.3 Schematic diagram for the preparation of pressure resistant microcapsules with high speed shear method

  • 3 中空功能微囊的微观性能观测

  • 3.1 悬浮聚合固体热膨胀法制备的中空含能微囊

    采用悬浮聚合‑固体热膨胀法制备的中空含能微囊的扫描电镜图如图4a所示。从图4a中可以看到,实验制备的中空含能微囊呈球形,且颗粒大小均匀、未发生团聚。通过光学显微镜可以观测到微囊的外壳透明,并可以清楚地看到微囊内部含有多个TiH2颗粒(见图4b)。图4c是TiH2颗粒和中空含能微囊的粒度分布曲线,从中可以看到TiH2的粒径0.5~120 μm,平均粒径25 μm,中空含能微囊的粒径为58~180 μm,平均粒径为105 μm。为了证明中空含能微囊具有中空结构,对其PMMA外壳进行了破碎预处理。图5是预处理后的中空含能微囊扫描电镜图,从图5中可以清楚地看到微囊内部的中空结构,并且含有多个TiH2颗粒,说明利用此方法能够制备出具有中空结构的含能微囊。

    html/hncl/CJEM2019039/media/d203b179-72ba-4a25-93e2-02ef4a15b48a-image008.jpeg

    a. SEM image

    html/hncl/CJEM2019039/media/d203b179-72ba-4a25-93e2-02ef4a15b48a-image009.jpeg

    b. OM image

    html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F012.png

    c. particle size distribution

    图4 悬浮聚合‑固体热膨胀法制备的中空含能微囊扫描电镜图和光学显微镜图及粒径分布

    Fig.4 SEM and OM images and particle size distribution of hollow energetic microcapsules prepared by suspension polymerization‑solid thermal expansion method

    图5
                            悬浮聚合‑固体热膨胀法制备的中空含能微囊破碎处理后的扫描电镜图

    图5 悬浮聚合‑固体热膨胀法制备的中空含能微囊破碎处理后的扫描电镜图

    Fig.5 SEM images of broken hollow energetic microcapsules prepared by suspension polymerization‑solid thermal expansion method

  • 3.2 悬浮聚合液体热膨胀法制备的中空含能微囊

    TiH2颗粒和不同比例MMA/TiH2制备的中空含能微囊扫描电镜照片如图6所示。从图6可见,随着MMA/TiH2比例降低,更多PMMA包覆的TiH2颗粒附着在微囊外表面上。TiH2为不规则颗粒,粒径范围0.31~52.48 μm,平均粒径为14.41 μm。图7是采用悬浮聚合‑液体热膨胀法制备(2#)粒径分布和扫描电镜图。从图7中可以看到,PMMA封装TiH2后形成的中空含能微囊呈球形,粒径为52.48~239.88 μm,平均粒径为116.48 μm。为了证明悬浮聚合‑液体热膨胀法制备的含能微囊具有中空结构,将 1## 2样品(含能添加剂的量分别为最小和最大)压碎后观察断裂面,结果如图8所示。由图8可见,该含能微囊内部具有明显的中空结构。

    html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F005.png

    a. TiH2 b. 1# c. 2#

    html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F006.png

    d. 3# e. 4# f. 5#

    图6 悬浮聚合‑液体热膨胀法制备的中空含能微囊扫描电镜图

    Fig.6 SEM images of hollow energetic microcapsules prepared by suspension polymerization‑liquid thermal expansion method

    图7
                            悬浮聚合‑液体热膨胀法制备的中空含能微囊(2#)粒径分布图

    图7 悬浮聚合‑液体热膨胀法制备的中空含能微囊(2#)粒径分布图

    Fig.7 Particle size distribution of hollow energetic microcapsules prepared by suspension polymerization‑liquid thermal expansion method

