CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
黄亨建, 董海山, 张明. B炸药的改性研究及其进展[J]. 含能材料, 2001, 9(4): 183-186.
HUANGHeng‑jian, DONGHai‑shan, ZHANGMing. Problems and developments in composition B modification research[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2001, 9(4): 183-186.
参考文献 2
孙国祥, 陈鲁祥. B炸药的品种组成和性能[J]. 火炸药学报, 1989, 12(1): 15-21.
SUNGuo‑xiang, CHENLu‑xiang. The variety constituents and performance of composition B[J]. Chinese Journal of Explosives & Propellants, 1989, 12(1): 15-21.
参考文献 3
董海山. 钝感弹药的由来及重要意义[J]. 含能材料, 2006, 14(5): 321-322.
DONGHai‑shan. The importance of the insensitive munitions [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(5): 321-322.
参考文献 4
RutkowskiJ, CirincioneR, PatelC. Common low‑cost insensitive munitions explosive to replace TNT and comp B[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Munich, Germany. 2010.
参考文献 5
王宇, 芮久后, 冯顺山. 装药缺陷对熔铸炸药爆速影响的实验研究[J]. 北京理工大学学报, 2011, 31(7): 757-760.
WANGYu, RUIJiu‑hou, FENGShun‑shan. Experimental research of charge defects′ influence on detonation velocity of melting‑cast explosive[J].Transactions of Beijing Institute of Technology, 2011, 31(7): 757-760.
参考文献 6
SmithD L, ThorpeB W. Fracture in the high explosive RDX/TNT[J]. Journal of Materials Science, 1973, 8(5): 757-759.
参考文献 7
聂少云, 高大元, 文雯, 等. 添加剂对B炸药安全和爆轰性能的影响[J]. 火炸药学报, 2014, 37(3): 20-25.
NIEShao‑yun, GAODa‑yuan, WENWen, et al. Effect of supplement on safety and detonation properties of composition B [J]. Chinese Journal of Explosives & Propellants, 2014, 37(3): 20-25.
参考文献 8
MauraisC T. Hazard assessment of high‑nitrogen explosive compounds: a novel in vitro multi‑cellular approach[D]. USA: Uniformed Services University of the Health Sciences Bethesda, 2016: 6-21.
参考文献 9
BodduV M, AbburiK, MaloneyS W, et al. Thermophysical properties of an insensitive munitions compound, 2, 4‑dinitroanisole[J]. Journal of Chemical & Engineering Data, 2008, 53(5): 1120-1125.
参考文献 10
BakerE L, StasioA R. Insensitive munitions technology development[J]. Problemy Mechatroniki: uzbrojenie, lotnictwo, inżynieria bezpieczeństwa, 2014, 4(18): 7-20.
参考文献 11
Salter‑BlancA J, BylaskaE J, JohnstonH J, et al. Predicting reduction rates of energetic nitroaromatic compounds using calculated one‑electron reduction potentials[J]. Environmental science & technology, 2015, 49(6): 3778-3786.
参考文献 12
SarahHeadrick, PriceD, LeClaireE. Development of an efficient alternative manufacturing process for DNAN production [R].BAE Systems(Ordnance Systems,Inc.),S2DSEA2011‑0531, 2011.
参考文献 13
陈陆武. 用2, 4‑二硝基氯苯制备2‑氨基‑4‑乙酰氨基苯甲醚的工艺方法: CN1146450[P]. 1997.
CHENLu‑wu. Technological process for preparation of 2‑amino‑4‑acetaminoanisole by 2,4‑dinitro chlorobenzene: CN1146450[P]. 1997.
参考文献 14
万克玲, 付忠东, 梁足培, 等. 一种同时生产2,4‑二硝基苯甲醚和2, 4‑二硝基苯酚的方法: CN102391126[P]. 2012.
WANKe‑ling, FUZhong‑dong, LIANGZu‑pei, et al. Method for producing 2, 4‑dinitrobenzene methyl ether and 2, 4‑dinitrophenol simultaneously: CN102391126[P]. 2012.
参考文献 15
徐万福, 刘伟, 周海滨. 一种2, 4‑二硝基苯甲醚的合成工艺: CN103396318[P]. 2015.
XUWan‑fu, LIUWei, ZHOUHai‑bin. Synthetic process for 2, 4‑dinitroanisole: CN103396318[P]. 2015.
参考文献 16
方克雄, 魏伍山, 陈军, 等. 一种连续化合成2,4‑二硝基苯甲醚的方法: CN105777550[P]. 2016.
FANGKe‑xiong, WEIWu‑shan, CHENJun, et al. Method for continuously synthesizing 2,4‑dimitroanisole: CN105777550 [P]. 2016.
参考文献 17
HeckD, HeiseH, HintzmannM. Process for the preparation of 2,4‑dinitrophenyl ethers: US4847426[P]. 1989.
参考文献 18
王亲会. 熔铸混合炸药用载体炸药评述[J]. 火炸药学报, 2011, 34(5): 25-28.
WANGQin‑hui. Overview of carrier explosive for melt‑cast composite explosive[J]. Chinese Journal of Explosives & Propellants, 2011, 34(5): 25-28.
参考文献 19
牛国涛, 金大勇, 罗一鸣, 等. DNAN基熔铸炸药工艺特性[J]. 兵工自动化, 2014, 33(7): 86-88.
NIUGuo‑tao, JINDa‑yong, LUOYi‑ming, et al. Technical characteristics of DNAN‑based melt‑casting explosives[J]. Ordnance Industry Automation, 2014, 33(7): 86-88.
参考文献 20
王红星, 王浩, 蒋芳芳, 等. DNAN炸药熔铸工艺安全性分析[J]. 兵工自动化, 2014, 33(7): 72-74.
WANGHong‑xing, WANH Hao, JIANGFang‑fang, et al. Safety analysis of melt‑cast technology for DNAN explosive [J]. Ordnance Industry Automation, 2014, 33(7): 72-74.
参考文献 21
NairU R, AsthanaS N, RaoA S, et al. Advances in high energy materials[J]. Defence Science Journal,2010,60(2):137-151.
参考文献 22
SamuelsP. Characterization of 2, 4‑dinitroanisole (DNAN)[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Las Vegas, NV, USA. 2012.
参考文献 23
王红星, 王晓峰, 罗一鸣, 等. DNAN炸药的烤燃实验[J]. 含能材料, 2009, 17(2): 183‑186.
WANGHong‑xing, WANGXiao‑feng, LUOYi‑ming, et al. Cook‑off test of DNAN explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(2): 183-186.
参考文献 24
刘瑞鹏, 罗一鸣, 王红星, 等. TNT, DNAN和DNTF单质凝固过程中温度和缩松的数值模拟及实验研究[J]. 火炸药学报, 2016, 39(3): 43-47.
LIURui‑peng, LUOYi‑ming, WANGHong‑xing, et al. Experimental study and numerical simulation on temperature and shrinkage porosity of TNT, DNAN and DNTF during solidification process[J]. Chinese Journal of Explosives & Propellants, 2016, 39(3): 43-47.
参考文献 25
罗一鸣, 蒋秋黎, 赵凯, 等. 2, 4‑二硝基苯甲醚与TNT凝固行为的差异性分析[J]. 火炸药学报, 2015, 38(5): 37-40.
LUOYi‑ming, JIANGQiu‑li, ZHAOKai, et al. Analysis on difference of solidification behavior of DNAN and TNT[J]. Chinese Journal of Explosives & Propellants, 2015,38(5): 37-40.
参考文献 26
ParryM A, BillonH H. A note on the coefficient of viscosity of pure molten 2,4,6‑trinitrotoluene(TNT)[J]. Rheologica acta, 1988, 27(6): 661-663.
参考文献 27
SamuelsP. Irreversible growth of DNAN based formulations [C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Las Vegas, NV, USA. 2012.
参考文献 28
JohnN, NicolichS. PAX‑21, PAX‑25 and PAX‑28: a family of new low cost insensitive melt pour explosives[C]//6th Australian Explosive Ordnance Symposium, Canberra, Australia. 2003.
参考文献 29
张光全, 董海山. 2,4‑二硝基苯甲醚为基熔铸炸药的研究进展[J]. 含能材料, 2010, 18(5): 604-609.
ZHANGGuang‑quan, DONGHai‑shan. Review on melt‑castable explosives based on 2,4‑dinitroanisole[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010, 18(5): 604-609.
参考文献 30
陈朗, 李贝贝, 马欣. DNAN炸药烤燃特征[J]. 含能材料, 2016, 24(1): 27-32.
CHENLang, LIBei‑bei, MAXin. Research on the cook‑off characteristics of DNAN explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(1): 27-32.
参考文献 31
ZhangC, JinS, JiJ, et al. Thermal hazard assessment of TNT and DNAN under adiabatic condition by using accelerating rate calorimeter (ARC)[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(1): 89-93.
参考文献 32
CosterP L, HendersonC A, HunterS, et al. Explosives at extreme conditions: polymorphism of 2,4‑dinitroanisole[C]//New Trends in Research of Energetic Materials, Pardubice, Czech Republic. 2014: 164-179.
参考文献 33
WardD W, CosterP L, HopeK S, et al. Controlling a polymorphic transition in 2,4‑dinitroanisole using crystal doping [C]//New Trends in Research of Energetic Materials, Pardubice, Czech Republic. 2015: 301-310.
参考文献 34
WardD W, CosterP L, PulhamC R. Preventing irreversible growth of DNAN by controlling its polymorphism[C]//New Trends in Research of Energetic Materials, Pardubice, Czech Republic. 2017: 407-416.
参考文献 35
TrzcińskiW, CudziłoS, DyjakS, et al. A comparison of the sensitivity and performance characteristics of melt‑pour explosives with TNT and DNAN binder[J]. Central European Journal of Energetic Materials, 2014, 11(3): 443-455.
参考文献 36
MishraV S, VadaliS R, BhagatA L, et al. Studies on NTO‑, FOX‑7‑and DNAN‑based melt cast formulations[J]. Central European Journal of Energetic Materials, 2017, 14(2): 403-417.
参考文献 37
王红星, 王浩, 高杰, 等. 2,4‑二硝基苯甲醚应用基础性能研究[J]. 科学技术与工程, 2014, 14(25): 72-75.
WANG Hong‑xing WANG Hao, GaoJie, et al. Application basic research on 2, 4‑dinitroanisole[J]. Science Technology and Engineering, 2014, 14(25): 72-75.
参考文献 38
GrauH, GandzelkoA, SamuelsP. Solubility determination of raw energetic materials in molten 2,4‑dinitroanisole[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4): 604-608.
参考文献 39
XingX, ZhaoF, MaS, et al. Specific heat capacity, thermal behavior, and thermal hazard of 2, 4‑dinitroanisole[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 179-182.
参考文献 40
赵凯, 王浩, 王玮, 等. DNAN力学性能分析[J]. 火炸药学报, 2016, 39(4): 68-72.
ZHAOKai, WANGHao, WANGWei, et al. Analysis of the mechanical properties of DNAN[J]. Chinese Journal of Explosives & Propellants, 2016, 39(4): 68-72.
参考文献 41
Johnson, M S, Eck, W S, Lent, E M. Toxicity of insensitive munition (IMX) formulations and components[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(1): 9-16.
参考文献 42
HawariJ, Monteil‑RiveraF, PerreaultN N, et al. Environmental fate of 2,4‑dinitroanisole (DNAN) and its reduced products[J]. Chemosphere, 2015, 119: 16-23.
参考文献 43
DodardS G, SarrazinM, HawariJ, et al. Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4‑dinitroanisole (DNAN)[J]. Journal of Hazardous Materials, 2013, 262: 143-150.
参考文献 44
OlivaresC I, AbrellL, KhatiwadaR, et al. (Bio)transformation of 2,4‑dinitroanisole (DNAN) in soils[J]. Journal of Hazardous Materials, 2016, 304: 214-221.
参考文献 45
RaviP, BadgujarD M, GoreG M, et al. Review on melt cast explosives[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5): 393-403.
参考文献 46
TaylorS, ParkE, BullionK, et al. Dissolution of three insensitive munitions formulations[J]. Chemosphere, 2015, 119: 342-348.
参考文献 47
FerlazzoP, NicolichS, NilesJ, et al. Insensitive munitions explosive development for melt pour munitions[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Orlando, FL, USA. 2003.
参考文献 48
NevstadG O. Temper simulations for 120 mm IM HE‑T[R]. Norwegian Defence Research Establishment, FFI‑rapport 2015/02156, 2015.
参考文献 49
PelletierP, LavigneD, LarocheI, et al. Additional properties studies of DNAN based melt‑pour explosive formulations[C]//DNIA Insensitive Munitions & Energetic Materials Technology Symposium, Munich, Germany. 2010.
参考文献 50
VézinaA, PelletierP, Carrillo Aet al. Studies on OSX‑12 formulation, an aluminized DNAN based melt‑pour explosive [C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Las Vegas, NV, USA. 2012.
参考文献 51
VincentS W, JacksonS I, ChiqueteC, et al. The geometric scaling of IMX‑104 explosive: detonation velocity versus charge size for cylindrical rate sticks and slab tests[C]//15th International Detonation Symposium, San Francisco, CA, USA. 2014.
参考文献 52
FurnishM D, RootS, SamuelsP. Equation‑of‑state and shock homogeneity of IMX‑101 and IMX‑104[C]//15th International Detonation Symposium, San Francisco, CA, USA. 2014.
参考文献 53
DaviesP J, ProvatasA. Characterization of 2, 4‑dintroanisole: an ingredient for use in low sensitivity melt cast formulations [R].Defence Science and Technology Organisation, DSTO‑TR‑1904, 2006.
参考文献 54
DaviesP J, ProvatasA. DNAN: a replacement for TNT in Melt‑cast formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Orlando, Bristol, United Kingdom. 2006.
参考文献 55
ProvatasA, WallC. Thermal testing of 2,4‑dinitroanisole (DNAN) as a TNT replacement for melt‑cast explosive[C]//International annual conference‑Fraunhofer Institut Chemische Technologie, Karlsruhe, Germany. 2011.
参考文献 56
Johansen ØH, NevstadG O, GjersøeR, et al. Insensitive munitions‑development and qualification of new melt‑cast formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Nashville, TN, USA. 2016.
参考文献 57
NevstadG O. Determination of detonation velocity and pressure for MCX‑6100[R]. Norwegian Defence Research Establishment, FFI‑rapport 2015/02323, 2015.
参考文献 58
NevstadG O. Characterization of MCX‑8100[R]. Norwegian Defence Research Establishment, FFI‑rapport 2015/02448, 2015.
参考文献 59
NevstadG O, PrytzA K, ØdegårdstuenG, et al. IM assessment for a state of the art 155mm HE round[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Rome, Italy. 2015.
参考文献 60
高杰, 焦建设, 王浩, 等. DNAN基熔铸复合炸药的爆轰性能[J]. 火炸药学报, 2014, 37(3): 26-28.
GAOJie, JIAOJian‑she, WANGHao, et al. Detonation properties of DNAN‑based melt‑cast composition explosive[J]. Chinese Journal of Explosives & Propellants,2014, 37(3): 26-28.
参考文献 61
李东伟, 姜振明, 张向荣, 等. 2,4‑二硝基苯甲醚基高爆速熔铸炸药爆轰性能表征[J]. 兵工学报, 2016, 37(4): 656-660.
LIDong‑wei, JIANGZhen‑ming, ZHANGXiang‑rong, et al. Characterization of new 2,4‑dinitroanisole‑based melt‑cast high detonation velocity explosives [J]. Acta Armamentarii, 2016, 37(4): 656-660.
参考文献 62
LiD, ZhouL, ZhangX. Partial reparametrization of the BKW equation of state for DNAN‑based melt‑cast explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(5): 499-505.
参考文献 63
张伟, 周霖, 张向荣, 等. 2, 4‑二硝基茴香醚基含铝熔铸炸药爆轰临界直径的实验研究[J]. 兵工学报, 2017, 38(4): 690-694.
ZHANGWei, ZHOULin, ZHANGXiang‑rong, et al. Experimental study of critical diameter of DNAN‑based aluminized melt‑cast explosives[J]. Acta Armamentarii, 2017, 38(4): 690-694.
参考文献 64
CaoT T, ZhouL, ZhangX R, et al. Shock initiation characteristics of an aluminized DNAN/RDX melt‑cast explosive[J]. Journal of Energetic Materials, 2017, 35(4): 430-442.
参考文献 65
CaoT T, ZhouL, ZhangX R, et al. Influence of booster size on the total energy of RBUL‑1 explosive in underwater explosion[C]//1st International Conference on New Material and Chemical Industry (NMCI2016), Sanya, China. 2016.
参考文献 66
LeeK E, Balas‑HummersW A, DiStasio A R, et al. Qualification testing of the insensitive TNT replacement explosive IMX‑101[C]//DNIA Insensitive munitions and energetic materials technology symposium, Munich, Germany. 2010.
参考文献 67
SinghS, JelinekL, SamuelsP, et al. IMX‑104 characterization for DoD qualification[C]//DNIA Insensitive munitions and energetic materials technology symposium, Munich, Germany. 2010.
参考文献 68
ProvatasA, WallC. Ageing of insensitive DNAN based melt‑cast explosives[R]. Defence Science and Technology Organisation, DSTO‑TN‑1332, 2014.
参考文献 69
ProvatasA, WallC. Ageing of australian DNAN based melt‑cast insensitive explosives[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 555-561.
参考文献 70
FungV, AlexanderB, BalasW. Development of insensitive aluminized melt‑pour explosive formulation[C]//DNIA Insensitive munitions and energetic materials technology symposium, Tucson, AZ, USA. 2009.
参考文献 71
Provatas, A, Wall, C. Thermal testing of insensitive explosives based on 2, 4‑dinitroanisole[R]. Defence Science and Technology Organisation, DSTO‑TR‑2434, 2010.
参考文献 72
PelletierP, LarocheI, LavigneD, et al. Processing studies of DNAN based melt‑pour explosive formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Tucson, AZ, USA. 2009.
参考文献 73
NitaM, WarchołR. Current trends in development of military explosives[J]. Scientific Journal of the Military University of Land Forces, 2015, 47(1): 69-80.
参考文献 74
BakerE L. Insensitive munitions requirements, technology, and testing[R]. Munitions Safety Information Analysis Center: 2017.
参考文献 75
ZhuD L, ZhouL, ZhangX R, et al. Simultaneous determination of multiple mechanical parameters for a DNAN/HMX melt‑cast explosive by brazilian disc test combined with digital image correlation method[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 864-872.
参考文献 76
QianW, ChenX Z, LuoG. Polymer reinforced DNAN/RDX energetic composites: interfacial interactions and mechanical properties[J]. Central European Journal of Energetic Materials, 2017, 14(3): 726-741.
参考文献 77
MengJ J, ZhouL, ZhangX R. Effect of pressure of the casting vessel on the solidification characteristics of a DNAN/RDX melt‑cast explosive[J]. Journal of Energetic Materials, 2017, 35(4): 385-396.
参考文献 78
蒙君煚, 周霖, 金大勇, 等. 成型工艺对2,4‑二硝基苯甲醚基熔铸炸药装药质量的影响[J]. 兵工学报, 2018, 39(9): 1719-1726.
MENGJun‑jiong, ZHOULin, JINDa‑yong, et al. Effect of forming process on casting quality of 2, 4‑dinitroanisole‑based casting explosive[J]. Acta Armamentarii, 2018, 39(9): 1719-1726.
参考文献 79
蒙君煚, 姜振明, 张向荣, 等. 功能助剂对2,4‑二硝基苯甲醚基熔铸炸药性能的影响[J]. 兵工学报, 2016, 37(3): 424-430.
MENGJun‑jiong, JIANGZhen‑ming, ZHANGXiang‑rong, et al. Effect of functional agents on the performance of 2,4‑dinitroanisole‑based melt‑cast explosives[J]. Acta Armamentarii, 2016, 37(3): 424-430.
参考文献 80
蒙君煚, 周霖, 金大勇, 等. 功能助剂对DNAN/RDX熔铸炸药界面黏结强度的影响[J]. 含能材料, 2018, 26(9): 765-771.
MENGJun‑jiong, ZHOULin, JINDa‑yong, et al. Effect of functional additives on interface bonding strength of DNAN/RDX melt‑cast explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(9): 765-771.
参考文献 81
FungV, ErvinM, AlexanderB, et al. Development and manufacture of an insensitive composition B replacement explosive IMX‑104 for mortar applications[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, munich, Germany. 2010.
参考文献 82
AlexanderB, FungV, TeagueC. Development and filling of new insensitive melt pour explosive for 120mm direct fire ammunition[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Miami, FL, USA. 2007.
参考文献 83
LarocheI, PelletierP, LavigneD, et al. Processing studies of new melt‑pour explosive formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, CA, USA, 2008.
参考文献 84
Wilson, A. Improved IM melt‑cast explosive[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Bristol, UK, 2006.
参考文献 85
NicolichS, NilesJ, DollD, et al. Development of a novel high fragmentation/high blast melt pour explosive[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Orlando, FL, USA. 2003.
参考文献 86
HathawayM, CarrilloA. Evaluation of the effect of surface area on DNAN based explosives[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, San Diego, CA, USA. 2013.
参考文献 87
蒙君煚, 周霖, 金大勇, 等. DNAN/HMX熔铸炸药的流变特性[J]. 含能材料, 2018, 26(8): 677-685.
MENGJun‑jiong, ZHOULin, JINDa‑yong, et al. Rheological properties of DNAN/HMX melt‑cast explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(8): 677-685.
目录 contents

