CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
汪营磊, 赵凤起, 仪建华. 固体火箭推进剂用燃烧催化剂研究新进展[J]. 火炸药学报, 2012, 35(5): 1-8.
WANGYing‑lei, ZHAOFeng‑qi, YIJian‑hua. New progress of study on combustion catalysts used for solid rocket propellants[J]. Chinese Journal of Explosives & Propellants, 2012, 35(5): 1-8.
参考文献 2
LuoX, WangM, YangD, et al. Hydrothermal synthesis of morphology controllable Cu2O and their catalysis in thermal decomposition of ammonium perchlorate[J]. Journal of Industrial and Engineering Chemistry, 2015, 32: 313-318.
参考文献 3
TanL, XuJ, ZhangX, et al. Synthesis of g‑C3N4/CeO2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Applied Surface Science, 2015, 356: 447-453.
参考文献 4
ZhangY, MengC. Facile fabrication of Fe3O4 and Co3O4 microspheres and their influence on the thermal decomposition of ammonium perchlorate[J]. Journal of Alloys and Compounds, 2016, 674: 259-265.
参考文献 5
郝嘎子, 刘杰, 侯晓婷,等. 纳米β‑Cu的制备及其对超细AP的催化性能[J]. 含能材料, 2015, 23(10): 947-951.
HAOGa‑zi, LIUJie, HOUXiao‑ting, et al. Preparation of nano‑sized β‑Cu and its catalytic effects on the ammonium perchlorate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(10): 947-951.
参考文献 6
HaoG, LieJ, GaoH, et al. Preparation of nano‑sized copper β‑resorcylate (β‑Cu) and its excellent catalytic activity for the thermal decomposition of ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 2016, 40(6): 848-853.
参考文献 7
ChaturvediS, DaveP. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate[J]. Journal of Saudi Chemical Society, 2013, 17(2): 135-149.
参考文献 8
LiuL, LiF, TanL, et al. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(1): 34-38.
参考文献 9
FertassiM, AlaliK, LiuQ, et al. Catalytic effect of CuO nanoplates, a graphene (G)/CuO nanocomposite and an Al/G/CuO composite on the thermal decomposition of ammonium perchlorate[J]. RSC Advances, 2016, 6(78): 74155-74161.
参考文献 10
PandasH, FazliM. Preparation and application of La2O3 and CuO nano particles as catalysts for ammonium perchlorate thermal decomposition[J]. Propellants, Explosives, Pyrotechnics, 2018, 43: 1-10.
参考文献 11
SharmaJ, SrivastavaP, SinghG, et al. Catalytic thermal decomposition of ammonium perchlorate and combustion of composite solid propellants over green synthesized CuO nanoparticles[J]. Thermochimica Acta, 2015, 614: 110-115.
参考文献 12
WangJ, ZhangW, ZhengZ, et al. Enhanced thermal decomposition properties of ammonium perchlorate through addition of 3DOM core‑shell Fe2O3/Co3O4 composite[J]. Journal of Alloys and Compounds, 2017, 724: 720-727.
参考文献 13
ZhaoW, ZhangT, ZhangL, et al. Large‑scale production of (2, 4‑DHB)nM micro‑nano spheres by spray drying and their application as catalysts for ammonium perchlorate[J]. Journal of Industrial and Engineering Chemistry, 2016, 38: 73-81.
参考文献 14
HaoG, LiuJ, XiaoL, et al. Effect of drying methods on catalytic performance of nano‑sized copper β‑resorcylate[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124: 1367-1374.
参考文献 15
LanY, JinB, DengJ, et al. Graphene/nickel aerogel: an effective catalyst for the thermal decomposition of ammonium perchlorate[J] RSC Advances, 2016, 6(85): 82112-82117.
参考文献 16
YanQ, GozinM, ZhaoF, et al. Highly energetic compositions based on functionalized carbon nanomaterials[J]. Nanoscale, 2016, 8: 4799-4851.
参考文献 17
IsertS, XinL, XieJ, et al. The effect of decorated graphene addition on the burning rate of ammonium perchlorate composite propellants[J]. Combustion and Flame, 2017, 183: 322-329.
参考文献 18
YuanY, JiangW, WangY, et al. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Applied Surface Science, 2014, 303: 354-359.
参考文献 19
ChenT, DuP, JangW, et al. A facile one‑pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate[J]. RSC Advances, 2016, 6: 83838-83847.
参考文献 20
ChenJ, HeS, HuangB, et al. Highly space‑confined ammonium perchlorate in three‑dimensional hierarchically ordered porous carbon with improved thermal decomposition properties[J]. Applied Surface Science, 2018, 457: 508-515.
参考文献 21
FanG, WangH, XiangX, et al. Co‑Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property[J]. Journal of Solid State Chemistry, 2013, 197: 14-22.
参考文献 22
LiN, GengZ, CaoM, et al. Well‑dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate[J]. Carbon, 2013, 54: 124-132.
参考文献 23
ZhaoJ, LiuZ, QinY, et al. Fabrication of Co3O4/graphene oxide composites using supercritical fluid and their catalytic application for the decomposition of ammonium perchlorate[J]. CrystEngComm, 2014, 16: 2001-2008.
参考文献 24
KanetiY, TangJ, SalunkheR, et al. Nanoarchitectured design of porous materials and nanocomposites from metal‑organic frameworks[J]. Advanced Materials, 2017, 29(12): 1604898-1604937.
参考文献 25
GuanY, YuX, WuH, et al. Complex nanostructures from materials based on metal‑organic frameworks for electrochemical energy storage and conversion[J]. Advanced Materials, 2017, 29(47): 1703614-1703633.
参考文献 26
BoldyrevVV. Thermal decomposition of ammonium perchlorate[J]. Thermochimica Acta, 2006, 443(1): 1-36.
目录 contents