    图8
                            两种中空含能微囊破碎处理扫描电镜图

    图8 两种中空含能微囊破碎处理扫描电镜图

    Fig 8 SEM images of two kinds of crushed hollow energetic microspheres

    NOTE: a. 1# b. 2#

  • 3.3 高速剪切法制备的中空耐压微囊

    图9分别是漂珠、PMMA包覆的漂珠和中空耐压微囊的扫描电镜图和粒径分布曲线。由图9可见,漂珠和PMMA包覆的漂珠粒径范围相差不大,为30~250 μm,平均粒径为100 μm;而耐压中空微囊的粒径分布范围较宽,平均粒径集中在200 μm,其扫描电镜结果如图10所示。从图10a可以看到,漂珠呈球形且粒径分布均匀。漂珠的表面致密光滑,如图10b所示。图10c为漂珠壳的剖面,漂珠具有几微米厚度的高强度铝硅酸盐外壳,壳体具有由气泡形成的多孔结构,并被无定形纳米级薄膜覆盖。当化学蚀刻溶解漂珠表面的无定形纳米薄膜时,可以在壳体气泡处产生贯穿孔而不影响壳体的机械强[21]图10d是HF溶液处理过后的漂珠,表面有许多微纳米级的孔洞,外加剂可以通过这些贯穿孔隙渗透和释放。图10e是聚合物PMMA包覆后的漂珠,外表面较未包覆的漂珠明显有褶皱,说明PMMA已经包覆在漂珠外表面。图10f是最终形成的耐压微囊,该微囊呈椭球形,外壳由疏水性纳米二氧化硅组成。

    图9
                            不同微球的扫描电镜图和粒径分布曲线

    图9 不同微球的扫描电镜图和粒径分布曲线

    Fig.9 SEM images and particle size distribution curves of different microspheres

    NOTE: a. hollow cenospheres b. cenospheres coated by PMMA c. hollow pressure resistant microspheres

    html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F016.png

    a. cenospheres b. cenospheres with c. the shell of cenosphere impermeable surface with holes in it

    html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F017.png

    d. perforated cenospheres e. cenospheres coated by PMMA f. hollow pressure resistant microspheres

    图10 高速剪切法制备的中空耐压微囊扫描电镜图

    Fig.10 SEM images of pressure resistant microcapsules with hollow‑structure prepared by high‑speed shear method

  • 4 中空功能微囊的性能表征

  • 4.1 中空含能微囊的爆轰性能

    实验所用乳化基质的密度为1.42 g·cm-3,配方见表1。利用差示扫描量热[22]、猛度和爆速实[23,24],研究了悬浮聚合‑固体热膨胀法制备的中空含能微囊(EHMs)敏化乳化炸药的热稳定性和爆轰性能,并与玻璃微球(GMs)‑TiH2敏化的乳化炸药进行了对比。前期实验结果表[7],GMs‑TiH2敏化的乳化炸药中玻璃微球和TiH2的质量分数分别为4%和2%时爆轰性能最佳。EHMs敏化乳化炸药中,6%的EHMs(2#)所含TiH2质量比为2%,与GMs‑TiH2敏化乳化炸药中TiH2质量比相同,炸药配方和实验测试结果见表2

    表1 乳化基质的配方

    Table 1 Composition of emulsion matrix%

    componentNH4NO3NaNO3C18H38C12H26C24H44O6H2O
    mass ratio7874128

    表2 两种乳化炸药的热动力学和爆轰性能参数

    Table 2 Thermal and detonation parameters of two types of emulsion explosives

    samplemass fraction /%

    ρ

    /g·cm-3

    T0

    /℃

    ΔH

    /kJ·kg-1

    brisance

    /mm

    detonation velocity /m·s-1
    emulsion matrixGMsTiH2EHMs
    GMs‑TiH2 sensitized944201.13218.12910.3222.84659
    EHMs sensitized940061.25230.22655.0123.24797

    NOTE: T0 is the temperature of initial decomposition. ΔH is the heat output. ρ is density. Brisance is compression of lead cylinder.

    表2可见,与GMs‑TiH2敏化的乳化炸药相比,EHMs敏化的乳化炸药初始放热温度提高了12.1 ℃,放热量降低了8.8%,说明微囊包覆能够有效提高TiH2在乳化炸药中的热稳定性和安全性。中空含能微囊敏化的乳化炸药猛度和爆速分别为23.20 mm铅柱压缩量和4797 m·s-1,其爆炸威力较玻璃微球‑TiH2敏化的乳化炸药也有一定的提高。这是由于中空含能微囊利用内部空腔容纳TiH2颗粒,省去了TiH2颗粒在乳化基质中占据的体积,从而提高了乳化炸药的装药密度。