    摘要

    随着弹药安全性要求的不断提升,传统2,4,6‑三硝基甲苯(TNT)基熔铸炸药在制造、运输和使用过程中暴露出的问题使其安全性不能达到钝感弹药的技术要求,2,4‑二硝基苯甲醚(DNAN)基熔铸炸药是近年来逐渐发展起来的一类可以替代TNT基炸药的钝感炸药。本文在系统跟踪近十年来国内外研究动态的基础上,综述了DNAN的合成及性能,DNAN基熔铸炸药爆炸特性、安全性、安定性、贮存特性、易损性、力学特性及流变特性等最新的研究与进展。展望了DNAN基熔铸炸药研究的热点和难点。

    Abstract

    In accordance with increasing stringent ammunition safety requirements, the manufacture, transportation and applications of traditional 2,4,6‑trinitrotoluene (TNT)‑based melt‑cast explosives will not fulfill those safety standards. Recently, the melt‑cast explosives based on 2,4‑Dinitroanisole (DNAN) as substitute for those of TNT has aroused great attentions. In this paper, the research progress of DNAN‑based melt‑cast explosives in the last ten years were summarized towards their synthesis, physicochemical properties, energetic and sensitive performance, mechanical and rheological performances. Furthermore, the main research hotspots about DNAN‑based melt‑casting explosives in the future were also prospected in this article.

  • 1 引 言

    将高能炸药固相颗粒加入熔融载体炸药中形成悬浮体,进行铸装的混合炸药统称为熔铸炸药。熔铸炸药具有熔化/混合时间短、工艺简单、装填加工容易、生产成本低等优点,是目前各国军事上广泛使用的一类混合炸药。20世纪初,2,4,6‑三硝基甲苯(TNT)基熔铸炸药在军事领域得到了广泛的认[1],大量装填于各种杀伤弹、爆破弹、破甲弹、航弹、导弹战斗部和水中兵器[2]。进入70年代以后,西方发达国家把提高武器系统在战场上的生存能力和弹药贮存、运输及勤务处理的安全性作为武器装备发展的方[3,4],弹药不仅需要射程远、精度高、威力大,还要满足钝感弹药的要求。而传统的TNT基熔铸炸药在使用过程中暴露出的问题导致其不能满足钝感弹药的要求,主要表现在以下几个方面:(1)装药容易出现质量缺陷,密度不均匀,易产生缩孔疏松、气孔和底隙等缺陷,不仅影响爆轰性能,而且影响使用安全[5];(2)力学性能不理想,弹性、韧性差,强度低,易脆,在受到机械应力、热应力的作用时,容易发生内部损伤、裂纹等现[6];(3)安全性能差,感度高,容易殉爆,易被破片或射流引爆,燃烧易转为爆[7];(4)毒性大,难降解,危害人体健康且容易造成环境污[8]。因此,各国均致力于寻找物理与化学性能适宜的新型钝感熔铸载体炸药(insensitive munitions,IM)来替代TNT。

    2,4‑二硝基苯甲醚(DNAN)是当前研究最为活跃的一种钝感熔铸载体炸药,于1849年首次合成,早在第二次世界大战就被用于V‑1巡航导弹装药Amatol 40 (DNAN/硝铵/黑索今(RDX)50/35/15),然而当时只是作为产能不足的TNT替代[9]。由于DNAN能量低于TNT,二战后很长一段时间无人问津。随着钝感弹药的发展,这种含能材料引起了各国的广泛关注,其优点主要表现[8,10]:(1)冲击波感度和热感度比TNT低;(2)根据联合国危险物品分类系统,DNAN属于4.1类“易燃固体”,而TNT为1.1类“具有爆炸危险的爆炸物”,因此DNAN运输要求不及TNT严格,运输及存储成本低。近几年来,美国、澳大利亚、波兰、挪威、中国等积极开展DNAN基熔铸炸药技术研究,并成功研制出多种配方,部分配方的装药生产线业已建成并投产,为DNAN基熔铸炸药的应用奠定了基础。本文详细介绍了DNAN单质的合成及性能,同时对DNAN基熔铸炸药爆炸特性、安全性、安定性、贮存特性、易损性、力学特性及流变特性等最新研究进行了总结分析。

  • 2 DNAN的合成及性能

  • 2.1 DNAN的合成

    研究表明,DNAN可通过不同的合成方法从不同的原材料开始制[11,12]。目前通用的方法是将氯苯在硝酸和硫酸的混酸中进行硝化反应,制取1‑氯‑2,4‑二硝基苯(CDB),CDB在甲醇中与氢氧化钠发生亲核取代制得DNAN。

    陈陆[13]采用CDB制备DNAN,但未对产物中所含的2,4‑二硝基苯酚(DNP)做分离;而万克玲[14]采用CDB为原料制备DNAN和DNP,然后进一步分离得到DNAN。上述方法由于液碱的强碱性作用,加快了CDB水解,副产品DNP的含量增大,使得DNAN纯度及收率降低;同时液碱的加入,使得反应用水量增大,母液不能持续循环套用,继而产生大量废水,对环境产生较大危害,后处理成本也相应增加。鉴于此,徐万福[15]对合成工艺进行了改进,不仅提高了DNAN的纯度和收率,而且母液经处理后可持续套用,符合清洁工业化生产要求,但仍是一种间断合成DNAN的方法。方克雄[16]对间断合成法进行改进,发明了一种连续化合成DNAN的方法,主要包括合成、甲醇回收、洗涤、干燥以及制片包装五个过程。

    Heck[17]采用碳酸钾法合成DNAN,即在甲醇中加入CDB,再少量多次加入碳酸钾,回流反应一段时间,加入冰水冷却析出产物。

  • 2.2 DNAN的性能

    DNAN与TNT的主要性能如表1所示。

    表1 DNAN和TNT的性能对比

    Table 1 The performance comparison between of DNAN and TNT

    performanceDNANTNTref.
    OB1) / %-97-74[18]
    Tm2) / ℃94.680.9[18]
    ρcd3) / g·cm-31.5441.654[18]
    ρld4) / g·cm-31.351.45[19]
    Dcr5) / mm>82.5513.97‑26.92[20]
    D6) / m·s-15974(1.544 g∙cm-3)6970(1.65 g∙cm-3)[18]
    p7) / GPa9.5(1.34 g∙cm-3)18.9(1.65 g∙cm-3)[21]
    Qv8) / kJ·kg-118104148[18]
    T5s9) / ℃374.1295[22]
    FS10) / %4~60[22]
    IS11) / cm117.5157.0[22]
    SS12) / mm29.7642.50[22]
    Ti13) / ℃347306[23]
    H14) / kJ·kg-184.1104.0[24]
    C15) / J·g-1·-11.2081.278[24]
    λ16) / W∙m-1·-10.2270.224[24]
    shrinkage / %13.212.7[25]
    dissolves RDX(100 ℃) / g14(100 g DNAN)7.53(100 g TNT)[20]
    viscosity / mPa∙s4.5(100 ℃)9.5(85 ℃)[26]
    irreversible growth(volume change) / %15.013.10[27]

    NOTE: 1)OB is oxygen balance. 2)Tm is melting point. 3)ρcd is crystalline density. 4)ρld is liquid phase density. 5)Dcr is critical diameter. 6)D is detonation velocity. 7)p is detonation pressure. 8)Qv is explosion heat. 9)T5s is deflagration point of 5 s delay time. 10)FS is friction sensitivity. 11)IS is impact sensitivity. 12)SS is shock sensitivity. 13)Ti is self‑ignition temperature. 14)H is latent heat of phase change. 15)C is specific heat. 16)λ is thermal conductivity.