    摘要

    为了提高纳米金属对高氯酸铵(AP)热分解的催化作用,采用溶剂热法与高温煅烧法,以镍基有机金属骨架(Ni‑MOF)为前驱体制备了Ni@C纳米棒。利用X射线衍射仪、场发射扫描电子显微镜、高倍透射电子显微镜、X射线光电子能谱仪、拉曼光谱仪、全自动物理吸附分析仪等表征了Ni@C纳米棒的形貌、结构及组成,并通过差示扫描量热仪研究了不同煅烧温度下Ni@C纳米棒对AP热分解的催化效果。结果表明,Ni@C纳米棒为以金属Ni为核、C层为壳的多孔核壳结构,且高度石墨化的C层有效防止了纳米Ni颗粒的氧化。Ni@C纳米棒对AP热分解的催化性能优于单独镍纳米颗粒和碳纳米棒。尤其是1000 ℃煅烧后的Ni@C纳米棒使AP的高温分解峰峰温从423.4 ℃降低至323.8 ℃,表观分解热从825.4 J·g-1提高到1423.8 J·g-1,反应活化能从172.50 kJ·mol-1降低至130.04 kJ·mol-1

    Abstract

    To enhance the catalytic effect of nano‑sized metals for the thermal decomposition of ammonium perchlorate (AP), Ni@C nanorods were prepared by combining solvothermal method and high‑temperature calcining process using nickel‑based metal‑organic frameworks (Ni‑MOFs) as precursor. The morphology, structure and composition of Ni@C nanorods were characterized by X‑ray diffractometer (XRD), field‑emission scanning electron microscopy (FE‑SEM), high‑resolution transmission electron microscopy (HRTEM), X‑ray photoelectron spectrometer (XPS), Raman spectrometer, full‑automatic physical adsorption analyzer and so on. The catalytic effect of Ni@C nanorods on the thermal decomposition of AP at different calcination temperatures was studied by differential scanning calorimeter (DSC). Results show that Ni@C nanorods are porous core‑shell structures with metal Ni as core and graphitized C layer as shell, and highly graphitized C layer effectively prevents the oxidation of nano‑Ni particles. Ni@C nanorods possess more superior catalytic performances on the thermal decomposition of AP than single Ni nanoparticles and C nanorods. In particular, Ni@C nanorods calcined at 1000 ℃ make the peak temperature of high‑temperature decomposition of AP reduce from 423.4 ℃ to 323.8 ℃, the apparent heat of decomposition increase from 825.4 J·g-1 to 1423.8 J·g-1, and the activation energy of reaction decrease from 172.50 kJ·mol-1 to 130.04 kJ·mol-1.

  • 1 引 言

    随着对武器弹药能量密度与安全性能要求的不断提高,固体火箭推进剂正朝着高能钝感、高燃速和无烟或者少烟的方向发[1]。高氯酸铵(AP)具有氧化性强、有效含氧量高、燃烧产气量大、热稳定性优异、与固体推进剂组分相容性好等优点,常作为氧化剂应用于多种固体推进配方[2,3,4]。研究表明,AP超细化和添加燃烧催化剂是目前两种提高推进剂燃速的有效方[5,6]。相对复杂的AP超细化过程,在推进剂配方中加入燃烧催化剂更为简单便捷。加入催化剂后,能够降低AP热分解峰温,提高AP热分解放热量,从而改善推进剂燃烧性能,如点火时间与燃烧速率[7],因而,众多学者对燃烧催化剂进行了系统研究。

    随着纳米材料制备技术的发展,燃烧催化剂的粒度已从微米级向纳米级发展,相应地,研究人员也开发了多种纳米燃烧催化剂,如纳米金属颗[8,9]、纳米过渡金属氧化[10,11,12]、纳米有机金属化合[13,14]。尽管这些纳米燃烧催化剂对AP的热分解表现出优异的催化性能,但由于纳米材料较高的表面能,往往导致纳米颗粒团聚成微米级,在一定程度上削弱了其催化性能,特别是磁性纳米金属铁、钴和镍,由于自身磁性作用,团聚现象更加严[15]。为了改善纳米燃烧催化剂的分散性,研究者通常将催化剂与碳材料复合。碳纳米管、氧化石墨烯和石墨烯因其优异的导电、导热性能和较大的比表面积而备受关[16,17,18,19,20,21,22,23]。当这类碳材料与纳米燃速催化剂复合后,不仅能够有效解决纳米颗粒的团聚问题,而且能够发挥出催化剂与载体之间的协同作用,因而碳基复合燃速催化剂往往表现出更加优异的催化性能。然而,采用上述碳材料负载的方法并不能完全解决纳米颗粒的团聚问题,同时,此类碳材料制备过程复杂,价格昂贵,难以实现大规模应用。因此,开发新型结构碳基纳米催化剂十分有必要。