  • 4.2 中空含能微囊相容性

    无论采用悬浮聚合‑固体热膨胀法还是悬浮聚合‑液体热膨胀法,中空含能微囊的外壳材料都为聚甲基丙烯酸甲酯(PMMA),因此相容性实验只需测试一种方法制备的中空含能微囊。利用扫描电镜,测试了添加液体膨胀剂制备中空含能微囊的乳化炸药储存3个月后的微观结构,并与添加未包覆TiH2、石蜡包覆TiH2和硬脂酸包覆TiH2的乳化炸药进行对比,结果如图11所示。与爆轰性能测试中EHMs成分相同,实验中包覆材料PMMA与TiH2的质量比为1∶0.5(Sample 2)。由图11a可见,未包覆TiH2导致乳化基质大量破乳,由图11b和图11c可见,石蜡和硬脂酸包覆的TiH2加入乳化基质中三个月后,能够看到石蜡和硬脂酸的包覆减缓了TiH2的破乳作用,但是仍有大量的乳化基质发生破乳;而由图11d可见,中空含能微囊包覆的TiH2在乳化基质中储存3个月后几乎没有发生破乳,说明中空含能微囊与乳化基质具有良好的相容性。

    html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F020.png

    a. uncoated TiH2 powder b. paraffin wax coated TiH2 powder

    html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F021.png

    c. stearic acid coated TiH2 powder d. EHMs

    图11 添加不同材料包覆的TiH2后乳化炸药扫描电镜图

    Fig.11 SEM images of emulsion explosive with TiH2 coated with different materials

  • 4.3 中空耐压微囊的敏化气泡再生实验

    中空耐压微囊压碎前和压碎后的光学显微镜测试结果如图12所示。由图12a可见,中空耐压微囊为半透明的椭圆微球,微球内外部的亮度不同,表明微囊的核壳是由不同的材料组成,内部的灰色不透明球体为加载了Al2(SO4)3的漂珠,这证明制备的耐压微囊具有双层核壳结构。为了直观展示中空耐压微囊被压碎后的产气现象,取少量耐压微囊成品置于光学显微镜下,用硬质小铁勺将载玻片上的耐压微囊压碎,观察产气现象,结果如图12b所示,压碎后的中空耐压微囊产生了许多微气泡。因此,当乳化炸药受到外界动压而使其敏化气泡破坏时,该中空耐压微囊具备再生敏化气泡和提供“热点”结构的能力。

    图12
                            中空耐压微囊压碎前后的光学显微镜图

    图12 中空耐压微囊压碎前后的光学显微镜图

    Fig.12 Optical microscopy image of pressure resistant hollow microcapsules before and after crushing

    NOTE: a. before crushing b. after crushing

  • 5 结 论

    (1)采用悬浮聚合‑固体热膨胀法和悬浮聚合‑液体热膨胀法,制备了两种中空含能微囊,该微囊将含能添加剂和敏化剂合二为一,能改善乳化炸药的爆炸威力,其敏化乳化炸药的猛度和爆速分别为23.20 mm铅柱压缩量和4797 m·s-1

    (2)中空含能微囊具有良好的热稳定性,与玻璃微球‑TiH2敏化的乳化炸药相比,中空含能微囊初始放热温度提高了12.1 ℃,放热量降低了8.8%;同时,中空含能微囊与乳化基质具有良好的相容性,储存三个月以上几乎未发生破乳现象。

    (3)中空耐压微囊为双层壳体结构,具有“自敏化”和“化学敏化”功能。在受压较小的情况下,该微囊的内壳可以充当“热点”结构,而当外界压力较大并将其压垮时,微囊内外壳所含物质反应会产生新的敏化气泡,从而提高乳化炸药的抗压性能。

    (责编:王艳秀)

  • 参考文献

    • 1

      汪旭光. 乳化炸药 [M]. 北京:冶金工业出版社, 1993:12.

      Wang Xu‑guang. Emulsion Explosives[M]. Beijing: Metallurgical Industry Press, 1993:12.

    • 2

      Yixin Wang, Honghao Ma, Zhaowu Shen. Detonation characteristics of emulsion explosives sensitized by hydrogen‑storage glass microballoons[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(9): 939-947.

    • 3

      颜事龙,王尹军. 冲击波作用下乳化炸药压力减敏度的表征方法[J]. 爆炸与冲击, 2006, 26(5): 441-447.

      YAN Shi‑long, WANG Yin‑jun. Characterization of pressure desensitization of emulsion explosive subjected to shock wave [J]. Explosion and Shock Waves, 2006, 26(5): 441-447.