    表1可知,与TNT相比,DNAN具有低氧平衡、低密度、低爆热、低爆压、低威力和高熔点等缺点。然而,DNAN的低氧平衡可通过添加氧化剂,如高氯酸铵(AP)来调节,氧化剂的加入还可提高体系的密度和能量。John[28]研究了AP含量对DNAN/AP体系爆轰能量的影响,发现随着AP含量的增加,体系爆轰能量增加,当AP含量达到70%时,体系爆轰总能量达到最大值;当DNAN与AP的质量比为55∶45时,体系能量与TNT接近。尽管DNAN的威力只有TNT的90%[18],但由于其粘度较低,因此可以通过增加高能固相颗粒的含量来提高DNAN基熔铸炸药体系的总能量。DNAN可与N‑甲基‑4‑硝基苯胺(MNA)形成低共熔物,当DNAN与MNA的质量比为33.75∶0.5时,DNAN的熔点约降低10 ℃,与TNT的熔点相[29]

    DNAN的摩擦及撞击感度与TNT接近,冲击波感度和热感度优于TNT,尤其是DNAN较TNT在热安全性方面更钝感。王红星[23]对DNAN的热安全性进行了研究,认为DNAN作为熔铸载体炸药,在其使用温度范围内(100 ℃以下)具有良好的热安全性。陈朗[30]研究发现加热速率对DNAN炸药点火前的状态具有很大影响,因此在DNAN炸药的热安全性分析中,应充分考虑加热速率对热安全性的影响。Zhang[31]对DNAN与TNT的热分解特性进行了对比研究,发现DNAN的热稳定性比TNT更好,TNT在分解反应时温度突变明显,更易发生安全事故。

    DNAN的凝固点和导热系数高于TNT,而相变潜热和比热容低于TNT。这表明在相同的凝固条件下,DNAN比TNT的凝固速率更快,可能产生比TNT更严重的装药缺陷。

    虽然DNAN的不可逆增长比TNT更明显,但经过30次温度冲击后其药柱损伤比TNT[27]。Coster[32]及Ward[33,34]等研究表明DNAN在一定的温度和压强下包含六种晶体形态,在-7 ℃左右晶体形态从DNAN‑Ⅱ突变为DNAN‑Ⅲ,这时DNAN中的硝基会从无序转变为有序排列,导致分子单元体积增加。当在DNAN中加入与其分子结构相似的物质时,如5%的2,4‑二硝基甲苯(DNT)或5%的1,3‑二硝基苯(DNB),可以抑制晶型的转变;当加入5%的EDX‑1时,晶体形态直到-53 ℃时仍没有发生转变。

    Trzciński[35]分别对DNAN和TNT炸药进行了圆筒试验,结果表明DNAN的金属加速能力比TNT低25%左右。Mishra[36]也对比了DNAN与TNT的爆炸特性,但其实验得到的爆速值比Trzciński低,这是因为Trzciński将DNAN药柱置于直径25 mm,壁厚2.5 mm的铜管中进行测试,导致侧向稀疏波对反应区的消弱作用减小。王红星[37]对DNAN与常用炸药的相容性进行了测试,结果表明DNAN与TNT、RDX、HMX、DNTF、AP、A1粉等均相容。因此,在进行DNAN基炸药配方设计时,常用炸药组分皆可适用,能量可调节范围大。Grau[38]研究了DNAN对不同含能材料的溶解度,结果表明在100 ℃下100 g熔融的DNAN分别可以溶解RDX13.7 g、奥克托今(HMX)3.02 g、3‑硝基‑1,2,4‑三唑‑5‑酮(NTO)0.222 g、硝基胍(NQ)0.45 g及AP 0.088 g。Xing[39]研究表明DNAN的熔化相变潜热为20.2 kJ∙mol-1,凝固相变潜热为19.7 kJ∙mol-1,DNAN在83~353 K时比热容与温度的关系为C=0.3135+2.65×10-3T。赵凯[40]通过纳米压痕试验与数值模拟研究了DNAN和TNT晶体在常温常压下的力学性能,发现DNAN的刚性大于TNT,塑性变形能力低于TNT,所以,DNAN与TNT相比呈现出又硬又脆的特点。

    此外,随着DNAN基熔铸炸药装备应用增加,其毒性及对环境冲击也受到了研究者的广泛关注。Johnson[41]分别从口服、吸入、遗传及代谢等方面论述了DNAN对人体的危害,认为DNAN会导致体重减轻、贫血和神经受损。Hawari[42],Dodard[43]及Olivares[44]等研究了DNAN对生态环境的危害,结果显示尽管DNAN比TNT更易溶解,但其疏水性较低且更易形成氨基衍生物,因此毒性比TNT低。

  • 3 DNAN基熔铸炸药的性能

  • 3.1 爆炸特性

    20世纪80年代,美国匹克汀尼兵工厂(Picatinny Arsenal)会同美国阿连特技术系统公司(alliant techsystems inc, ATK)等多家单位按照钝感弹药标准研制了以DNAN为基的Picatinny Arsenal Explosive(PAX)系列新型熔铸炸[45],包括:PAX‑21[46](DNAN/AP/RDX 34/(30(200~400 μm))/(5(100 μm)+31(8 μm)))、PAX‑41[47](DNAN/MNA/RDX 34.75/0.25/(44(100 μm)+21(3 μm)))及PAX‑48[48](DNAN/NTO/HMX 35/53/12)。自2005年开始,美国陆军又在“通用低成本不敏感炸药(common low‑cost insensitive munitions explosive, CLIMEx)”项目的支持下推出以DNAN为基的Insensitive Melt‑cast Explosive(IMX)系列熔铸炸药,包括IMX‑101[46](DNAN/NTO/NQ 43/(6(<20 μm)+14(360 μm))/(37(300 μm)))及IMX‑104[46](DNAN/NTO/RDX 32/(53(300 μm))/(15(4 μm)))。上述炸药的爆炸特性如表2所示。

    表2 美国几种DNAN基炸药的爆炸特[20]

    Table 2 Explosion characteristics of several DNAN‑based explosives of USA[20]

    formulationDcr / mmD / km∙s-1
    PAX‑2111.43-12.706.70
    PAX‑41<12.707.68
    PAX‑4819.05‑25.407.18
    IMX‑10166.046.90
    IMX‑10422.237.40
    Comp.B4.297.98

    Pelletier[49]及Vézina[50]等采用Cheetah5.0程序计算得到IMX‑104、PAX‑48和OSX‑12(DNAN/NTO /RDX/Al)的爆炸性能,结果见表3(表中数值为相对于B炸药的百分数)。由表3可知,IMX‑104、PAX‑48和OSX‑12的爆速、爆压和格尼系数均低于B炸药。

    表3 IMX‑104、PAX‑48和OSX‑12的爆炸特[49,50]

    Table 3 Explosion characteristics of IMX‑104, PAX‑48 and OSX‑12[49,50]

    formulationφ1) / cmρ / g∙cm-3Dp2EG2)(computed)
    computedexperimentalcomputedexperimental
    IMX‑1045.11.7495.7%94.4%88.4%81.5%90.0%
    IMX‑1047.61.7492.4%94.5%88.4%95.8%90.0%
    PAX‑485.1-91.2%92.6%79.5%82.8%88.0%
    OSX‑127.61.8393.2%90.9%80.8%92.1%85.7%

    NOTE: 1)φ is the grain diameter. 2)EG is the gurney energy, 2EG is the gurney coefficient.

    此外,Vincent[51]通过平板实验研究了IMX‑104炸药的爆速与直径的关系,得到了爆速与爆轰波阵面曲率的关系。Furnish[52]采用轻气炮驱动铜片撞击待测试样,得到了IMX‑101和IMX‑104未反应炸药的状态方程。

    继美国之后,2006年,澳大利亚国防科学与技术组织(defence science and technology organization, DSTO)的Davies[53,54]和Provatas[55]等也对DNAN基熔铸炸药进行了研究,形成了Australian Research Explosive(ARX)系列配方,分别为ARX‑4027(DNAN/MNA/RDX=39.75/0.25/60)、ARX‑4028(DNAN/MNA/NTO=29.75/0.25/70)和ARX‑4029(DNAN/MNA/RDX/NTO=29.75/0.25/5/65)。表4为ARX系列熔铸炸药的爆炸特性。由表4可知,ARX系列炸药的能量比B炸药低,但其爆轰临界直径大,不易起爆。

    表4 澳大利亚ARX系列炸药爆炸特[53,54,55]

    Table 4 Explosion characteristics of ARX series explosives of Australian[53,54,55]

    formulationρ / g∙cm-3D / m∙s-1p / GPaDcr / mm
    ARX‑40271.68739822.59.3-11.8
    ARX‑40281.76717920.844.0-50.8
    ARX‑40291.77748722.038.1-44.0
    comp.B1.72784324.53.0-4.0

    2015年,挪威防务研究中心(defence research establishment)的Johansen[56]及Nevstad[57,58,59]也开展了DNAN基熔铸炸药研究,形成了melt cast explosive(MCX)系列配方,包括MCX‑6100(DNAN/NTO/RDX=32/53/15)、MCX‑8100(DNAN/NTO/HMX=35/53/12)、MCX‑6002(TNT/NTO/RDX=34/51/15)和MCX‑8001(TNT/NTO/HMX=36/52/12),并对其爆速、爆压、爆轰临界直径及格尼系数进行了测试,结果见表5。如表5所示,当配方组份含量接近时(MCX‑6100与MCX‑6002相似,MCX‑8100与MCX‑8001相似),DNAN基炸药的爆炸能量小于TNT基炸药。

    表5 挪威MCX系列炸药爆炸特[56,57,58,59]

    Table 5 Explosion characteristics of MCX series explosives of Norway[56,57,58,59]

    formulation

    ρ

    / g∙cm-3

    D

    / m∙s-1

    p

    / GPa

    Dcr

    / mm

    2EG1)

    / m∙s-1

    MCX‑61001.76719919.019.72583
    MCX‑60021.80781624.710.02684
    MCX‑81001.76706820.820.02563
    MCX‑80011.80769424.6<11.02679

    NOTE: 1)2EG are calculated values.

    国内关于DNAN基熔铸炸药研究起步较晚,且主要针对基础科学问题进行研究,公开的配方未见报道。2014年,西安近代化学研究所高杰[60]测试了6种铝粉含量不同的DNAN基熔铸炸药爆速、爆压及空中爆炸的冲击波参数,发现DNAN基熔铸炸药空中爆炸威力(ΔpI)与反应度和反应区间的乘积(λL)具有较好一致性。认为可以考虑从提高反应度和增大反应区间来提高DNAN基含铝熔铸炸药的爆炸威力。2016年,北京理工大学李东伟[61,62]采用Fortran BKW代码计算了Octol(TNT/HMX 30/70)炸药和DNAN基熔铸炸药(DNAN/HMX 20/80)的爆速和爆压,结果表明该DNAN基炸药的爆炸能量高于Octol,这主要因该DNAN基熔铸炸药含有更高的固含量(80%的HMX)。张伟[63]使用连续导线法获得了炸药组分、含量等因素对DNAN基熔铸炸药爆轰临界直径的影响规律。Cao[64,65]通过拉格朗日分析测试系统对DNAN基熔铸炸药的冲击起爆特性进行了研究,得到了加载压力、RDX颗粒尺寸和晶体质量、铝粉颗粒尺寸和载体炸药对待测炸药冲击起爆特性的影响规律;同时采用水下爆炸实验测试得到不同长径比的传爆药对爆炸总能量的影响规律,最后拟合得到爆炸总能量与长径比的函数关系,可以用于指导传爆药设计。

  • 3.2 安全性

    Samuels[20]、Lee[66]及Singh[67]等对美国多种DNAN基熔铸炸药的安全性进行了测试,实验结果见表6。由表6可知,上述几种炸药的撞击、冲击波感度都小于B炸药,其中PAX‑21及IMX‑104的摩擦感度大于B炸药。

    表6 美国几种DNAN基炸药安全[20,66,67]

    Table 6 Safety characteristics of several DNAN‑based explosives of USA[20,66,67]

    formulation

    IS(ERL1))

    / cm

    FS(BAM2))

    / N

    SS
    LSGT3) / cardsELSGT4) / cards
    PAX‑2141.1144163-
    PAX‑4150.1188204-
    PAX‑48>100192110-
    IMX‑101>100240-158
    IMX‑104114.4160118-
    Comp.B33.9168200-219596.4

    NOTE: 1)ERL is explosives research laboratory. 2)BAM is bundesanstalt für materialprufung. 3)LSGT is large‑scale cap test. 4)ELSGT is expanded large‑scale cap test.

    Provatas[68,69]对ARX系列熔铸炸药的安全性进行了测试,结果见表7。由表7可知,ARX系列炸药的热分解温度均高于B炸药,其中含有NTO的配方ARX‑4028及ARX‑4029感度明显低于B炸药与ARX‑4027,而B炸药与ARX‑4027感度基本相同。

    表7 ARX系列熔铸炸药的安全[68,69]

    Table 7 Safety characteristics of ARX series explosives[68,69]

    formulation

    LSGT

    / GPa

    IS(Rotter)

    / N

    FS(BAM)

    / N

    ESD1) / JTi / ℃Tdec2) / ℃
    ARX‑40272.621602884.5220236
    ARX‑40288.142003244.5227262
    ARX‑40296.212002884.5205258
    Comp.B2.691401084.5212220

    NOTE: 1)ESD is electrostatic discharge. 2)Tdec is the decomposition temperature.