    金属‑有机框架材料(Metal‑Organic Framework, MOF)是一类由有机配体和金属离子通过配位键组装成的晶态材料,因具有孔道结构规整、比表面积高和结构可调等特点,在催化、吸附和电磁波吸收等领域广泛应[24]。同时,MOF材料中的有机配体在一定条件下煅烧可转化成石墨化的碳,同时将金属离子转化为金属单质或者金属氧化物,因此通过煅烧MOF材料可一步制备碳基金属、碳基金属氧化物等复合物,大大节约了制备成本,进一步扩展了MOF的应用范[25]。本研究以镍基有机框架(Ni‑MOF)为前驱体,通过高温煅烧制备出多孔核壳结构Ni@C纳米棒,探究了不同煅烧温度下Ni@C纳米棒对AP催化性能的影响。

  • 2 实验部分

  • 2.1 试剂与仪器

    试剂:硝酸镍(Ni(NO3)2·6H2O)、对苯二甲酸(PTA)、N,N‑二甲基甲酰胺(DMF)、乙二醇(EG)、无水乙醇(EtOH)、乙酸乙酯,分析纯,国药集团化学试剂有限公司;高氯酸铵(AP),工业级,大连北方氯酸钾有限公司;纳米金属镍颗粒(Ni NPs),50 nm,上海阿拉丁生化科技股份有限公司。

    仪器:德国Bruker D8 Advance X射线衍射仪(XRD);日本Hitachi S‑4800 Ⅱ型场发射扫描电子显微(FE‑SEM);美国FEI Tecnai G2 F30高分辨透射电子显微镜(HRTEM);美国Thermo Fisher Scientific ESCALAB 250Xi X射线光电子能谱仪(XPS);法国HORIBA LabRAM HR Evolution拉曼光谱仪;美国Quantachrome Autosorb‑iQ全自动物理吸附分析仪(BET);美国TA SDT Q600同步热分析仪(TG‑DSC)。

  • 2.2 Ni@C纳米棒的制备

    Ni@C纳米棒的制备流程如图1所示。将1.67 g Ni(NO3)2·6H2O和0.64 g PTA分别加入到35 mL EG和35 mL DMF中,待完全溶解后将两者混合并在室温下搅拌0.5 h,接着将混合溶液倒入100 mL反应釜中并在140 ℃下反应14 h。反应产物经DMF和EtOH分别离心洗涤3次后置于鼓风烘箱中,在50 ℃下干燥12 h得到Ni‑MOF。将Ni‑MOF前驱体置于管式炉内,在氩气(Ar)保护下,以5 ℃·min-1的升温速率分别升温到800、900、1000 ℃,保温2 h后自然冷却到室温,即可得到Ni@C纳米棒,并分别命名为Ni@C‑800、Ni@C‑900、Ni@C‑1000。

    图1
                            Ni@C纳米棒制备流程示意图

    图1 Ni@C纳米棒制备流程示意图

    Fig.1 Schematic diagram of the preparation process of Ni@C nanorods

  • 2.3 Ni@C/AP混合样的制备及性能测试

    以Ni@C‑800/AP混合物为例,将20 mg Ni@C‑800加入到5 mL乙酸乙酯中,超声处理5 min后加入980 mg AP颗粒,再继续超声处理20 min,最后将样品在50 ℃下干燥1 h得到Ni@C‑800/AP混合物。以同样的方法制备Ni@C‑900/AP、Ni@C‑1000/AP以及对比样Ni NPs/AP和C/AP混合样。上述所有样品中,催化剂与AP的理论质量比均为2∶98。采用差示扫描量热法对样品进行热分析,分别以5、10、15、20 ℃·min-1的升温速率升温至520 ℃,氮气气氛,流速为50 mL·min-1,氧化铝坩埚,每次测试样品质量约为3 mg。

  • 3 结果与讨论

  • 3.1 Ni‑MOF及Ni@C纳米棒形貌表征

    图2为Ni‑MOF及Ni@C‑800纳米棒的形貌表征图。从图2a可以发现,Ni‑MOF为棒状结构,直径为200~300 nm,长度为1~3 μm,表面光滑。从图2b中可以得到与图2a相似的形貌特征,从图中明暗对比可以看出Ni‑MOF表面虽然光滑,但是其厚度并不均一,为多层片状结构组装而成的纳米棒。图2c和图2d是经800 ℃煅烧后Ni@C纳米棒的FE‑SEM图和TEM图。从图2c可以看出,经在惰性气体煅烧后,原先的棒状结构基本维持不变,直径仍处于200~300 nm,但由于高温作用,部分结构发生了坍塌;同时,纳米棒的表面形态发生了明显变化,一方面光滑的表面变成了疏松多孔的表面,另一方面片层结构组装成的纳米棒变成了由许多球形颗粒组装而成的纳米棒。Ni@C‑800纳米棒的TEM图(图2d)也验证了与SEM图(图2c)相同的形貌与结构特征;由于超声作用,组成纳米棒的球形颗粒发生了脱落,单个颗粒的粒度分布在12~36 nm。