    • 4

      Yangfan Cheng, Shilong Yan, Honghao Ma, et al. A new type of functional chemical sensitizer MgH2 for improving pressure desensitization resistance of emulsion explosives[J]. Shock Waves, 2016, 26(2): 213-219

    • 5

      Yangfan Cheng, Honghao Ma, Rong Liu, et al. Explosion power and desensitization resisting property of emulsion explosives sensitized by MgH2[J]. Journal of Energetic Materials, 2014, 32(3): 207-218.

    • 6

      Yangfan Cheng, Honghao Ma, Rong Liu, et al. Pressure desensitization influential factors and mechanism of magnesium hydride sensitized emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(2): 267-274.

    • 7

      Yangfan Cheng, Xiangrui Meng, Chengtao Feng, et al. The effect of hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585-591.

    • 8

      Yangfan Cheng, Quan Wang, Feng Liu, et al. The effect of energetic additive of coated MgH2 on the power of emulsion explosives sensitized by glass microballoons[J]. Central European Journal of Energetic Materials, 2016, 13(3): 349-356.

    • 9

      Yangfan Cheng, Honghao Ma, Zhaowu Shen. Detonation characteristics of emulsion explosives sensitized by MgH2[J]. Combustion, Explosion and Shock Waves, 2013,49(5): 614-619.

    • 10

      Wenjin Liu, Yangfan Cheng, Hua Fang, et al. Synthesis of multicore energetic hollow microspheres with an improved suspension polymerization‑thermal expansion method [J]. Powder Technology, 2019, 343: 326-329.

    • 11

      Dingguan Wang, Lifen Xiao, Xinyue Zhang, et al. Emulsion templating cyclic polymers as microscopic particles with tunable porous morphology[J]. Langmuir, 2016, 32(6): 1460-1467.

    • 12

      Natalia V Lebedeva, Samuel N Sanders, Maria Ina, et al. Multicore expandable microbubbles: Controlling density and expansion temperature[J]. Polymer, 2016, 90: 45-52.

    • 13

      S. A. Bordzilovskii, S. M. Karakhanov, A. V. Plastinin, et al. Detonation temperature of an emulsion explosive with a polymer sensitizer[J]. Combustion, Explosion, and Shock Waves, 2017, 53(6): 730-737.

    • 14

      Yunoshev A S, Plastinin A V, Rafeichik S I. Detonation velocity of an emulsion explosive sensitized with polymer microballoons[J]. Combustion, Explosion, and Shock Waves, 2017, 53(6): 738-743.

    • 15

      Sil’vestrov V V, Bordzilovskii S A,Karakhanov S M, et al. Temperature of the detonation front of an emulsion explosive[J]. Combustion, Explosion, and Shock Waves, 2015, 51(1): 116-123.

    • 16

      Yunosheva A S, Sil’vestrov V V,Plastinin A Vet al. Influence of artificial pores on the detonation parameters of an emulsion explosive[J]. Combustion, Explosion, and Shock Waves, 2017, 53(2): 205-210.

    • 17

      Zlobina B S,Kiselev V V, Shterzer A A, et al. Use of emulsion explosives in experimental studies of flows in the bonding zone in explosive welding[J]. Combustion, Explosion, and Shock Waves, 2018, 54(2): 231-237.

    • 18

      Zhixiang Xu, Qian Wang, Xiaoqi Fu. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite[J]. Journal of Hazardous Materials, 2015, 300: 702-710.

    • 19

      Miao Yao, Wen Ding, Guoning Rao, et al. Effects of MgH2/Mg(BH4)2 powders on the mechanical sensitivity of conventional explosive compounds[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(3): 274-279.

    • 20

      Zhixiang Xu, Guisheng Xu, Xiaoqi Fu, et al. The mechanism of nano‑CuO and CuFe2O4 catalyzed thermal decomposition of ammonium nitrate[J]. Nanomaterials and Nanotechnology, 2016, 6: 1-10.

    • 21

      Yuan K J, Zhou Y, Sun W C. A polymer‑coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability[J].Composites Science and Technology,2018,156: 78-86.

    • 22

      Weldon D G. Differential Scanning Calorimetry[J]. Journal of Protective Coatings and Linings, 2014, 31(6): 21-23.

    • 23

      国家技术监督局. GB/T 12440-1990: 炸药猛度试验铅柱压缩法[S]. 上海:华东工学院民用爆破器材, 1990.