    Mishra[36]对DNAN基与TNT基熔铸炸药的感度进行了对比研究,表明DNAN基炸药的摩擦感度与TNT基炸药相当,但撞击感度更低。对于NTO及1,1‑二氨基‑2,2‑二硝基乙烯(FOX‑7),DNAN/NTO、DNAN/FOX‑7的冲击波感度明显低于TNT/NTO、TNT/FOX‑7,认为冲击波感度与主体炸药及载体炸药相关;对于HMX、RDX,当使用DNAN代替TNT后,冲击波感度降低可以忽略,认为冲击波感度主要决定于高能炸药,载体炸药对其影响很小。

  • 3.3 安定性

  • 3.3.1 真空安定性(vacuum thermal stability VTS)

    Fung[70]等采用MIL‑STD‑1751A(1061)方法对IMX‑101、IMX‑104及OSX‑12炸药VTS进行了测试,结果见表8。由表8可知,几种DNAN基炸药放气量都小于B炸药,而且均满足小于2 mL∙g-1的安定性的要求。Provatas[71]还对ARX系列炸药做了真空安定性分析,发现ARX系列炸药放气量均大于B炸药,但满足安定性的要求。

    表8 IMX‑101、IMX‑104及OSX‑12炸药真空安定[70]

    Table 8 Vacuum thermal stability(VTS) of IMX‑101,IMX‑104 and OSX‑12[70]

    formulationIMX‑101IMX‑104OSX‑12comp.B
    gas evolved1) / mL∙g-10.500.5710.060.602
  • 3.3.2 烤燃试验(cook‑off test)

    Lee[66]对IMX‑101进行了可变约束条件下(variable confinement cook‑off test, VCCT)快烤(10 ℃∙s-1)和慢烤试验(3.3 ℃∙h-1),结果表明在烤燃实验中,IMX‑101发生了燃烧或爆燃,而A5炸药(RDX/硬脂酸(SA)98.5/1.5)则发生了爆轰。因此IMX‑101热不敏感特性优于A5炸药。Singh[67]对IMX‑104进行VCCT快烤(10 ℃∙s-1)和慢烤试验(3.3 ℃∙h-1),结果表明IMX‑104发生了燃烧或爆燃,而A5炸药发生了爆轰或部分爆轰,B炸药则从爆炸转为爆轰。因此IMX‑104炸药的热不敏感特性优于B炸药及A5炸药。Pelletier[49,72]对PAX‑48进行了VCCT慢烤实验(25 ℃∙h-1),结果表明PAX‑48发生了燃烧反应,而B炸药则发生爆轰反应。因此PAX‑48炸药的热不敏感特性优于B炸药。

    烤燃实验的另一种方法为一升烤燃实验(one liter cook‑off test),将1350 g待测炸药装填于一升圆底烧瓶中,放置于加热炉中加热。首先将样品快速加热(至少10 ℃∙min-1)到其熔点之上(10~20 ℃)并保持约5 h,然后以3.3 ℃∙h-1的速率升温,采用热电偶及高速相机记录其反应过程。通过该方法不仅可以能够得到自加热温度,而且能够了解热分解反应的剧烈程度。Lee[66]通过一升烤燃实验,得到IMX‑101炸药的自加热温度为145 ℃。Singh[67]通过一升烤燃实验发现Frank‑Kamenetskii模型可对IMX‑104自加热起始温度进行准确预测。

  • 3.4 贮存特性

  • 3.4.1 老化实验

    Lee[66]对IMX‑101进行了加速老化试验,并测试老化后的各项性能指标,结果见表9。由表9可知,IMX‑101加速老化试验后,放热起始温度略有降低;摩擦感度在1~3月时间内升高,随后摩擦感度又降低;撞击感度和静电感度基本无变化,而冲击波感度变化较小;抗压强度均提高。总体而言,IMX‑101抗老化性能较好,具有良好的贮存性能。

    表9 IMX‑101在70 °C下密封老化试验结[66]

    Table 9 Aged test results of IMX‑101 70 °C in sealed container[66]

    aging time / monthTdec / ℃IS(ERL) / cmFS(BAM) / NEDS(ARDEC1))ELSGT / GPaσc2) / MPa
    0212>100168No Go5.9(1.64 g∙cm‑3)15.17
    1207>100108No Go--
    2206>100108No Go--
    3201>100108No Go5.8(1.65 g∙cm-3)-
    4198>100160No Go--
    6200>100168No Go5.6(1.65 g∙cm-3)20.00

    NOTE: 1)ARDEC is armament research, development and engineering center. 2)σc is compressive strength.

    Singh[67]等对IMX‑104在70 ℃下进行了为期4个月的加速老化试验,并测试了老化后的各项感度,实验结果如表10所示。由表10可知,在加速老化实验后,IMX‑104撞感与摩感均增加。

    表10 IMX‑104老化实验结[67]

    Table 10 Aged test results of IMX‑104[67]

    aging time / monthIS(ERL) / cmFS(BAM) / NEDS
    0114.4160No Go
    1>125.9216No Go
    2>125.9192No Go
    3>125.9216No Go
    4>125.9192No Go

    Provatas[68,69]等对ARX系列炸药进行了12个月加速老化试验,试验条件包含两种:(1)60 ℃恒温干燥,(2)在30~44 ℃、湿度14%~44%条件下昼夜循环。每三个月检测一次炸药的密度、感度、药柱力学强度等性能,结果如表11所示。结果表明,在条件1下,ARX系列炸药的撞感提高,摩感降低,而B炸药表现出与其截然相反的性质;在条件2下,ARX系列炸药的撞感及摩感均降低,B炸药表现出与其相同的性质;在上述两种条件下,ARX系列炸药的密度损失小于B炸药,两种炸药的抗压强度均降低。

    表11 澳大利亚ARX系列熔铸炸药老化实验结[68,69]

    Table 11 Aged test results of ARX series explosives of Australian[68,69]

    formulationexperimental conditionloss of ρ / %IS(Rotter) / JFS(BAM) / NE1) / GPaσc / MPa
    ARX‑402713.21160→140288→3241.9→1.523→14
    21.34160→170288→2881.9→1.423→14
    ARX‑402812.21200→170324→3602.3→1.832→20
    21.11200→>200324→3602.3→2.232→31
    ARX‑402911.73200→200288→3602.4→1.934→27
    21.42200→>200288→3602.4→2.234→29
    comp.B13.49110→140108→841.5→1.118→14
    22.54110→180108→1081.5→1.118→14

    NOTE: 1)E is elasticity modulus.

    Nevstad[56]对MCX系列炸药进行了为期6个月老化试验,试验条件为71 ℃恒温干燥。实验结束对四种炸药的质量、感度、自发火温度、渗油性等性能进行了测试,结果如表12所示。由表12可知,当配方组份含量接近时,DNAN基炸药的质量损失及渗油性均低于TNT基炸药。因此,DNAN基熔铸炸药具有更好的贮存性能。

    表12 挪威MCX系列熔铸炸药老化实验结[56]

    Table 12 Aged results of MCX series explosives in Norway[56]

    formulationweight loss / %IS(BAM) / JFS(BAM) / NTi / ℃Tdec / °Cexudation(mass loss) / %
    MCX‑61000.1026→25194→146270→270204→2060.02
    MCX‑60020.2529→24170→150269→270202→2040.04
    MCX‑81000.0827→28151→148271→273222→2250.05
    MCX‑80010.1430→24146→162270→273227→2290.06
  • 3.4.2 不可逆膨胀

    依据北约不敏感弹药标准AOP‑7(202.01.010),炸药的不可逆膨胀不应超过1%,而传统的TNT基熔铸炸药不能满足这一要求。Samuels[27]研究了美国几种DNAN基熔铸炸药的不可逆膨胀,将裸露药柱在-54~71 ℃下循环30或98次,得到其体积变化,结果如表13所示。由表13可知,PAX‑48、PAX‑21、IMX‑101及IMX‑104的体积变化明显低于B炸药。Samuels同时发现当循环超过40次后,IMX配方在药柱表面包覆一层白色粉体;在98次循环过程中,IMX‑104、TNT、B炸药的体积近似线性增长,试验后B炸药的体积增长最大,且药柱出现裂纹。

    表13 美国几种DNAN基熔铸炸药的不可逆膨[27]

    Table 13 Irreversible growth test results of several DNAN‑based explosives of USA[27]

    formulation

    volume change

    (cycle 30 times) / %

    volume change

    (cycle 98 times) / %

    PAX‑4112.12-
    PAX‑216.77-
    PAX‑483.97-
    IMX‑1018.0014.66
    IMX‑1045.2612.76
    comp.B8.4620.29
  • 3.4.3 渗油性

    Samuels[20]采用MIL‑STD‑1751A(1661)方法,研究了美国几种DNAN基熔铸炸药的渗油特性,结果见表14。尽管国内外对渗油性标准并没有给出标准判据,但是普遍认为不应超过0.1%[20]。由表14可知,DNAN基熔铸炸药的渗油性明显优于B炸药,且PAX‑48、IMX‑101、IMX‑104渗油均没有超过0.1%。

    表14 美国几种DNAN基熔铸炸药的渗油[20]

    Table 14 Exudation test results of several DNAN‑based explosives of USA[20]

    formulationexudation(mass loss) / %
    PAX‑210.29
    PAX‑410.28
    PAX‑480.03
    IMX‑1010.05
    IMX‑1040.004
    comp.B0.69
  • 3.5 易损性

    易损性包括六项:快烤、慢烤、子弹撞击、破片撞击、殉爆、热碎片撞击。表15所示为几种DNAN基熔铸炸药的易损性测试结果。

    表15 美国几种DNAN基熔铸炸药的易损性测试结[73]

    Table 15 IM tests results of several DNAN‑based explosives of USA[73]

    IM tests

    passing

    criteria[74]

    formulation
    PAX‑48IMX‑101IMX‑104comp.B
    FCO1)
    SCO2)
    BI3)
    FI4)-
    SR5)
    SCJI6)

    NOTE: 1)FCO is fast cook‑off. 2)SCO is slow cook‑off. 3)BI is bullet impact. 4)FI is fragment impact. 5)SR is sympathetic reaction. 6)SCJI is shaped charge jet impact.

    Nita研究表明PAX‑48五项(破片撞击无实验结果)与IMX‑104六项指标通过了易损性考核,IMX‑101通过了最初的子弹撞击测试方法(一发子弹测试),但是没有通过新的测试方法(三发子弹测试),而B炸药六项指标都未通过考核。因此,DNAN基熔铸炸药的不敏感特性明显优于B炸药。

  • 3.6 力学特性

    Pelletier[72]通过抗压强度测试,研究了IMX‑101、PAX‑48和B炸药的力学特性,结果如表16所示。由表16可知,IMX‑101及PAX‑48的压缩力学性能约为B炸药的2倍,其刚性大于B炸药。

    表16 IMX‑101、PAX‑48和B炸药压缩力学性能对[72]

    Table 16 Mechanical characteristics of compression for IMX‑101, PAX‑48 and comp.B[72]

    formulationσm1) / MPaεm2) / %E / MPaσR3) / MPaεR4) / %
    IMX‑10118.9±1.62.5±0.31708±2819.5±0.83.5±0.4
    PAX‑4817.8 ±1.32.5 ± 0.11436±2368.9±0.73.3±0.2
    comp.B8.1±1.82.0 ± 0.3840±1474.0±0.92.7±0.1

    NOTE: 1)σm is maximum stress. 2)εm is strain at maximum stress. 3)σR is stress at rupture. 4)εR is strain at rupture.

    Provatas[69]分别测试了ARX‑4027、ARX‑4028、ARX‑4029的力学特性,并与B炸药进行了对比,试验结果如表17所示。由表17可知,ARX系列炸药的抗压强度都大于B炸药。

    表17 澳大利亚ARX系列炸药力学特[69]

    Table 17 Mechanical characteristics of ARX series explosives of Australian[69]

    formulationFmax1) / KNE / MPaσc / MPa
    ARX‑402711.6±0.51878±3222.89±0.01
    ARX‑402816.4±0.52277±1132.00±0.01
    ARX‑402917.5±0.22364±934.10±0.01
    comp.B7.2±0.61605±8918.99±0.01

    NOTE: 1)Fmax is the maximum load.

    Zhu[75]通过巴西实验与数字图像相关法研究了DNAN/HMX(20/80)熔铸炸药在不同温度时的力学性能,结果表明温度升高时,DNAN/HMX炸药的抗拉强度及弹性模量降低,而泊松比增加。Qian[76]采用数值模拟与实验相结合的方法研究了界面强度对DNAN/RDX炸药力学性能的影响,结果表明添加剂季戊四醇丙烯醛树脂(APER)可以在DNAN与RDX之间形成高强度的界面黏结能,从而增加DNAN/RDX炸药的机械强度和韧性。蒙君煚[77‑78]采用压力浇铸与真空浇铸的成型工艺,研究其对DNAN基熔铸炸药抗拉强度的影响规律。结果表明当成型压力达到0.8 MPa时,DNAN/HMX炸药抗拉强度提高了9.9%,DNAN/RDX炸药降低了40.8%,当真空度达到0.08 MPa时,DNAN/RDX炸药提高了14.3%。蒙君煚[79,80]同时发现在DNAN/HMX(20/80)熔铸炸药中加入1%脱水山梨醇单硬脂酸酯聚氧乙烯醚(吐温60)和1%乙酸丁酸纤维素(CAB)可使炸药拉伸强度及剪切强度增大。这主要是因为功能助剂可增强界面黏附功,黏附功越大则药柱的抗拉强度越大,药柱断裂模式由穿晶/沿晶混合断裂向纯粹穿晶断裂转变。

  • 3.7 流变特性

    表18给出了美国几种DNAN基熔铸炸药的流出粘度。

    表18 美国几种DNAN基熔铸炸药的流出粘[81,82]

    Table 18 Efflux viscosity of several DNAN‑based explosives of USA[81,82]

    formulationefflux viscosity(96 ℃) / s
    PAX‑214.8-8.6
    PAX‑348.5
    PAX‑486.7
    OSX‑125
    IMX‑1015.9
    IMX‑104<10

    Pelletier[72,83]研究了IMX‑104、PAX‑48及PAX‑34[84](DNAN/NTO/HMX/三氨基三硝基苯(TATB))炸药的表观粘度及沉降特性,同时研究了其流动性,结果如表19所示。

    表19 IMX‑104、PAX‑48及PAX‑34粘度测试结[72,83]

    Table 19 Viscosity tests results of IMX‑104, PAX‑48 and PAX‑34[72,83]

    formulationTt1) / ℃μ02) / mPa∙sμ7.53) / mPa∙sμ154) / mPa∙s
    IMX‑10498304032863440
    PAX‑4898144015201680
    PAX‑349888010402720
    comp.B93700-10001000-14002000-2400

    NOTE: 1)Tt is test temperature. 2)μ0 is initial viscosity. 3)μ7.5 is viscosity after 7.5 minutes. 4)μ15 is viscosity after 15 minutes.