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image013.png

    a. SEM image of Ni‑MOF

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image014.png

    b. TEM image of Ni‑MOF

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image015.png

    c. SEM image of Ni@C‑800 nanorodes

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image016.png

    d. TEM image of Ni@C nanorods

    图2 Ni‑MOF及Ni@C‑800纳米棒的形貌表征图

    Fig.2 Morphological characterizations of Ni‑MOF and Ni@C‑800 nanorods

  • 3.2 Ni@C纳米棒结构及组成表征

    图3a为3种Ni@C纳米棒的XRD图。由图3a可见,所有的衍射峰与金属Ni的标准谱图(PDF‑65‑0380)一致,在2θ为44.3°,51.7°,76.1°处的特征峰分别对应金属Ni的(1 1 1),(2 0 0),(2 2 0)晶面。不同温度煅烧下样品的XRD图均只出了Ni的特征衍射峰,说明惰性气体有效防止了金属Ni的氧化;同时,随着煅烧温度的增加,Ni的衍射峰宽变窄,强度增加,说明复合材料中金属Ni颗粒的尺寸不断变小,晶型结构得到了改善。然而,所有样品的XRD图谱均未出现C的特征衍射峰,一方面是由于C的非晶结构,导致其衍射峰强度较弱,另一方面是由于金属Ni的衍射强度过大从而掩盖了C的衍射峰。为了验证复合材料中C的存在,对Ni@C‑800纳米棒进行了元素能谱分析,结果如图3b所示,在EDS图谱只检测到C和Ni两种元素(Au来自于测试前溅射的导电层),说明复合材料是由Ni和C元素组成的,且保存过程中并没有被氧化。为了检测Ni@C‑800纳米棒中各元素的价态,对其进行了XPS测试,结果如图3c和3d所示。图3c为Ni 2p的高分辨谱图,Ni 2p3/2与Ni 2p1/2的结合能分别位于852.9 eV和870.3 eV,根据此结合能,可以判定Ni@C纳米棒中Ni以金属Ni的形式存在。图3d为C 1s的高分辨谱图,结合能位于284.7 eV和285.3 eV的结合峰分别对应C C和C─C,即sp2 C和sp3 C。XPS图谱没有Ni─O与C─O的结合峰,说明高温煅烧已将配体中的O元素完全除去,这与EDS的结果高度一致。

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image002.png

    a. XRD

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image003.png

    b. EDS of Ni@C‑800

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image004.png

    c. high‑resolution Ni 2p spectrum of Ni@C‑800

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image005.png

    d. high‑resolution C 1s spectrum of Ni@C‑800

    图3 Ni@C纳米棒的结构及元素表征图

    Fig.3 Structural and elementary characterizations of Ni@C nanorods

    为了进一步探究Ni@C纳米棒的结构特点,将少量的Ni@C‑800粉末经足量的稀盐酸刻蚀、洗涤及干燥后进行了HRTEM表征,其结果如图4a和图4b所示。从图4a可以看出,经过酸刻蚀后,大部分金属Ni颗粒被去除,剩下由完整空心C球组成的C纳米棒,由此说明Ni@C纳米棒是由球形或类球形核壳结构Ni@C颗粒组成,致密完整的C层有效防止了金属Ni的氧化。此外,从图4a中的金属Ni颗粒的HRTEM图中可以算出相邻两条晶格线之间的晶格间距为0.21 nm,说明此晶面为金属Ni的(1 1 1)晶面;同时其选取电子衍射图说明金属Ni为多晶结构,衍射圆环自内朝外分别对应Ni的(1 1 1)、(2 0 0)和(2 2 0)晶面,与XRD(图3a)的测试结果一致。图4b为C层的HRTEM图,从图4b中可以发现,核壳结构Ni@C颗粒中C层厚度为2~4 nm,且可以看出部分C层的晶格线较为清晰(黄框内),石墨化程度较高,但仍有部分C处于非晶状态。

    html/hncl/CJEM2018353/alternativeImage/15788f7d-fe63-4d0a-b069-3f4a957e4b35-F008.png

    a. TEM image of Ni@C nanorods after etching

    html/hncl/CJEM2018353/alternativeImage/15788f7d-fe63-4d0a-b069-3f4a957e4b35-F009.png

    b. HRTEM of carbon layer

    图4 酸刻蚀后Ni@C‑800纳米棒的高倍透射电镜图

    Fig.4 HRTEM images of Ni@C‑800 nanorods after etching by HCl

    为了探究Ni@C纳米棒中C的含量,对Ni@C‑800纳米棒在空气气氛中进行热分析,其结果如图5a所示。从图5a中可以看出,Ni@C纳米棒在空气中加热过成中伴随着金属Ni颗粒与C层的氧化过程,样品质量先增加后减小,在240 ℃左右,金属Ni开始被氧化成NiO,样品质量开始增加,到388 ℃时增重过程到达最大值;388~620 ℃样品质量逐渐减小,这是由于C被氧化成CO2等气体挥发所导致的;620 ℃以后,样品中Ni与C氧化完全,质量不再发生变化,最终氧化产物为NiO。根据热分析结果,计算出Ni@C纳米棒中Ni和C的质量分数分别为75.4%和24.6%。拉曼光谱是目前检测C材料石墨化程度的有效表征技术。Ni‑MOF、Ni@C‑800、Ni@C‑900和Ni@C‑1000的拉曼光谱如图5b所示,位于1350 cm-1的吸收峰(D峰)的产生是由于sp3碳原子的二阶双共振拉曼散射过程,而位于1570 cm-1的吸收峰(G峰)是由sp2碳原子的面内振动。通常,D峰代表C材料中内部缺陷或无序结构,G峰代表C材料的石墨结构(sp2杂化结构),D峰与G峰峰面积比值(ID/IG)表示C材料的石墨化程度,比值越小,石墨化程度越[20,21,22]。在Ni‑MOF中,ID/IG的比值为1.16,经过高温煅烧后,Ni@C‑800、Ni@C‑900和Ni@C‑1000中ID/IG的比值分别为0.93、0.89和0.79,说明随着煅烧温度的增加,石墨化程度逐渐增加。另外,对于Ni@C‑900和Ni@C‑1000,在2700 cm-1出现了新的吸收峰(2D峰),2D峰的出现间接说明复合材料中C的石墨化程度较高。在Ni@C纳米棒中C层石墨化程度的增加,增强了C层的导电能力,更加有利于催化反应中的电荷转移过,提高材料的催化效果。