    • 24

      国家技术监督局. GB/T 13288-91: 工业炸药爆速测定[S]. 北京:中国标准出版社, 1991.

程扬帆

机 构:

1. 安徽理工大学化学工程学院,安徽 淮南 232001

2. 中国科学技术大学 中科院材料力学行为与设计重点实验室,安徽 合肥 230026

Affiliation:

1. School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China

2. CAS Key Laboratory of Mechanical Behavior and Design, University of Science and Technology of China, Hefei 230026, China

邮 箱:cyf518@mail.ustc.edu.cn

作者简介:程扬帆(1987-),男,博士,副教授,主要从事含能材料的起爆和爆轰研究。e‑mail:cyf518@mail.ustc.edu.cn

方华

机 构:安徽理工大学化学工程学院,安徽 淮南 232001

Affiliation:School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China

刘文近

机 构:安徽理工大学化学工程学院,安徽 淮南 232001

Affiliation:School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China

韩体飞

机 构:安徽理工大学化学工程学院,安徽 淮南 232001

Affiliation:School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China

龚悦

机 构:安徽理工大学化学工程学院,安徽 淮南 232001

Affiliation:School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China

陶臣

机 构:安徽理工大学化学工程学院,安徽 淮南 232001

Affiliation:School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China

姚雨乐

机 构:安徽理工大学化学工程学院,安徽 淮南 232001

Affiliation:School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China

沈兆武

机 构:中国科学技术大学 中科院材料力学行为与设计重点实验室,安徽 合肥 230026

Affiliation:CAS Key Laboratory of Mechanical Behavior and Design, University of Science and Technology of China, Hefei 230026, China

html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F008.png
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F001.png
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F002.png
html/hncl/CJEM2019039/media/d203b179-72ba-4a25-93e2-02ef4a15b48a-image008.jpeg
html/hncl/CJEM2019039/media/d203b179-72ba-4a25-93e2-02ef4a15b48a-image009.jpeg
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F012.png
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F003.png
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F005.png
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F006.png
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F014.png
html/hncl/CJEM2019039/media/d203b179-72ba-4a25-93e2-02ef4a15b48a-image011.jpeg
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F018.png
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F016.png
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F017.png
componentNH4NO3NaNO3C18H38C12H26C24H44O6H2O
mass ratio7874128
samplemass fraction /%

ρ

/g·cm-3

T0

/℃

ΔH

/kJ·kg-1

brisance

/mm

detonation velocity /m·s-1
emulsion matrixGMsTiH2EHMs
GMs‑TiH2 sensitized944201.13218.12910.3222.84659
EHMs sensitized940061.25230.22655.0123.24797
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F020.png
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F021.png
html/hncl/CJEM2019039/alternativeImage/d203b179-72ba-4a25-93e2-02ef4a15b48a-F007.png

图1 悬浮聚合‑固体热膨胀法制备中空含能微球的工艺流程示意图

Fig.1 Schematic diagram for the preparation of hollow energetic microcapsules with suspension polymerization‑solid thermal expansion method

图2 悬浮聚合‑液体热膨胀法制备中空含能微球的工艺流程示意图

Fig.2 Schematic diagram for the preparation of hollow energetic microcapsules with suspension polymerization‑liquid thermal expansion method

图3 高速剪切法制备中空耐压微囊的制备流程示意图

Fig.3 Schematic diagram for the preparation of pressure resistant microcapsules with high speed shear method

图4 悬浮聚合‑固体热膨胀法制备的中空含能微囊扫描电镜图和光学显微镜图及粒径分布 -- a. SEM image

Fig.4 SEM and OM images and particle size distribution of hollow energetic microcapsules prepared by suspension polymerization‑solid thermal expansion method -- a. SEM image

图4 悬浮聚合‑固体热膨胀法制备的中空含能微囊扫描电镜图和光学显微镜图及粒径分布 -- b. OM image

Fig.4 SEM and OM images and particle size distribution of hollow energetic microcapsules prepared by suspension polymerization‑solid thermal expansion method -- b. OM image

图4 悬浮聚合‑固体热膨胀法制备的中空含能微囊扫描电镜图和光学显微镜图及粒径分布 -- c. particle size distribution

Fig.4 SEM and OM images and particle size distribution of hollow energetic microcapsules prepared by suspension polymerization‑solid thermal expansion method -- c. particle size distribution