    表19可知,IMX‑104初始粘度较大,PAX‑48及PAX‑34初始粘度较小,但IMX‑104、PAX‑48沉降不明显,PAX‑34在15 min后粘度增加了209%。流动性结果表明IMX‑104、PAX‑48更加均匀,流动稳定;PAX‑34浇铸过程中沉降明显,上部DNAN液体较多粘度小,底部粘度大。

    Vézina[50]对OSX‑12进行了表观粘度测试与沉降实验,发现OSX‑12初始粘度较高,经过15 min沉淀后,粘度增加明显,有明显的沉降现象,化学成分分析表明,沉淀物主要为NTO、Al,表面漂浮物主要为DNAN。

    表20给出了挪威MCX系列熔铸炸药的流出粘度。由表20可知,当配方组分含量接近时,DNAN基熔铸炸药的流出粘度较低,流动性好。

    表20 挪威MCX系列炸药的流出粘[56]

    Table 20 Efflux viscosity of MCX series explosives of Norway[56]

    formulationMCX‑6100MCX‑6002MCX‑8100MCX‑8001
    efflux viscosity/s5-8(96 ℃)11(85 ℃)7(96 ℃)6-9(85 ℃)

    Pelletier[49]对比了ARX‑4027与B炸药的粘度,结果表明ARX‑4027粘度较小,沉降不明显。Ferlazzo[47]研究了颗粒极配对DNAN基熔铸炸药粘度的影响,结果表明当固含量为65%时,随着细颗粒RDX或HMX(3 μm)含量增加,药浆粘度增加。Nicolich[85]研究表明当DNAN含量为40%,AP含量在0~30%变化时,RDX含量超过剩余组分(RDX和Al粉)的50%会导致粘度急剧增加,流动性及可加工性变差。Hathawa[86]发现随着固相颗粒比表面积的增加,DNAN基熔铸炸药的粘度增加。蒙君煚[87]研究了HMX固含量、体系温度、HMX粒度、HMX颗粒级配及功能助剂等对DNAN/HMX悬浮液流变性的影响规律,并通过颗粒级配使其固含量达到80%而保持良好的流动性。

  • 4 结论与展望

    装填不敏感熔铸炸药取代TNT基炸药是炸药技术发展的一个重要方向。DNAN基新型熔铸炸药的成功推出和应用,不仅解决了TNT基熔铸炸药感度高、毒性大等问题,而且为各类武器弹药提供了一种工艺简单、装填密度大的低成本炸药。目前,各国DNAN基熔铸炸药进入大规模装备应用,既是炸药装药技术发展的一次重大突破,也标志着传统熔铸炸药的换装计划正式启动,其意义在于:一是全面推动大口径炮弹和迫击炮弹药炸药装药的更新换代;二是加快了不敏感弹药的装备进程;三是大幅提升了武器弹药的使用安全性;四是有效降低弹药全寿命周期的维护成本。

    目前,DNAN基熔铸炸药在配方设计、物化性质、安全特性及爆炸特性等方面已经取得了一定成果,但仍有许多地方有待研究者继续努力探索和研究。

  • (1) 如何提高固体颗粒含量同时降低药浆粘度

    DNAN基熔铸炸药虽然具有不敏感特性,但其威力比同类型TNT基炸药低。因此提高DNAN基熔铸炸药威力一直是主要研究方向,为了实现此目的就必须提高熔铸炸药的高能固相颗粒含量(如HMX、RDX),但是提高固含量的同时药浆的粘度也同时增大,而熔铸炸药的流变性是影响其浇铸性能、成型性能和装药质量的主要因素,因此必须综合考虑这两方面因素。

  • (2) 如何提高固液界面特性

    界面特性与熔铸炸药的力学性能、安全性能、装药质量密切相关。由于DNAN自身力学性能差,因此必须形成适用于DNAN基熔铸炸药的功能助剂体系,从而改善界面特性,提高固液界面粘结强度。

  • (3) 如何提高药柱的装药质量

    药柱的缩孔、疏松、裂纹等是影响炸药发射安全性的主要因素,为了提高DNAN基熔铸炸药装药质量,减少药柱内部缩孔、疏松、裂纹,这就要求对DNAN基熔铸炸药凝固过程进行研究,其中包括凝固过程中温度场、缩孔疏松等,并对成型过程工艺技术进行优化,形成适用于DNAN基熔铸炸药的装药技术。

    (责编: 高 毅)

  • 参考文献

    • 1

      黄亨建, 董海山, 张明. B炸药的改性研究及其进展[J]. 含能材料, 2001, 9(4): 183-186.

      HUANG Heng‑jian, DONG Hai‑shan, ZHANG Ming. Problems and developments in composition B modification research[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2001, 9(4): 183-186.

    • 2

      孙国祥, 陈鲁祥. B炸药的品种组成和性能[J]. 火炸药学报, 1989, 12(1): 15-21.

      SUN Guo‑xiang, CHEN Lu‑xiang. The variety constituents and performance of composition B[J]. Chinese Journal of Explosives & Propellants, 1989, 12(1): 15-21.

    • 3

      董海山. 钝感弹药的由来及重要意义[J]. 含能材料, 2006, 14(5): 321-322.

      DONG Hai‑shan. The importance of the insensitive munitions [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(5): 321-322.

    • 4

      Rutkowski J, Cirincione R, Patel C. Common low‑cost insensitive munitions explosive to replace TNT and comp B[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Munich, Germany. 2010.

    • 5

      王宇, 芮久后, 冯顺山. 装药缺陷对熔铸炸药爆速影响的实验研究[J]. 北京理工大学学报, 2011, 31(7): 757-760.

      WANG Yu, RUI Jiu‑hou, FENG Shun‑shan. Experimental research of charge defects′ influence on detonation velocity of melting‑cast explosive[J].Transactions of Beijing Institute of Technology, 2011, 31(7): 757-760.

    • 6

      Smith D L, Thorpe B W. Fracture in the high explosive RDX/TNT[J]. Journal of Materials Science, 1973, 8(5): 757-759.

    • 7

      聂少云, 高大元, 文雯, 等. 添加剂对B炸药安全和爆轰性能的影响[J]. 火炸药学报, 2014, 37(3): 20-25.

      NIE Shao‑yun, GAO Da‑yuan, WEN Wen, et al. Effect of supplement on safety and detonation properties of composition B [J]. Chinese Journal of Explosives & Propellants, 2014, 37(3): 20-25.

    • 8

      Maurais C T. Hazard assessment of high‑nitrogen explosive compounds: a novel in vitro multi‑cellular approach[D]. USA: Uniformed Services University of the Health Sciences Bethesda, 2016: 6-21.

    • 9

      Boddu V M, Abburi K, Maloney S W, et al. Thermophysical properties of an insensitive munitions compound, 2, 4‑dinitroanisole[J]. Journal of Chemical & Engineering Data, 2008, 53(5): 1120-1125.

    • 10

      Baker E L, Stasio A R. Insensitive munitions technology development[J]. Problemy Mechatroniki: uzbrojenie, lotnictwo, inżynieria bezpieczeństwa, 2014, 4(18): 7-20.

    • 11

      Salter‑Blanc A J, Bylaska E J, Johnston H J, et al. Predicting reduction rates of energetic nitroaromatic compounds using calculated one‑electron reduction potentials[J]. Environmental science & technology, 2015, 49(6): 3778-3786.

    • 12

      Headrick Sarah, Price D, LeClaire E. Development of an efficient alternative manufacturing process for DNAN production [R].BAE Systems(Ordnance Systems,Inc.),S2DSEA2011‑0531, 2011.

    • 13

      陈陆武. 用2, 4‑二硝基氯苯制备2‑氨基‑4‑乙酰氨基苯甲醚的工艺方法: CN1146450[P]. 1997.

      CHEN Lu‑wu. Technological process for preparation of 2‑amino‑4‑acetaminoanisole by 2,4‑dinitro chlorobenzene: CN1146450[P]. 1997.

    • 14

      万克玲, 付忠东, 梁足培, 等. 一种同时生产2,4‑二硝基苯甲醚和2, 4‑二硝基苯酚的方法: CN102391126[P]. 2012.

      WAN Ke‑ling, FU Zhong‑dong, LIANG Zu‑pei, et al. Method for producing 2, 4‑dinitrobenzene methyl ether and 2, 4‑dinitrophenol simultaneously: CN102391126[P]. 2012.

    • 15

      徐万福, 刘伟, 周海滨. 一种2, 4‑二硝基苯甲醚的合成工艺: CN103396318[P]. 2015.

      XU Wan‑fu, LIU Wei, ZHOU Hai‑bin. Synthetic process for 2, 4‑dinitroanisole: CN103396318[P]. 2015.

    • 16

      方克雄, 魏伍山, 陈军, 等. 一种连续化合成2,4‑二硝基苯甲醚的方法: CN105777550[P]. 2016.

      FANG Ke‑xiong, WEI Wu‑shan, CHEN Jun, et al. Method for continuously synthesizing 2,4‑dimitroanisole: CN105777550 [P]. 2016.

    • 17

      Heck D, Heise H, Hintzmann M. Process for the preparation of 2,4‑dinitrophenyl ethers: US4847426[P]. 1989.

    • 18

      王亲会. 熔铸混合炸药用载体炸药评述[J]. 火炸药学报, 2011, 34(5): 25-28.

      WANG Qin‑hui. Overview of carrier explosive for melt‑cast composite explosive[J]. Chinese Journal of Explosives & Propellants, 2011, 34(5): 25-28.

    • 19

      牛国涛, 金大勇, 罗一鸣, 等. DNAN基熔铸炸药工艺特性[J]. 兵工自动化, 2014, 33(7): 86-88.

      NIU Guo‑tao, JIN Da‑yong, LUO Yi‑ming, et al. Technical characteristics of DNAN‑based melt‑casting explosives[J]. Ordnance Industry Automation, 2014, 33(7): 86-88.

    • 20

      王红星, 王浩, 蒋芳芳, 等. DNAN炸药熔铸工艺安全性分析[J]. 兵工自动化, 2014, 33(7): 72-74.

      WANG Hong‑xing, WANH Hao, JIANG Fang‑fang, et al. Safety analysis of melt‑cast technology for DNAN explosive [J]. Ordnance Industry Automation, 2014, 33(7): 72-74.

    • 21

      Nair U R, Asthana S N, Rao A S, et al. Advances in high energy materials[J]. Defence Science Journal,2010,60(2):137-151.

    • 22

      Samuels P. Characterization of 2, 4‑dinitroanisole (DNAN)[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Las Vegas, NV, USA. 2012.

    • 23

      王红星, 王晓峰, 罗一鸣, 等. DNAN炸药的烤燃实验[J]. 含能材料, 2009, 17(2): 183‑186.

      WANG Hong‑xing, WANG Xiao‑feng, LUO Yi‑ming, et al. Cook‑off test of DNAN explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(2): 183-186.

    • 24

      刘瑞鹏, 罗一鸣, 王红星, 等. TNT, DNAN和DNTF单质凝固过程中温度和缩松的数值模拟及实验研究[J]. 火炸药学报, 2016, 39(3): 43-47.

      LIU Rui‑peng, LUO Yi‑ming, WANG Hong‑xing, et al. Experimental study and numerical simulation on temperature and shrinkage porosity of TNT, DNAN and DNTF during solidification process[J]. Chinese Journal of Explosives & Propellants, 2016, 39(3): 43-47.

    • 25

      罗一鸣, 蒋秋黎, 赵凯, 等. 2, 4‑二硝基苯甲醚与TNT凝固行为的差异性分析[J]. 火炸药学报, 2015, 38(5): 37-40.

      LUO Yi‑ming, JIANG Qiu‑li, ZHAO Kai, et al. Analysis on difference of solidification behavior of DNAN and TNT[J]. Chinese Journal of Explosives & Propellants, 2015,38(5): 37-40.

    • 26

      Parry M A, Billon H H. A note on the coefficient of viscosity of pure molten 2,4,6‑trinitrotoluene(TNT)[J]. Rheologica acta, 1988, 27(6): 661-663.

    • 27

      Samuels P. Irreversible growth of DNAN based formulations [C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Las Vegas, NV, USA. 2012.

    • 28

      John N, Nicolich S. PAX‑21, PAX‑25 and PAX‑28: a family of new low cost insensitive melt pour explosives[C]//6th Australian Explosive Ordnance Symposium, Canberra, Australia. 2003.

    • 29

      张光全, 董海山. 2,4‑二硝基苯甲醚为基熔铸炸药的研究进展[J]. 含能材料, 2010, 18(5): 604-609.

      ZHANG Guang‑quan, DONG Hai‑shan. Review on melt‑castable explosives based on 2,4‑dinitroanisole[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010, 18(5): 604-609.

    • 30

      陈朗, 李贝贝, 马欣. DNAN炸药烤燃特征[J]. 含能材料, 2016, 24(1): 27-32.

      CHEN Lang, LI Bei‑bei, MA Xin. Research on the cook‑off characteristics of DNAN explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(1): 27-32.

    • 31

      Zhang C, Jin S, Ji J, et al. Thermal hazard assessment of TNT and DNAN under adiabatic condition by using accelerating rate calorimeter (ARC)[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(1): 89-93.

    • 32

      Coster P L, Henderson C A, Hunter S, et al. Explosives at extreme conditions: polymorphism of 2,4‑dinitroanisole[C]//New Trends in Research of Energetic Materials, Pardubice, Czech Republic. 2014: 164-179.

    • 33

      Ward D W, Coster P L, Hope K S, et al. Controlling a polymorphic transition in 2,4‑dinitroanisole using crystal doping [C]//New Trends in Research of Energetic Materials, Pardubice, Czech Republic. 2015: 301-310.

    • 34

      Ward D W, Coster P L, Pulham C R. Preventing irreversible growth of DNAN by controlling its polymorphism[C]//New Trends in Research of Energetic Materials, Pardubice, Czech Republic. 2017: 407-416.

    • 35

      Trzciński W, Cudziło S, Dyjak S, et al. A comparison of the sensitivity and performance characteristics of melt‑pour explosives with TNT and DNAN binder[J]. Central European Journal of Energetic Materials, 2014, 11(3): 443-455.

    • 36

      Mishra V S, Vadali S R, Bhagat A L, et al. Studies on NTO‑, FOX‑7‑and DNAN‑based melt cast formulations[J]. Central European Journal of Energetic Materials, 2017, 14(2): 403-417.

    • 37

      王红星, 王浩, 高杰, 等. 2,4‑二硝基苯甲醚应用基础性能研究[J]. 科学技术与工程, 2014, 14(25): 72-75.

      WANG Hong‑xing WANG Hao, Gao Jie, et al. Application basic research on 2, 4‑dinitroanisole[J]. Science Technology and Engineering, 2014, 14(25): 72-75.

    • 38

      Grau H, Gandzelko A, Samuels P. Solubility determination of raw energetic materials in molten 2,4‑dinitroanisole[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4): 604-608.

    • 39

      Xing X, Zhao F, Ma S, et al. Specific heat capacity, thermal behavior, and thermal hazard of 2, 4‑dinitroanisole[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 179-182.

    • 40

      赵凯, 王浩, 王玮, 等. DNAN力学性能分析[J]. 火炸药学报, 2016, 39(4): 68-72.

      ZHAO Kai, WANG Hao, WANG Wei, et al. Analysis of the mechanical properties of DNAN[J]. Chinese Journal of Explosives & Propellants, 2016, 39(4): 68-72.

    • 41

      Johnson, M S, Eck, W S, Lent, E M. Toxicity of insensitive munition (IMX) formulations and components[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(1): 9-16.

    • 42

      Hawari J, Monteil‑Rivera F, Perreault N N, et al. Environmental fate of 2,4‑dinitroanisole (DNAN) and its reduced products[J]. Chemosphere, 2015, 119: 16-23.