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image008.png

    a. TG curve of Ni@C‑800 nanorods in air

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image009.png

    b. Raman spectra of Ni@C nanorods

    图5 Ni@C纳米棒的热重分析图及拉曼光谱图

    Fig.5 TGA curve and Raman spectra of Ni@C nanorods

    表1为Ni‑MOF和不同煅烧温度下Ni@C纳米棒的比表面积、孔体积及孔径的测试结果。从表1中可以看出,Ni‑MOF具有较大的比表面积,而Ni@C纳米棒在经过高温煅烧后比表面积减少,但与之前报道的AP催化剂相[19,20,21,22],仍具有较大的比表面积;同时,随着煅烧温度的增加,Ni@C纳米棒的孔体积逐渐增大,平均孔径逐渐减小,这可能是由于随着温度的升高,Ni‑MOF分解更加完全,形变更加严重所导致[24]。较大的比表面积与孔体积更加有利于吸附AP热分解过程中产生的气态产物,缩短催化剂与中间产物的作用时间,最终加速AP的热分解。

    表1 Ni‑MOF和不同煅烧温度下Ni@C纳米棒的氮气吸附‑脱吸附测试结果

    Table 1 Nitrogen adsorption‑desorption test results of Ni‑MOF and Ni@C nanorods at different calcination temperatures.

    sample

    SBET

    / m2·g-1

    Vpore

    / cm3·g-1

    average pore diameter / nm
    Ni‑MOF216.30.124.3
    Ni@C‑800143.50.343.2
    Ni@C‑900123.80.552.9
    Ni@C‑1000105.60.592.6

    NOTE: SBET is the specific surface area calculated by the Brunauer‑Emmett‑ Teller model, Vpore is the total pore volume.

  • 3.3 Ni@C纳米棒对AP热分解性能的影响

    Ni@C‑800纳米棒复合催化剂与单一催化剂Ni NPs和C对AP热分解性能的影响的DSC曲线如图6a所示。由图6a可知,纯AP的受热分解分为三个过[26]:①晶型转变过程,对应图中在245.0 ℃左右的吸热峰,AP由斜方晶系转变为立方晶系;②低温分解过程(LTD),对应图中280~330 ℃的放热峰,其低温分解峰峰温为310.5 ℃;③高温分解过程(HTD),对应图中400~450 ℃的放热峰,其高温分解峰峰温为423.4 ℃。在同样的测试条件下,Ni@C纳米棒复合催化剂与单一催化剂Ni NPs和C对AP的晶型转变过程和LTD过程无明显影响,但对其HTD过程有明显催化作用。与纯AP的热分解过程相比较,单一催化剂Ni NPs和C使AP的HTD峰温分别提前了65.1 ℃和71.1 ℃,而Ni@C纳米棒使AP的HTD峰温提前78.3 ℃,发挥了复合材料的协同作用,表现出比单一催化剂更好的催化效果。

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image010.png

    a. DSC curves of pure AP and AP mixed with Ni NP, C and Ni@C‑800.

    html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image011.png

    b. DSC curves of pure AP and AP mixed with Ni@C‑800, Ni@C‑900 and Ni@C‑1000

    图6 纯AP及不同AP混合物的DSC曲线

    Fig.6 DSC curves of pure AP and different AP mixtures

    不同煅烧温度下Ni@C纳米棒对AP热分解性能影响的DSC曲线如图6b所示。由图6b可知与纯AP相比,Ni@C‑800对AP的LTD过程无明显影响,而Ni@C‑900和Ni@C‑1000使得LTD过程的放热峰几乎消失,与HTD过程放热峰相融合,使AP的放热过程更加集中。对于HTD过程,Ni@C‑800、Ni@C‑900和Ni@C‑1000分别使放热峰温提前了78.3, 87.4 ℃和99.6 ℃,可以发现,随着煅烧温度的增加,Ni@C纳米棒的对AP的催化效果逐渐增加。结合前文的HRTEM和拉曼图谱分析可知,随煅烧温度的升高,Ni@C纳米棒中C层的石墨化程度不断增加,即增加了C层的导电性,这更有利于AP热分解过程的电荷转移,从而加快了AP的热分解过程。