图5 悬浮聚合‑固体热膨胀法制备的中空含能微囊破碎处理后的扫描电镜图

Fig.5 SEM images of broken hollow energetic microcapsules prepared by suspension polymerization‑solid thermal expansion method

图6 悬浮聚合‑液体热膨胀法制备的中空含能微囊扫描电镜图 -- a. TiH2 b. 1# c. 2#

Fig.6 SEM images of hollow energetic microcapsules prepared by suspension polymerization‑liquid thermal expansion method -- a. TiH2 b. 1# c. 2#

图6 悬浮聚合‑液体热膨胀法制备的中空含能微囊扫描电镜图 -- d. 3# e. 4# f. 5#

Fig.6 SEM images of hollow energetic microcapsules prepared by suspension polymerization‑liquid thermal expansion method -- d. 3# e. 4# f. 5#

图7 悬浮聚合‑液体热膨胀法制备的中空含能微囊(2#)粒径分布图

Fig.7 Particle size distribution of hollow energetic microcapsules prepared by suspension polymerization‑liquid thermal expansion method

图8 两种中空含能微囊破碎处理扫描电镜图

Fig 8 SEM images of two kinds of crushed hollow energetic microspheres

图9 不同微球的扫描电镜图和粒径分布曲线

Fig.9 SEM images and particle size distribution curves of different microspheres

图10 高速剪切法制备的中空耐压微囊扫描电镜图 -- a. cenospheres b. cenospheres with c. the shell of cenosphere impermeable surface with holes in it

Fig.10 SEM images of pressure resistant microcapsules with hollow‑structure prepared by high‑speed shear method -- a. cenospheres b. cenospheres with c. the shell of cenosphere impermeable surface with holes in it

图10 高速剪切法制备的中空耐压微囊扫描电镜图 -- d. perforated cenospheres e. cenospheres coated by PMMA f. hollow pressure resistant microspheres

Fig.10 SEM images of pressure resistant microcapsules with hollow‑structure prepared by high‑speed shear method -- d. perforated cenospheres e. cenospheres coated by PMMA f. hollow pressure resistant microspheres

表1 乳化基质的配方

Table 1 Composition of emulsion matrix%

表2 两种乳化炸药的热动力学和爆轰性能参数

Table 2 Thermal and detonation parameters of two types of emulsion explosives

图11 添加不同材料包覆的TiH2后乳化炸药扫描电镜图 -- a. uncoated TiH2 powder b. paraffin wax coated TiH2 powder

Fig.11 SEM images of emulsion explosive with TiH2 coated with different materials -- a. uncoated TiH2 powder b. paraffin wax coated TiH2 powder

图11 添加不同材料包覆的TiH2后乳化炸药扫描电镜图 -- c. stearic acid coated TiH2 powder d. EHMs

Fig.11 SEM images of emulsion explosive with TiH2 coated with different materials -- c. stearic acid coated TiH2 powder d. EHMs

图12 中空耐压微囊压碎前后的光学显微镜图

Fig.12 Optical microscopy image of pressure resistant hollow microcapsules before and after crushing

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

a. 1# b. 2#

a. hollow cenospheres b. cenospheres coated by PMMA c. hollow pressure resistant microspheres

无注解

无注解

无注解

T0 is the temperature of initial decomposition. ΔH is the heat output. ρ is density. Brisance is compression of lead cylinder.

无注解

无注解

a. before crushing b. after crushing

  • 参考文献

    • 1

      汪旭光. 乳化炸药 [M]. 北京:冶金工业出版社, 1993:12.

      Wang Xu‑guang. Emulsion Explosives[M]. Beijing: Metallurgical Industry Press, 1993:12.

    • 2

      Yixin Wang, Honghao Ma, Zhaowu Shen. Detonation characteristics of emulsion explosives sensitized by hydrogen‑storage glass microballoons[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(9): 939-947.

    • 3

      颜事龙,王尹军. 冲击波作用下乳化炸药压力减敏度的表征方法[J]. 爆炸与冲击, 2006, 26(5): 441-447.

      YAN Shi‑long, WANG Yin‑jun. Characterization of pressure desensitization of emulsion explosive subjected to shock wave [J]. Explosion and Shock Waves, 2006, 26(5): 441-447.