    • 43

      Dodard S G, Sarrazin M, Hawari J, et al. Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4‑dinitroanisole (DNAN)[J]. Journal of Hazardous Materials, 2013, 262: 143-150.

    • 44

      Olivares C I, Abrell L, Khatiwada R, et al. (Bio)transformation of 2,4‑dinitroanisole (DNAN) in soils[J]. Journal of Hazardous Materials, 2016, 304: 214-221.

    • 45

      Ravi P, Badgujar D M, Gore G M, et al. Review on melt cast explosives[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5): 393-403.

    • 46

      Taylor S, Park E, Bullion K, et al. Dissolution of three insensitive munitions formulations[J]. Chemosphere, 2015, 119: 342-348.

    • 47

      Ferlazzo P, Nicolich S, Niles J, et al. Insensitive munitions explosive development for melt pour munitions[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Orlando, FL, USA. 2003.

    • 48

      Nevstad G O. Temper simulations for 120 mm IM HE‑T[R]. Norwegian Defence Research Establishment, FFI‑rapport 2015/02156, 2015.

    • 49

      Pelletier P, Lavigne D, Laroche I, et al. Additional properties studies of DNAN based melt‑pour explosive formulations[C]//DNIA Insensitive Munitions & Energetic Materials Technology Symposium, Munich, Germany. 2010.

    • 50

      Vézina A, Pelletier P, Carrillo Aet al. Studies on OSX‑12 formulation, an aluminized DNAN based melt‑pour explosive [C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Las Vegas, NV, USA. 2012.

    • 51

      Vincent S W, Jackson S I, Chiquete C, et al. The geometric scaling of IMX‑104 explosive: detonation velocity versus charge size for cylindrical rate sticks and slab tests[C]//15th International Detonation Symposium, San Francisco, CA, USA. 2014.

    • 52

      Furnish M D, Root S, Samuels P. Equation‑of‑state and shock homogeneity of IMX‑101 and IMX‑104[C]//15th International Detonation Symposium, San Francisco, CA, USA. 2014.

    • 53

      Davies P J, Provatas A. Characterization of 2, 4‑dintroanisole: an ingredient for use in low sensitivity melt cast formulations [R].Defence Science and Technology Organisation, DSTO‑TR‑1904, 2006.

    • 54

      Davies P J, Provatas A. DNAN: a replacement for TNT in Melt‑cast formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Orlando, Bristol, United Kingdom. 2006.

    • 55

      Provatas A, Wall C. Thermal testing of 2,4‑dinitroanisole (DNAN) as a TNT replacement for melt‑cast explosive[C]//International annual conference‑Fraunhofer Institut Chemische Technologie, Karlsruhe, Germany. 2011.

    • 56

      Johansen Ø H, Nevstad G O, Gjersøe R, et al. Insensitive munitions‑development and qualification of new melt‑cast formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Nashville, TN, USA. 2016.

    • 57

      Nevstad G O. Determination of detonation velocity and pressure for MCX‑6100[R]. Norwegian Defence Research Establishment, FFI‑rapport 2015/02323, 2015.

    • 58

      Nevstad G O. Characterization of MCX‑8100[R]. Norwegian Defence Research Establishment, FFI‑rapport 2015/02448, 2015.

    • 59

      Nevstad G O, Prytz A K, Ødegårdstuen G, et al. IM assessment for a state of the art 155mm HE round[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Rome, Italy. 2015.

    • 60

      高杰, 焦建设, 王浩, 等. DNAN基熔铸复合炸药的爆轰性能[J]. 火炸药学报, 2014, 37(3): 26-28.

      GAO Jie, JIAO Jian‑she, WANG Hao, et al. Detonation properties of DNAN‑based melt‑cast composition explosive[J]. Chinese Journal of Explosives & Propellants,2014, 37(3): 26-28.

    • 61

      李东伟, 姜振明, 张向荣, 等. 2,4‑二硝基苯甲醚基高爆速熔铸炸药爆轰性能表征[J]. 兵工学报, 2016, 37(4): 656-660.

      LI Dong‑wei, JIANG Zhen‑ming, ZHANG Xiang‑rong, et al. Characterization of new 2,4‑dinitroanisole‑based melt‑cast high detonation velocity explosives [J]. Acta Armamentarii, 2016, 37(4): 656-660.

    • 62

      Li D, Zhou L, Zhang X. Partial reparametrization of the BKW equation of state for DNAN‑based melt‑cast explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(5): 499-505.

    • 63

      张伟, 周霖, 张向荣, 等. 2, 4‑二硝基茴香醚基含铝熔铸炸药爆轰临界直径的实验研究[J]. 兵工学报, 2017, 38(4): 690-694.

      ZHANG Wei, ZHOU Lin, ZHANG Xiang‑rong, et al. Experimental study of critical diameter of DNAN‑based aluminized melt‑cast explosives[J]. Acta Armamentarii, 2017, 38(4): 690-694.

    • 64

      Cao T T, Zhou L, Zhang X R, et al. Shock initiation characteristics of an aluminized DNAN/RDX melt‑cast explosive[J]. Journal of Energetic Materials, 2017, 35(4): 430-442.

    • 65

      Cao T T, Zhou L, Zhang X R, et al. Influence of booster size on the total energy of RBUL‑1 explosive in underwater explosion[C]//1st International Conference on New Material and Chemical Industry (NMCI2016), Sanya, China. 2016.

    • 66

      Lee K E, Balas‑Hummers W A, Di Stasio A R, et al. Qualification testing of the insensitive TNT replacement explosive IMX‑101[C]//DNIA Insensitive munitions and energetic materials technology symposium, Munich, Germany. 2010.

    • 67

      Singh S, Jelinek L, Samuels P, et al. IMX‑104 characterization for DoD qualification[C]//DNIA Insensitive munitions and energetic materials technology symposium, Munich, Germany. 2010.

    • 68

      Provatas A, Wall C. Ageing of insensitive DNAN based melt‑cast explosives[R]. Defence Science and Technology Organisation, DSTO‑TN‑1332, 2014.

    • 69

      Provatas A, Wall C. Ageing of australian DNAN based melt‑cast insensitive explosives[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 555-561.

    • 70

      Fung V, Alexander B, Balas W. Development of insensitive aluminized melt‑pour explosive formulation[C]//DNIA Insensitive munitions and energetic materials technology symposium, Tucson, AZ, USA. 2009.

    • 71

      Provatas, A, Wall, C. Thermal testing of insensitive explosives based on 2, 4‑dinitroanisole[R]. Defence Science and Technology Organisation, DSTO‑TR‑2434, 2010.

    • 72

      Pelletier P, Laroche I, Lavigne D, et al. Processing studies of DNAN based melt‑pour explosive formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Tucson, AZ, USA. 2009.

    • 73

      Nita M, Warchoł R. Current trends in development of military explosives[J]. Scientific Journal of the Military University of Land Forces, 2015, 47(1): 69-80.

    • 74

      Baker E L. Insensitive munitions requirements, technology, and testing[R]. Munitions Safety Information Analysis Center: 2017.

    • 75

      Zhu D L, Zhou L, Zhang X R, et al. Simultaneous determination of multiple mechanical parameters for a DNAN/HMX melt‑cast explosive by brazilian disc test combined with digital image correlation method[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 864-872.

    • 76

      Qian W, Chen X Z, Luo G. Polymer reinforced DNAN/RDX energetic composites: interfacial interactions and mechanical properties[J]. Central European Journal of Energetic Materials, 2017, 14(3): 726-741.

    • 77

      Meng J J, Zhou L, Zhang X R. Effect of pressure of the casting vessel on the solidification characteristics of a DNAN/RDX melt‑cast explosive[J]. Journal of Energetic Materials, 2017, 35(4): 385-396.

    • 78

      蒙君煚, 周霖, 金大勇, 等. 成型工艺对2,4‑二硝基苯甲醚基熔铸炸药装药质量的影响[J]. 兵工学报, 2018, 39(9): 1719-1726.

      MENG Jun‑jiong, ZHOU Lin, JIN Da‑yong, et al. Effect of forming process on casting quality of 2, 4‑dinitroanisole‑based casting explosive[J]. Acta Armamentarii, 2018, 39(9): 1719-1726.

    • 79

      蒙君煚, 姜振明, 张向荣, 等. 功能助剂对2,4‑二硝基苯甲醚基熔铸炸药性能的影响[J]. 兵工学报, 2016, 37(3): 424-430.

      MENG Jun‑jiong, JIANG Zhen‑ming, ZHANG Xiang‑rong, et al. Effect of functional agents on the performance of 2,4‑dinitroanisole‑based melt‑cast explosives[J]. Acta Armamentarii, 2016, 37(3): 424-430.

    • 80

      蒙君煚, 周霖, 金大勇, 等. 功能助剂对DNAN/RDX熔铸炸药界面黏结强度的影响[J]. 含能材料, 2018, 26(9): 765-771.

      MENG Jun‑jiong, ZHOU Lin, JIN Da‑yong, et al. Effect of functional additives on interface bonding strength of DNAN/RDX melt‑cast explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(9): 765-771.

    • 81

      Fung V, Ervin M, Alexander B, et al. Development and manufacture of an insensitive composition B replacement explosive IMX‑104 for mortar applications[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, munich, Germany. 2010.

    • 82

      Alexander B, Fung V, Teague C. Development and filling of new insensitive melt pour explosive for 120mm direct fire ammunition[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Miami, FL, USA. 2007.

    • 83

      Laroche I, Pelletier P, Lavigne D, et al. Processing studies of new melt‑pour explosive formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, CA, USA, 2008.

    • 84

      Wilson, A. Improved IM melt‑cast explosive[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Bristol, UK, 2006.

    • 85

      Nicolich S, Niles J, Doll D, et al. Development of a novel high fragmentation/high blast melt pour explosive[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Orlando, FL, USA. 2003.

    • 86

      Hathaway M, Carrillo A. Evaluation of the effect of surface area on DNAN based explosives[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, San Diego, CA, USA. 2013.

    • 87

      蒙君煚, 周霖, 金大勇, 等. DNAN/HMX熔铸炸药的流变特性[J]. 含能材料, 2018, 26(8): 677-685.

      MENG Jun‑jiong, ZHOU Lin, JIN Da‑yong, et al. Rheological properties of DNAN/HMX melt‑cast explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(8): 677-685.

蒙君煚

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

邮 箱:mengjunjiong204@163.com

作者简介:蒙君煚(1987-),男,博士,助理研究员,主要从事高能钝感混合炸药研究。e‑mail:mengjunjiong204@163.com

周霖

机 构:北京理工大学爆炸科学与技术国家重点实验室, 北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China, 3. Anhui Dongfeng Machinery and Electronic Co.Ltd, Hefei 230022, China

角 色:通讯作者

Role:Corresponding author

邮 箱:zhoulin@bit.edu.cn

作者简介:周霖(1962-),男,教授,博士生导师,主要从事炸药应用技术研究。e‑mail:zhoulin@bit.edu.cn

曹同堂

机 构:安徽东风机电科技股份有限公司, 安徽 合肥 230022

王亲会

机 构:西安近代化学研究所, 陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

performanceDNANTNTref.
OB1) / %-97-74[18]
Tm2) / ℃94.680.9[18]
ρcd3) / g·cm-31.5441.654[18]
ρld4) / g·cm-31.351.45[19]
Dcr5) / mm>82.5513.97‑26.92[20]
D6) / m·s-15974(1.544 g∙cm-3)6970(1.65 g∙cm-3)[18]
p7) / GPa9.5(1.34 g∙cm-3)18.9(1.65 g∙cm-3)[21]
Qv8) / kJ·kg-118104148[18]
T5s9) / ℃374.1295[22]
FS10) / %4~60[22]
IS11) / cm117.5157.0[22]
SS12) / mm29.7642.50[22]
Ti13) / ℃347306[23]
H14) / kJ·kg-184.1104.0[24]
C15) / J·g-1·-11.2081.278[24]
λ16) / W∙m-1·-10.2270.224[24]
shrinkage / %13.212.7[25]
dissolves RDX(100 ℃) / g14(100 g DNAN)7.53(100 g TNT)[20]
viscosity / mPa∙s4.5(100 ℃)9.5(85 ℃)[26]
irreversible growth(volume change) / %15.013.10[27]
formulationDcr / mmD / km∙s-1
PAX‑2111.43-12.706.70
PAX‑41<12.707.68
PAX‑4819.05‑25.407.18
IMX‑10166.046.90
IMX‑10422.237.40
Comp.B4.297.98
formulationφ1) / cmρ / g∙cm-3Dp2EG2)(computed)
computedexperimentalcomputedexperimental
IMX‑1045.11.7495.7%94.4%88.4%81.5%90.0%
IMX‑1047.61.7492.4%94.5%88.4%95.8%90.0%
PAX‑485.1-91.2%92.6%79.5%82.8%88.0%
OSX‑127.61.8393.2%90.9%80.8%92.1%85.7%
formulationρ / g∙cm-3D / m∙s-1p / GPaDcr / mm
ARX‑40271.68739822.59.3-11.8
ARX‑40281.76717920.844.0-50.8
ARX‑40291.77748722.038.1-44.0
comp.B1.72784324.53.0-4.0
formulation

ρ

/ g∙cm-3

D

/ m∙s-1

p

/ GPa

Dcr

/ mm

2EG1)

/ m∙s-1

MCX‑61001.76719919.019.72583
MCX‑60021.80781624.710.02684
MCX‑81001.76706820.820.02563
MCX‑80011.80769424.6<11.02679
formulation

IS(ERL1))

/ cm

FS(BAM2))

/ N

SS
LSGT3) / cardsELSGT4) / cards
PAX‑2141.1144163-
PAX‑4150.1188204-
PAX‑48>100192110-
IMX‑101>100240-158
IMX‑104114.4160118-
Comp.B33.9168200-219596.4
formulation

LSGT

/ GPa

IS(Rotter)

/ N

FS(BAM)