    表2是纯AP和不同AP混合物在10 ℃·min-1的DSC测试结果,包括LTD过程峰温(TL)、HTD过程峰温(TH)、表观分解热(H)、表观分解热增加量(ΔH)和增长率(GR)。由表2可知,纯AP的表观分解热仅为825.4 J·g-1,单一催化剂Ni NPs和C使AP的表观分解热增加了170.0 J·g-1和187.1 J·g-1,增长率为20.60%和22.67%,而Ni@C‑800、Ni@C‑900和Ni@C‑1000分别使AP的表观分解热增加了311.0,448.9 J·g-1和598.4 J·g-1,增长率分别为37.69%、54.39%和72.50%。与单一催化剂相比,Ni@C复合催化剂使AP的表观分解热增加更明显,分解更加完全,表现出更好的催化效果。

    表2 纯AP及不同AP混合物的DSC测试结果

    Table 2 DSC test results of pure AP and different AP mixtures

    sampleTL / ℃TH / ℃H / J·g-1ΔH / J·g-1GR / %
    AP310.5434.4825.4--
    Ni/AP307.2358.3995.4170.020.60
    C/AP303.1352.31012.5187.122.67
    Ni@C‑800/AP309.1345.11136.4311.037.69
    Ni@C‑900/AP-336.01274.3448.954.39
    Ni@C‑1000/AP-323.81423.8598.472.50

    NOTE: TL is the peak temperature of LTD process, TH is the peak temperature of HTD process, H is the apparent heat of decomposition, ΔH and GR are the increment and growth rate of apparent heat of decomposition, respectively.

    尽管Ni@C纳米棒对AP的LTD过程催化效果较弱,只能使得AP的低温分解峰变弱,并不能使TL明显减小,但从THH的角度出发,相对于单一催化剂,Ni@C纳米棒对AP的热分解过程起到了良好的催化效果,使得TH最大提前了99.6 ℃,表观分解热最大增长率高达72.50%。从材料的结构与组成考虑,Ni@C纳米棒的同时具有金属Ni的空穴轨道又具有C层高导电性,同时用高导电性的C层实现了单个Ni纳米颗粒的均匀包覆,保证了Ni颗粒的分散性,更有利于发挥复合材料优异的催化性能,可能的催化机理将在3.5节中详细叙述。

  • 3.4 Ni@C纳米棒对AP热分解动力学的影响

    采用热动力学分析方法中常用的Kissinger法与Arrhenius方[19]计算AP的HTD过程热分解动力学参数,具体方程如下:

    ln(βTp2)=-EaRTp+ln(AREa)
    (1)
    k=Aexp(-EaRTp)
    (2)

    式中,β为升温速率,℃·min-1Tp为高温分解峰峰温,K;R为理想气体常数,8.314 J·mol-1·K-1Ea为反应活化能,kJ·mol-1A为指前因子,min-1k为反应速率常数,s-1。根据不同AP样品在5、10、15和20 ℃·min-1下的高温分解峰峰温,计算出的样品热分解过程中的动力学参数,结果如表3所示。由表3可知,加入催化剂可降低AP高温分解过程的活化能,相比之下,Ni@C纳米棒比单一的Ni NPs和C的效果更佳,特别是Ni@C‑1000,使AP高温分解活化能降低了24.6%。反应活化能越小,反应越容易进行,说明Ni@C纳米棒能够使AP更容易分解。对于复杂反应体系,反应指前因子A更能反应催化剂对反应的催化效果,A值越小,催化剂催化活性越大,催化效果越好。Ni@C纳米棒使AP热分解指前因子降低了一个数量级,表现出更为优异的催化性能。此外,加入Ni@C纳米催化剂后,AP的热分解反应速率常数k提高了至少87.4%,说明AP的分解速率提高。综合考虑放热峰温、表观分解热、反应活化能、指前因子和反应速率常数,Ni@C纳米棒对AP的热分解催化效果更加明显,且随着煅烧温度的增加而增加。

    表3 纯AP及不同AP混合物的高温分解动力学参数

    Table 3 Kinetic parameters of high temperature decomposition process for pure AP and different AP mixtures

    sampleTp / ℃Ea / kJ·mol-1A / min-1k / s-1
    5 ℃·min-110 ℃·min-115 ℃·min-120 ℃·min-1
    AP412.3423.4435.3440.5172.501.88×10122.06×10-3
    C/AP340.5352.3361.9369.9168.981.84×10122.73×10-3
    Ni/AP346.2358.3367.9375.8146.115.04×10113.99×10-3
    Ni@C‑800/AP331.3345.1351.1360.1141.434.15×10113.97×10-3
    Ni@C‑900/AP321.8336.0343.6350.5140.314.96×10113.96×10-3
    Ni@C‑1000/AP309.4323.8331.7339.1130.041.06×10113.86×10-3
  • 3.5 催化机理分析