    • 4

      Yangfan Cheng, Shilong Yan, Honghao Ma, et al. A new type of functional chemical sensitizer MgH2 for improving pressure desensitization resistance of emulsion explosives[J]. Shock Waves, 2016, 26(2): 213-219

    • 5

      Yangfan Cheng, Honghao Ma, Rong Liu, et al. Explosion power and desensitization resisting property of emulsion explosives sensitized by MgH2[J]. Journal of Energetic Materials, 2014, 32(3): 207-218.

    • 6

      Yangfan Cheng, Honghao Ma, Rong Liu, et al. Pressure desensitization influential factors and mechanism of magnesium hydride sensitized emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(2): 267-274.

    • 7

      Yangfan Cheng, Xiangrui Meng, Chengtao Feng, et al. The effect of hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585-591.

    • 8

      Yangfan Cheng, Quan Wang, Feng Liu, et al. The effect of energetic additive of coated MgH2 on the power of emulsion explosives sensitized by glass microballoons[J]. Central European Journal of Energetic Materials, 2016, 13(3): 349-356.

    • 9

      Yangfan Cheng, Honghao Ma, Zhaowu Shen. Detonation characteristics of emulsion explosives sensitized by MgH2[J]. Combustion, Explosion and Shock Waves, 2013,49(5): 614-619.

    • 10

      Wenjin Liu, Yangfan Cheng, Hua Fang, et al. Synthesis of multicore energetic hollow microspheres with an improved suspension polymerization‑thermal expansion method [J]. Powder Technology, 2019, 343: 326-329.

    • 11

      Dingguan Wang, Lifen Xiao, Xinyue Zhang, et al. Emulsion templating cyclic polymers as microscopic particles with tunable porous morphology[J]. Langmuir, 2016, 32(6): 1460-1467.

    • 12

      Natalia V Lebedeva, Samuel N Sanders, Maria Ina, et al. Multicore expandable microbubbles: Controlling density and expansion temperature[J]. Polymer, 2016, 90: 45-52.

    • 13

      S. A. Bordzilovskii, S. M. Karakhanov, A. V. Plastinin, et al. Detonation temperature of an emulsion explosive with a polymer sensitizer[J]. Combustion, Explosion, and Shock Waves, 2017, 53(6): 730-737.

    • 14

      Yunoshev A S, Plastinin A V, Rafeichik S I. Detonation velocity of an emulsion explosive sensitized with polymer microballoons[J]. Combustion, Explosion, and Shock Waves, 2017, 53(6): 738-743.

    • 15

      Sil’vestrov V V, Bordzilovskii S A,Karakhanov S M, et al. Temperature of the detonation front of an emulsion explosive[J]. Combustion, Explosion, and Shock Waves, 2015, 51(1): 116-123.

    • 16

      Yunosheva A S, Sil’vestrov V V,Plastinin A Vet al. Influence of artificial pores on the detonation parameters of an emulsion explosive[J]. Combustion, Explosion, and Shock Waves, 2017, 53(2): 205-210.

    • 17

      Zlobina B S,Kiselev V V, Shterzer A A, et al. Use of emulsion explosives in experimental studies of flows in the bonding zone in explosive welding[J]. Combustion, Explosion, and Shock Waves, 2018, 54(2): 231-237.

    • 18

      Zhixiang Xu, Qian Wang, Xiaoqi Fu. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite[J]. Journal of Hazardous Materials, 2015, 300: 702-710.

    • 19

      Miao Yao, Wen Ding, Guoning Rao, et al. Effects of MgH2/Mg(BH4)2 powders on the mechanical sensitivity of conventional explosive compounds[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(3): 274-279.

    • 20

      Zhixiang Xu, Guisheng Xu, Xiaoqi Fu, et al. The mechanism of nano‑CuO and CuFe2O4 catalyzed thermal decomposition of ammonium nitrate[J]. Nanomaterials and Nanotechnology, 2016, 6: 1-10.

    • 21

      Yuan K J, Zhou Y, Sun W C. A polymer‑coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability[J].Composites Science and Technology,2018,156: 78-86.

    • 22

      Weldon D G. Differential Scanning Calorimetry[J]. Journal of Protective Coatings and Linings, 2014, 31(6): 21-23.

    • 23

      国家技术监督局. GB/T 12440-1990: 炸药猛度试验铅柱压缩法[S]. 上海:华东工学院民用爆破器材, 1990.

    • 24

      国家技术监督局. GB/T 13288-91: 工业炸药爆速测定[S]. 北京:中国标准出版社, 1991.