/ N

ESD1) / JTi / ℃Tdec2) / ℃
ARX‑40272.621602884.5220236
ARX‑40288.142003244.5227262
ARX‑40296.212002884.5205258
Comp.B2.691401084.5212220
formulationIMX‑101IMX‑104OSX‑12comp.B
gas evolved1) / mL∙g-10.500.5710.060.602
aging time / monthTdec / ℃IS(ERL) / cmFS(BAM) / NEDS(ARDEC1))ELSGT / GPaσc2) / MPa
0212>100168No Go5.9(1.64 g∙cm‑3)15.17
1207>100108No Go--
2206>100108No Go--
3201>100108No Go5.8(1.65 g∙cm-3)-
4198>100160No Go--
6200>100168No Go5.6(1.65 g∙cm-3)20.00
aging time / monthIS(ERL) / cmFS(BAM) / NEDS
0114.4160No Go
1>125.9216No Go
2>125.9192No Go
3>125.9216No Go
4>125.9192No Go
formulationexperimental conditionloss of ρ / %IS(Rotter) / JFS(BAM) / NE1) / GPaσc / MPa
ARX‑402713.21160→140288→3241.9→1.523→14
21.34160→170288→2881.9→1.423→14
ARX‑402812.21200→170324→3602.3→1.832→20
21.11200→>200324→3602.3→2.232→31
ARX‑402911.73200→200288→3602.4→1.934→27
21.42200→>200288→3602.4→2.234→29
comp.B13.49110→140108→841.5→1.118→14
22.54110→180108→1081.5→1.118→14
formulationweight loss / %IS(BAM) / JFS(BAM) / NTi / ℃Tdec / °Cexudation(mass loss) / %
MCX‑61000.1026→25194→146270→270204→2060.02
MCX‑60020.2529→24170→150269→270202→2040.04
MCX‑81000.0827→28151→148271→273222→2250.05
MCX‑80010.1430→24146→162270→273227→2290.06
formulation

volume change

(cycle 30 times) / %

volume change

(cycle 98 times) / %

PAX‑4112.12-
PAX‑216.77-
PAX‑483.97-
IMX‑1018.0014.66
IMX‑1045.2612.76
comp.B8.4620.29
formulationexudation(mass loss) / %
PAX‑210.29
PAX‑410.28
PAX‑480.03
IMX‑1010.05
IMX‑1040.004
comp.B0.69
IM tests

passing

criteria[74]

formulation
PAX‑48IMX‑101IMX‑104comp.B
FCO1)
SCO2)
BI3)
FI4)-
SR5)
SCJI6)
formulationσm1) / MPaεm2) / %E / MPaσR3) / MPaεR4) / %
IMX‑10118.9±1.62.5±0.31708±2819.5±0.83.5±0.4
PAX‑4817.8 ±1.32.5 ± 0.11436±2368.9±0.73.3±0.2
comp.B8.1±1.82.0 ± 0.3840±1474.0±0.92.7±0.1
formulationFmax1) / KNE / MPaσc / MPa
ARX‑402711.6±0.51878±3222.89±0.01
ARX‑402816.4±0.52277±1132.00±0.01
ARX‑402917.5±0.22364±934.10±0.01
comp.B7.2±0.61605±8918.99±0.01
formulationefflux viscosity(96 ℃) / s
PAX‑214.8-8.6
PAX‑348.5
PAX‑486.7
OSX‑125
IMX‑1015.9
IMX‑104<10
formulationTt1) / ℃μ02) / mPa∙sμ7.53) / mPa∙sμ154) / mPa∙s
IMX‑10498304032863440
PAX‑4898144015201680
PAX‑349888010402720
comp.B93700-10001000-14002000-2400
formulationMCX‑6100MCX‑6002MCX‑8100MCX‑8001
efflux viscosity/s5-8(96 ℃)11(85 ℃)7(96 ℃)6-9(85 ℃)

表1 DNAN和TNT的性能对比

Table 1 The performance comparison between of DNAN and TNT

表2 美国几种DNAN基炸药的爆炸特[20]

Table 2 Explosion characteristics of several DNAN‑based explosives of USA[20]

表3 IMX‑104、PAX‑48和OSX‑12的爆炸特[49,50]

Table 3 Explosion characteristics of IMX‑104, PAX‑48 and OSX‑12[49,50]

表4 澳大利亚ARX系列炸药爆炸特[53,54,55]

Table 4 Explosion characteristics of ARX series explosives of Australian[53,54,55]

表5 挪威MCX系列炸药爆炸特[56,57,58,59]

Table 5 Explosion characteristics of MCX series explosives of Norway[56,57,58,59]

表6 美国几种DNAN基炸药安全[20,66,67]

Table 6 Safety characteristics of several DNAN‑based explosives of USA[20,66,67]

表7 ARX系列熔铸炸药的安全[68,69]

Table 7 Safety characteristics of ARX series explosives[68,69]

表8 IMX‑101、IMX‑104及OSX‑12炸药真空安定[70]

Table 8 Vacuum thermal stability(VTS) of IMX‑101,IMX‑104 and OSX‑12[70]

表9 IMX‑101在70 °C下密封老化试验结[66]

Table 9 Aged test results of IMX‑101 70 °C in sealed container[66]

表10 IMX‑104老化实验结[67]

Table 10 Aged test results of IMX‑104[67]

表11 澳大利亚ARX系列熔铸炸药老化实验结[68,69]

Table 11 Aged test results of ARX series explosives of Australian[68,69]

表12 挪威MCX系列熔铸炸药老化实验结[56]

Table 12 Aged results of MCX series explosives in Norway[56]

表13 美国几种DNAN基熔铸炸药的不可逆膨[27]

Table 13 Irreversible growth test results of several DNAN‑based explosives of USA[27]

表14 美国几种DNAN基熔铸炸药的渗油[20]

Table 14 Exudation test results of several DNAN‑based explosives of USA[20]

表15 美国几种DNAN基熔铸炸药的易损性测试结[73]

Table 15 IM tests results of several DNAN‑based explosives of USA[73]

表16 IMX‑101、PAX‑48和B炸药压缩力学性能对[72]

Table 16 Mechanical characteristics of compression for IMX‑101, PAX‑48 and comp.B[72]

表17 澳大利亚ARX系列炸药力学特[69]

Table 17 Mechanical characteristics of ARX series explosives of Australian[69]

表18 美国几种DNAN基熔铸炸药的流出粘[81,82]

Table 18 Efflux viscosity of several DNAN‑based explosives of USA[81,82]

表19 IMX‑104、PAX‑48及PAX‑34粘度测试结[72,83]

Table 19 Viscosity tests results of IMX‑104, PAX‑48 and PAX‑34[72,83]

表20 挪威MCX系列炸药的流出粘[56]

Table 20 Efflux viscosity of MCX series explosives of Norway[56]

image /

1)OB is oxygen balance. 2)Tm is melting point. 3)ρcd is crystalline density. 4)ρld is liquid phase density. 5)Dcr is critical diameter. 6)D is detonation velocity. 7)p is detonation pressure. 8)Qv is explosion heat. 9)T5s is deflagration point of 5 s delay time. 10)FS is friction sensitivity. 11)IS is impact sensitivity. 12)SS is shock sensitivity. 13)Ti is self‑ignition temperature. 14)H is latent heat of phase change. 15)C is specific heat. 16)λ is thermal conductivity.

无注解

1)φ is the grain diameter. 2)EG is the gurney energy, 2EG is the gurney coefficient.

无注解

1)2EG are calculated values.

1)ERL is explosives research laboratory. 2)BAM is bundesanstalt für materialprufung. 3)LSGT is large‑scale cap test. 4)ELSGT is expanded large‑scale cap test.

1)ESD is electrostatic discharge. 2)Tdec is the decomposition temperature.

无注解

1)ARDEC is armament research, development and engineering center. 2)σc is compressive strength.

无注解

1)E is elasticity modulus.

无注解

无注解

无注解

1)FCO is fast cook‑off. 2)SCO is slow cook‑off. 3)BI is bullet impact. 4)FI is fragment impact. 5)SR is sympathetic reaction. 6)SCJI is shaped charge jet impact.

1)σm is maximum stress. 2)εm is strain at maximum stress. 3)σR is stress at rupture. 4)εR is strain at rupture.

1)Fmax is the maximum load.

无注解

1)Tt is test temperature. 2)μ0 is initial viscosity. 3)μ7.5 is viscosity after 7.5 minutes. 4)μ15 is viscosity after 15 minutes.

无注解

  • 参考文献

    • 1

      黄亨建, 董海山, 张明. B炸药的改性研究及其进展[J]. 含能材料, 2001, 9(4): 183-186.

      HUANG Heng‑jian, DONG Hai‑shan, ZHANG Ming. Problems and developments in composition B modification research[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2001, 9(4): 183-186.

    • 2

      孙国祥, 陈鲁祥. B炸药的品种组成和性能[J]. 火炸药学报, 1989, 12(1): 15-21.

      SUN Guo‑xiang, CHEN Lu‑xiang. The variety constituents and performance of composition B[J]. Chinese Journal of Explosives & Propellants, 1989, 12(1): 15-21.

    • 3

      董海山. 钝感弹药的由来及重要意义[J]. 含能材料, 2006, 14(5): 321-322.

      DONG Hai‑shan. The importance of the insensitive munitions [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(5): 321-322.

    • 4

      Rutkowski J, Cirincione R, Patel C. Common low‑cost insensitive munitions explosive to replace TNT and comp B[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Munich, Germany. 2010.

    • 5

      王宇, 芮久后, 冯顺山. 装药缺陷对熔铸炸药爆速影响的实验研究[J]. 北京理工大学学报, 2011, 31(7): 757-760.

      WANG Yu, RUI Jiu‑hou, FENG Shun‑shan. Experimental research of charge defects′ influence on detonation velocity of melting‑cast explosive[J].Transactions of Beijing Institute of Technology, 2011, 31(7): 757-760.

    • 6

      Smith D L, Thorpe B W. Fracture in the high explosive RDX/TNT[J]. Journal of Materials Science, 1973, 8(5): 757-759.

    • 7

      聂少云, 高大元, 文雯, 等. 添加剂对B炸药安全和爆轰性能的影响[J]. 火炸药学报, 2014, 37(3): 20-25.

      NIE Shao‑yun, GAO Da‑yuan, WEN Wen, et al. Effect of supplement on safety and detonation properties of composition B [J]. Chinese Journal of Explosives & Propellants, 2014, 37(3): 20-25.

    • 8

      Maurais C T. Hazard assessment of high‑nitrogen explosive compounds: a novel in vitro multi‑cellular approach[D]. USA: Uniformed Services University of the Health Sciences Bethesda, 2016: 6-21.

    • 9

      Boddu V M, Abburi K, Maloney S W, et al. Thermophysical properties of an insensitive munitions compound, 2, 4‑dinitroanisole[J]. Journal of Chemical & Engineering Data, 2008, 53(5): 1120-1125.

    • 10

      Baker E L, Stasio A R. Insensitive munitions technology development[J]. Problemy Mechatroniki: uzbrojenie, lotnictwo, inżynieria bezpieczeństwa, 2014, 4(18): 7-20.

    • 11

      Salter‑Blanc A J, Bylaska E J, Johnston H J, et al. Predicting reduction rates of energetic nitroaromatic compounds using calculated one‑electron reduction potentials[J]. Environmental science & technology, 2015, 49(6): 3778-3786.

    • 12

      Headrick Sarah, Price D, LeClaire E. Development of an efficient alternative manufacturing process for DNAN production [R].BAE Systems(Ordnance Systems,Inc.),S2DSEA2011‑0531, 2011.

    • 13

      陈陆武. 用2, 4‑二硝基氯苯制备2‑氨基‑4‑乙酰氨基苯甲醚的工艺方法: CN1146450[P]. 1997.

      CHEN Lu‑wu. Technological process for preparation of 2‑amino‑4‑acetaminoanisole by 2,4‑dinitro chlorobenzene: CN1146450[P]. 1997.

    • 14

      万克玲, 付忠东, 梁足培, 等. 一种同时生产2,4‑二硝基苯甲醚和2, 4‑二硝基苯酚的方法: CN102391126[P]. 2012.

      WAN Ke‑ling, FU Zhong‑dong, LIANG Zu‑pei, et al. Method for producing 2, 4‑dinitrobenzene methyl ether and 2, 4‑dinitrophenol simultaneously: CN102391126[P]. 2012.

    • 15

      徐万福, 刘伟, 周海滨. 一种2, 4‑二硝基苯甲醚的合成工艺: CN103396318[P]. 2015.

      XU Wan‑fu, LIU Wei, ZHOU Hai‑bin. Synthetic process for 2, 4‑dinitroanisole: CN103396318[P]. 2015.

    • 16

      方克雄, 魏伍山, 陈军, 等. 一种连续化合成2,4‑二硝基苯甲醚的方法: CN105777550[P]. 2016.

      FANG Ke‑xiong, WEI Wu‑shan, CHEN Jun, et al. Method for continuously synthesizing 2,4‑dimitroanisole: CN105777550 [P]. 2016.

    • 17

      Heck D, Heise H, Hintzmann M. Process for the preparation of 2,4‑dinitrophenyl ethers: US4847426[P]. 1989.

    • 18

      王亲会. 熔铸混合炸药用载体炸药评述[J]. 火炸药学报, 2011, 34(5): 25-28.

      WANG Qin‑hui. Overview of carrier explosive for melt‑cast composite explosive[J]. Chinese Journal of Explosives & Propellants, 2011, 34(5): 25-28.

    • 19

      牛国涛, 金大勇, 罗一鸣, 等. DNAN基熔铸炸药工艺特性[J]. 兵工自动化, 2014, 33(7): 86-88.

      NIU Guo‑tao, JIN Da‑yong, LUO Yi‑ming, et al. Technical characteristics of DNAN‑based melt‑casting explosives[J]. Ordnance Industry Automation, 2014, 33(7): 86-88.

    • 20

      王红星, 王浩, 蒋芳芳, 等. DNAN炸药熔铸工艺安全性分析[J]. 兵工自动化, 2014, 33(7): 72-74.

      WANG Hong‑xing, WANH Hao, JIANG Fang‑fang, et al. Safety analysis of melt‑cast technology for DNAN explosive [J]. Ordnance Industry Automation, 2014, 33(7): 72-74.

    • 21

      Nair U R, Asthana S N, Rao A S, et al. Advances in high energy materials[J]. Defence Science Journal,2010,60(2):137-151.

    • 22

      Samuels P. Characterization of 2, 4‑dinitroanisole (DNAN)[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Las Vegas, NV, USA. 2012.

    • 23

      王红星, 王晓峰, 罗一鸣, 等. DNAN炸药的烤燃实验[J]. 含能材料, 2009, 17(2): 183‑186.

      WANG Hong‑xing, WANG Xiao‑feng, LUO Yi‑ming, et al. Cook‑off test of DNAN explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(2): 183-186.

    • 24

      刘瑞鹏, 罗一鸣, 王红星, 等. TNT, DNAN和DNTF单质凝固过程中温度和缩松的数值模拟及实验研究[J]. 火炸药学报, 2016, 39(3): 43-47.

      LIU Rui‑peng, LUO Yi‑ming, WANG Hong‑xing, et al. Experimental study and numerical simulation on temperature and shrinkage porosity of TNT, DNAN and DNTF during solidification process[J]. Chinese Journal of Explosives & Propellants, 2016, 39(3): 43-47.