    结合已报道的相关研[5,6,19,26],给出Ni@C纳米棒催化AP的热分解过程,如图7所示。由图7可见,在低温分解过程,AP受热分解为NH4+和ClO4-,电子由ClO4-转移至NH4+进而分解为NH3和HClO4;在高温分解阶段,HClO4受热分解为O2、ClO3、ClO和H2O,其中O2接收电子形成O2-,进而与NH3反应,最终生成NO、N2O和NO2等产物。根据之前的研究,电子从ClO4-转移至NH4+是低温分解过程的控制步骤,而电子转移至O2形成O2-为高温分解过程的控制步骤;此外,低温分解过程产生的吸附在AP表面的NH3和HClO4将会阻止AP的进一步分解,因而,加速热分解过程中的电子转移与脱吸附过程将有利于加快AP的热分[18,19,20,21,22]。Ni@C纳米棒对AP的低温分解过程催化作用较弱而对高温分解过程催化作用明显,这与文献报道一[15,19]。尽管Ni@C纳米棒具有高石墨化的C层,能够促进电子转移,然而低温分解过程同时受NH3和HClO4脱吸附过程限制,未反应的NH3和HClO4阻碍了AP的低温分解过程。高温分解过程,NH3和HClO4受热脱吸附,Ni@C纳米棒存在较大的比表面积和孔体积,存在较多的催化活性位点;此外,介孔结构可吸附富集从AP表面脱吸附的NH3和HClO4气体并限制其反应空间;同时,C层具有高导电性,加速电子转移至金属Ni表面,Ni原子的3d轨道存在空穴,可接收外界电子,进一步加速了AP的分解过程。因此,得益于Ni@C纳米棒的多孔结构、高石墨化的C层以及高活性的金属Ni,加速了AP分解过程中的电子转移过程,促进AP的热分解,表现出更加优异的催化性能。

    图7
                            Ni@C纳米棒催化AP热分解机理

    图7 Ni@C纳米棒催化AP热分解机理

    Fig.7 Mechanism diagram of the thermal decomposition of AP catalyzed by Ni@C nanorods

  • 4 结 论

    (1)以Ni‑MOF为前驱体,通过高温煅烧得到以金属Ni为核、C层为壳的核壳结构介孔Ni@C纳米棒复合催化剂。高温作用下,C层完整致密且高度石墨化,防止了金属Ni颗粒的氧化,有效保持了催化剂的活性。

    (2)与单一催化剂C与Ni NPs相比,Ni@C纳米棒在AP的热分解过程中发挥了复合材料的协同作用,表现出比单一催化剂更优异的催化性能,其中Ni@C‑1000纳米棒催化性能最佳,使AP的高温分解峰峰温降低了99.6 ℃,表观分解热提高了72.50%,反应活化能降低了24.6%,在AP基固体推进剂中存在良好的应用前景。

    (责编:王艳秀)

  • 参考文献

    • 1

      汪营磊, 赵凤起, 仪建华. 固体火箭推进剂用燃烧催化剂研究新进展[J]. 火炸药学报, 2012, 35(5): 1-8.

      WANG Ying‑lei, ZHAO Feng‑qi, YI Jian‑hua. New progress of study on combustion catalysts used for solid rocket propellants[J]. Chinese Journal of Explosives & Propellants, 2012, 35(5): 1-8.

    • 2

      Luo X, Wang M, Yang D, et al. Hydrothermal synthesis of morphology controllable Cu2O and their catalysis in thermal decomposition of ammonium perchlorate[J]. Journal of Industrial and Engineering Chemistry, 2015, 32: 313-318.

    • 3

      Tan L, Xu J, Zhang X, et al. Synthesis of g‑C3N4/CeO2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Applied Surface Science, 2015, 356: 447-453.

    • 4

      Zhang Y, Meng C. Facile fabrication of Fe3O4 and Co3O4 microspheres and their influence on the thermal decomposition of ammonium perchlorate[J]. Journal of Alloys and Compounds, 2016, 674: 259-265.

    • 5

      郝嘎子, 刘杰, 侯晓婷,等. 纳米β‑Cu的制备及其对超细AP的催化性能[J]. 含能材料, 2015, 23(10): 947-951.

      HAO Ga‑zi, LIU Jie, HOU Xiao‑ting, et al. Preparation of nano‑sized β‑Cu and its catalytic effects on the ammonium perchlorate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(10): 947-951.

    • 6

      Hao G, Lie J, Gao H, et al. Preparation of nano‑sized copper β‑resorcylate (β‑Cu) and its excellent catalytic activity for the thermal decomposition of ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 2016, 40(6): 848-853.

    • 7

      Chaturvedi S, Dave P. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate[J]. Journal of Saudi Chemical Society, 2013, 17(2): 135-149.

    • 8

      Liu L, Li F, Tan L, et al. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(1): 34-38.

    • 9

      Fertassi M, Alali K, Liu Q, et al. Catalytic effect of CuO nanoplates, a graphene (G)/CuO nanocomposite and an Al/G/CuO composite on the thermal decomposition of ammonium perchlorate[J]. RSC Advances, 2016, 6(78): 74155-74161.

    • 10

      Pandas H, Fazli M. Preparation and application of La2O3 and CuO nano particles as catalysts for ammonium perchlorate thermal decomposition[J]. Propellants, Explosives, Pyrotechnics, 2018, 43: 1-10.

    • 11

      Sharma J, Srivastava P, Singh G, et al. Catalytic thermal decomposition of ammonium perchlorate and combustion of composite solid propellants over green synthesized CuO nanoparticles[J]. Thermochimica Acta, 2015, 614: 110-115.

    • 12

      Wang J, Zhang W, Zheng Z, et al. Enhanced thermal decomposition properties of ammonium perchlorate through addition of 3DOM core‑shell Fe2O3/Co3O4 composite[J]. Journal of Alloys and Compounds, 2017, 724: 720-727.

    • 13

      Zhao W, Zhang T, Zhang L, et al. Large‑scale production of (2, 4‑DHB)nM micro‑nano spheres by spray drying and their application as catalysts for ammonium perchlorate[J]. Journal of Industrial and Engineering Chemistry, 2016, 38: 73-81.