    • 25

      罗一鸣, 蒋秋黎, 赵凯, 等. 2, 4‑二硝基苯甲醚与TNT凝固行为的差异性分析[J]. 火炸药学报, 2015, 38(5): 37-40.

      LUO Yi‑ming, JIANG Qiu‑li, ZHAO Kai, et al. Analysis on difference of solidification behavior of DNAN and TNT[J]. Chinese Journal of Explosives & Propellants, 2015,38(5): 37-40.

    • 26

      Parry M A, Billon H H. A note on the coefficient of viscosity of pure molten 2,4,6‑trinitrotoluene(TNT)[J]. Rheologica acta, 1988, 27(6): 661-663.

    • 27

      Samuels P. Irreversible growth of DNAN based formulations [C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Las Vegas, NV, USA. 2012.

    • 28

      John N, Nicolich S. PAX‑21, PAX‑25 and PAX‑28: a family of new low cost insensitive melt pour explosives[C]//6th Australian Explosive Ordnance Symposium, Canberra, Australia. 2003.

    • 29

      张光全, 董海山. 2,4‑二硝基苯甲醚为基熔铸炸药的研究进展[J]. 含能材料, 2010, 18(5): 604-609.

      ZHANG Guang‑quan, DONG Hai‑shan. Review on melt‑castable explosives based on 2,4‑dinitroanisole[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010, 18(5): 604-609.

    • 30

      陈朗, 李贝贝, 马欣. DNAN炸药烤燃特征[J]. 含能材料, 2016, 24(1): 27-32.

      CHEN Lang, LI Bei‑bei, MA Xin. Research on the cook‑off characteristics of DNAN explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(1): 27-32.

    • 31

      Zhang C, Jin S, Ji J, et al. Thermal hazard assessment of TNT and DNAN under adiabatic condition by using accelerating rate calorimeter (ARC)[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(1): 89-93.

    • 32

      Coster P L, Henderson C A, Hunter S, et al. Explosives at extreme conditions: polymorphism of 2,4‑dinitroanisole[C]//New Trends in Research of Energetic Materials, Pardubice, Czech Republic. 2014: 164-179.

    • 33

      Ward D W, Coster P L, Hope K S, et al. Controlling a polymorphic transition in 2,4‑dinitroanisole using crystal doping [C]//New Trends in Research of Energetic Materials, Pardubice, Czech Republic. 2015: 301-310.

    • 34

      Ward D W, Coster P L, Pulham C R. Preventing irreversible growth of DNAN by controlling its polymorphism[C]//New Trends in Research of Energetic Materials, Pardubice, Czech Republic. 2017: 407-416.

    • 35

      Trzciński W, Cudziło S, Dyjak S, et al. A comparison of the sensitivity and performance characteristics of melt‑pour explosives with TNT and DNAN binder[J]. Central European Journal of Energetic Materials, 2014, 11(3): 443-455.

    • 36

      Mishra V S, Vadali S R, Bhagat A L, et al. Studies on NTO‑, FOX‑7‑and DNAN‑based melt cast formulations[J]. Central European Journal of Energetic Materials, 2017, 14(2): 403-417.

    • 37

      王红星, 王浩, 高杰, 等. 2,4‑二硝基苯甲醚应用基础性能研究[J]. 科学技术与工程, 2014, 14(25): 72-75.

      WANG Hong‑xing WANG Hao, Gao Jie, et al. Application basic research on 2, 4‑dinitroanisole[J]. Science Technology and Engineering, 2014, 14(25): 72-75.

    • 38

      Grau H, Gandzelko A, Samuels P. Solubility determination of raw energetic materials in molten 2,4‑dinitroanisole[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4): 604-608.

    • 39

      Xing X, Zhao F, Ma S, et al. Specific heat capacity, thermal behavior, and thermal hazard of 2, 4‑dinitroanisole[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 179-182.

    • 40

      赵凯, 王浩, 王玮, 等. DNAN力学性能分析[J]. 火炸药学报, 2016, 39(4): 68-72.

      ZHAO Kai, WANG Hao, WANG Wei, et al. Analysis of the mechanical properties of DNAN[J]. Chinese Journal of Explosives & Propellants, 2016, 39(4): 68-72.

    • 41

      Johnson, M S, Eck, W S, Lent, E M. Toxicity of insensitive munition (IMX) formulations and components[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(1): 9-16.

    • 42

      Hawari J, Monteil‑Rivera F, Perreault N N, et al. Environmental fate of 2,4‑dinitroanisole (DNAN) and its reduced products[J]. Chemosphere, 2015, 119: 16-23.

    • 43

      Dodard S G, Sarrazin M, Hawari J, et al. Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4‑dinitroanisole (DNAN)[J]. Journal of Hazardous Materials, 2013, 262: 143-150.

    • 44

      Olivares C I, Abrell L, Khatiwada R, et al. (Bio)transformation of 2,4‑dinitroanisole (DNAN) in soils[J]. Journal of Hazardous Materials, 2016, 304: 214-221.

    • 45

      Ravi P, Badgujar D M, Gore G M, et al. Review on melt cast explosives[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5): 393-403.

    • 46

      Taylor S, Park E, Bullion K, et al. Dissolution of three insensitive munitions formulations[J]. Chemosphere, 2015, 119: 342-348.

    • 47

      Ferlazzo P, Nicolich S, Niles J, et al. Insensitive munitions explosive development for melt pour munitions[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Orlando, FL, USA. 2003.

    • 48

      Nevstad G O. Temper simulations for 120 mm IM HE‑T[R]. Norwegian Defence Research Establishment, FFI‑rapport 2015/02156, 2015.

    • 49

      Pelletier P, Lavigne D, Laroche I, et al. Additional properties studies of DNAN based melt‑pour explosive formulations[C]//DNIA Insensitive Munitions & Energetic Materials Technology Symposium, Munich, Germany. 2010.

    • 50

      Vézina A, Pelletier P, Carrillo Aet al. Studies on OSX‑12 formulation, an aluminized DNAN based melt‑pour explosive [C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Las Vegas, NV, USA. 2012.

    • 51

      Vincent S W, Jackson S I, Chiquete C, et al. The geometric scaling of IMX‑104 explosive: detonation velocity versus charge size for cylindrical rate sticks and slab tests[C]//15th International Detonation Symposium, San Francisco, CA, USA. 2014.

    • 52

      Furnish M D, Root S, Samuels P. Equation‑of‑state and shock homogeneity of IMX‑101 and IMX‑104[C]//15th International Detonation Symposium, San Francisco, CA, USA. 2014.

    • 53

      Davies P J, Provatas A. Characterization of 2, 4‑dintroanisole: an ingredient for use in low sensitivity melt cast formulations [R].Defence Science and Technology Organisation, DSTO‑TR‑1904, 2006.

    • 54

      Davies P J, Provatas A. DNAN: a replacement for TNT in Melt‑cast formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Orlando, Bristol, United Kingdom. 2006.

    • 55

      Provatas A, Wall C. Thermal testing of 2,4‑dinitroanisole (DNAN) as a TNT replacement for melt‑cast explosive[C]//International annual conference‑Fraunhofer Institut Chemische Technologie, Karlsruhe, Germany. 2011.

    • 56

      Johansen Ø H, Nevstad G O, Gjersøe R, et al. Insensitive munitions‑development and qualification of new melt‑cast formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Nashville, TN, USA. 2016.

    • 57

      Nevstad G O. Determination of detonation velocity and pressure for MCX‑6100[R]. Norwegian Defence Research Establishment, FFI‑rapport 2015/02323, 2015.

    • 58

      Nevstad G O. Characterization of MCX‑8100[R]. Norwegian Defence Research Establishment, FFI‑rapport 2015/02448, 2015.

    • 59

      Nevstad G O, Prytz A K, Ødegårdstuen G, et al. IM assessment for a state of the art 155mm HE round[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Rome, Italy. 2015.

    • 60

      高杰, 焦建设, 王浩, 等. DNAN基熔铸复合炸药的爆轰性能[J]. 火炸药学报, 2014, 37(3): 26-28.

      GAO Jie, JIAO Jian‑she, WANG Hao, et al. Detonation properties of DNAN‑based melt‑cast composition explosive[J]. Chinese Journal of Explosives & Propellants,2014, 37(3): 26-28.

    • 61

      李东伟, 姜振明, 张向荣, 等. 2,4‑二硝基苯甲醚基高爆速熔铸炸药爆轰性能表征[J]. 兵工学报, 2016, 37(4): 656-660.

      LI Dong‑wei, JIANG Zhen‑ming, ZHANG Xiang‑rong, et al. Characterization of new 2,4‑dinitroanisole‑based melt‑cast high detonation velocity explosives [J]. Acta Armamentarii, 2016, 37(4): 656-660.

    • 62

      Li D, Zhou L, Zhang X. Partial reparametrization of the BKW equation of state for DNAN‑based melt‑cast explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(5): 499-505.

    • 63

      张伟, 周霖, 张向荣, 等. 2, 4‑二硝基茴香醚基含铝熔铸炸药爆轰临界直径的实验研究[J]. 兵工学报, 2017, 38(4): 690-694.

      ZHANG Wei, ZHOU Lin, ZHANG Xiang‑rong, et al. Experimental study of critical diameter of DNAN‑based aluminized melt‑cast explosives[J]. Acta Armamentarii, 2017, 38(4): 690-694.

    • 64

      Cao T T, Zhou L, Zhang X R, et al. Shock initiation characteristics of an aluminized DNAN/RDX melt‑cast explosive[J]. Journal of Energetic Materials, 2017, 35(4): 430-442.

    • 65

      Cao T T, Zhou L, Zhang X R, et al. Influence of booster size on the total energy of RBUL‑1 explosive in underwater explosion[C]//1st International Conference on New Material and Chemical Industry (NMCI2016), Sanya, China. 2016.

    • 66

      Lee K E, Balas‑Hummers W A, Di Stasio A R, et al. Qualification testing of the insensitive TNT replacement explosive IMX‑101[C]//DNIA Insensitive munitions and energetic materials technology symposium, Munich, Germany. 2010.

    • 67

      Singh S, Jelinek L, Samuels P, et al. IMX‑104 characterization for DoD qualification[C]//DNIA Insensitive munitions and energetic materials technology symposium, Munich, Germany. 2010.

    • 68

      Provatas A, Wall C. Ageing of insensitive DNAN based melt‑cast explosives[R]. Defence Science and Technology Organisation, DSTO‑TN‑1332, 2014.

    • 69

      Provatas A, Wall C. Ageing of australian DNAN based melt‑cast insensitive explosives[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 555-561.

    • 70

      Fung V, Alexander B, Balas W. Development of insensitive aluminized melt‑pour explosive formulation[C]//DNIA Insensitive munitions and energetic materials technology symposium, Tucson, AZ, USA. 2009.

    • 71

      Provatas, A, Wall, C. Thermal testing of insensitive explosives based on 2, 4‑dinitroanisole[R]. Defence Science and Technology Organisation, DSTO‑TR‑2434, 2010.

    • 72

      Pelletier P, Laroche I, Lavigne D, et al. Processing studies of DNAN based melt‑pour explosive formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Tucson, AZ, USA. 2009.

    • 73

      Nita M, Warchoł R. Current trends in development of military explosives[J]. Scientific Journal of the Military University of Land Forces, 2015, 47(1): 69-80.

    • 74

      Baker E L. Insensitive munitions requirements, technology, and testing[R]. Munitions Safety Information Analysis Center: 2017.

    • 75

      Zhu D L, Zhou L, Zhang X R, et al. Simultaneous determination of multiple mechanical parameters for a DNAN/HMX melt‑cast explosive by brazilian disc test combined with digital image correlation method[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 864-872.

    • 76

      Qian W, Chen X Z, Luo G. Polymer reinforced DNAN/RDX energetic composites: interfacial interactions and mechanical properties[J]. Central European Journal of Energetic Materials, 2017, 14(3): 726-741.

    • 77

      Meng J J, Zhou L, Zhang X R. Effect of pressure of the casting vessel on the solidification characteristics of a DNAN/RDX melt‑cast explosive[J]. Journal of Energetic Materials, 2017, 35(4): 385-396.

    • 78

      蒙君煚, 周霖, 金大勇, 等. 成型工艺对2,4‑二硝基苯甲醚基熔铸炸药装药质量的影响[J]. 兵工学报, 2018, 39(9): 1719-1726.

      MENG Jun‑jiong, ZHOU Lin, JIN Da‑yong, et al. Effect of forming process on casting quality of 2, 4‑dinitroanisole‑based casting explosive[J]. Acta Armamentarii, 2018, 39(9): 1719-1726.

    • 79

      蒙君煚, 姜振明, 张向荣, 等. 功能助剂对2,4‑二硝基苯甲醚基熔铸炸药性能的影响[J]. 兵工学报, 2016, 37(3): 424-430.

      MENG Jun‑jiong, JIANG Zhen‑ming, ZHANG Xiang‑rong, et al. Effect of functional agents on the performance of 2,4‑dinitroanisole‑based melt‑cast explosives[J]. Acta Armamentarii, 2016, 37(3): 424-430.

    • 80

      蒙君煚, 周霖, 金大勇, 等. 功能助剂对DNAN/RDX熔铸炸药界面黏结强度的影响[J]. 含能材料, 2018, 26(9): 765-771.

      MENG Jun‑jiong, ZHOU Lin, JIN Da‑yong, et al. Effect of functional additives on interface bonding strength of DNAN/RDX melt‑cast explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(9): 765-771.

    • 81

      Fung V, Ervin M, Alexander B, et al. Development and manufacture of an insensitive composition B replacement explosive IMX‑104 for mortar applications[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, munich, Germany. 2010.

    • 82

      Alexander B, Fung V, Teague C. Development and filling of new insensitive melt pour explosive for 120mm direct fire ammunition[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Miami, FL, USA. 2007.

    • 83

      Laroche I, Pelletier P, Lavigne D, et al. Processing studies of new melt‑pour explosive formulations[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, CA, USA, 2008.

    • 84

      Wilson, A. Improved IM melt‑cast explosive[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Bristol, UK, 2006.

    • 85

      Nicolich S, Niles J, Doll D, et al. Development of a novel high fragmentation/high blast melt pour explosive[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, Orlando, FL, USA. 2003.

    • 86

      Hathaway M, Carrillo A. Evaluation of the effect of surface area on DNAN based explosives[C]//DNIA Insensitive Munitions and Energetic Materials Technology Symposium, San Diego, CA, USA. 2013.

    • 87

      蒙君煚, 周霖, 金大勇, 等. DNAN/HMX熔铸炸药的流变特性[J]. 含能材料, 2018, 26(8): 677-685.

      MENG Jun‑jiong, ZHOU Lin, JIN Da‑yong, et al. Rheological properties of DNAN/HMX melt‑cast explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(8): 677-685.