    • 14

      Hao G, Liu J, Xiao L, et al. Effect of drying methods on catalytic performance of nano‑sized copper β‑resorcylate[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124: 1367-1374.

    • 15

      Lan Y, Jin B, Deng J, et al. Graphene/nickel aerogel: an effective catalyst for the thermal decomposition of ammonium perchlorate[J] RSC Advances, 2016, 6(85): 82112-82117.

    • 16

      Yan Q, Gozin M, Zhao F, et al. Highly energetic compositions based on functionalized carbon nanomaterials[J]. Nanoscale, 2016, 8: 4799-4851.

    • 17

      Isert S, Xin L, Xie J, et al. The effect of decorated graphene addition on the burning rate of ammonium perchlorate composite propellants[J]. Combustion and Flame, 2017, 183: 322-329.

    • 18

      Yuan Y, Jiang W, Wang Y, et al. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Applied Surface Science, 2014, 303: 354-359.

    • 19

      Chen T, Du P, Jang W, et al. A facile one‑pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate[J]. RSC Advances, 2016, 6: 83838-83847.

    • 20

      Chen J, He S, Huang B, et al. Highly space‑confined ammonium perchlorate in three‑dimensional hierarchically ordered porous carbon with improved thermal decomposition properties[J]. Applied Surface Science, 2018, 457: 508-515.

    • 21

      Fan G, Wang H, Xiang X, et al. Co‑Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property[J]. Journal of Solid State Chemistry, 2013, 197: 14-22.

    • 22

      Li N, Geng Z, Cao M, et al. Well‑dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate[J]. Carbon, 2013, 54: 124-132.

    • 23

      Zhao J, Liu Z, Qin Y, et al. Fabrication of Co3O4/graphene oxide composites using supercritical fluid and their catalytic application for the decomposition of ammonium perchlorate[J]. CrystEngComm, 2014, 16: 2001-2008.

    • 24

      Kaneti Y, Tang J, Salunkhe R, et al. Nanoarchitectured design of porous materials and nanocomposites from metal‑organic frameworks[J]. Advanced Materials, 2017, 29(12): 1604898-1604937.

    • 25

      Guan Y, Yu X, Wu H, et al. Complex nanostructures from materials based on metal‑organic frameworks for electrochemical energy storage and conversion[J]. Advanced Materials, 2017, 29(47): 1703614-1703633.

    • 26

      Boldyrev VV. Thermal decomposition of ammonium perchlorate[J]. Thermochimica Acta, 2006, 443(1): 1-36.

李丽

机 构:西安近代化学研究所,陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

邮 箱:253156115@qq.com

作者简介:李丽(1969-),女,高级工程师,主要从事含能材料制备研究。e‑mail:253156115@qq.com

柯香

机 构:南京理工大学化工学院 国家特种超细粉体技术研究中心,江苏 南京 210094

Affiliation:National Special Superfine Powder Engineering Research Center of China, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

安亭

机 构:西安近代化学研究所,陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

宋振伟

机 构:西安近代化学研究所,陕西 西安 710065

Affiliation:Xi′an Modern Chemistry Research Institute, Xi′an 710065, China

王宁

机 构:南京理工大学化工学院 国家特种超细粉体技术研究中心,江苏 南京 210094

Affiliation:National Special Superfine Powder Engineering Research Center of China, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

郝嘎子

机 构:南京理工大学化工学院 国家特种超细粉体技术研究中心,江苏 南京 210094

Affiliation:National Special Superfine Powder Engineering Research Center of China, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

姜炜

机 构:南京理工大学化工学院 国家特种超细粉体技术研究中心,江苏 南京 210094

Affiliation:National Special Superfine Powder Engineering Research Center of China, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

角 色:通讯作者

Role:Corresponding author

邮 箱:superfine_jw@126.com

作者简介:姜炜(1972-),男,研究员,主要从事纳米含能材料制备及应用研究。e‑mail:superfine_jw@126.com

html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image001.png
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image013.png
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image014.png
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image015.png
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image016.png
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image002.png
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image003.png
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image004.png
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image005.png
html/hncl/CJEM2018353/alternativeImage/15788f7d-fe63-4d0a-b069-3f4a957e4b35-F008.png
html/hncl/CJEM2018353/alternativeImage/15788f7d-fe63-4d0a-b069-3f4a957e4b35-F009.png
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image008.png
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image009.png
sample

SBET

/ m2·g-1

Vpore

/ cm3·g-1

average pore diameter / nm
Ni‑MOF216.30.124.3
Ni@C‑800143.50.343.2
Ni@C‑900123.80.552.9
Ni@C‑1000105.60.592.6
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image010.png
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image011.png
sampleTL / ℃TH / ℃H / J·g-1ΔH / J·g-1GR / %
AP310.5434.4825.4--
Ni/AP307.2358.3995.4170.020.60
C/AP303.1352.31012.5187.122.67
Ni@C‑800/AP309.1345.11136.4311.037.69
Ni@C‑900/AP-336.01274.3448.954.39
Ni@C‑1000/AP-323.81423.8598.472.50
sampleTp / ℃Ea / kJ·mol-1A / min-1k / s-1
5 ℃·min-110 ℃·min-115 ℃·min-120 ℃·min-1
AP412.3423.4435.3440.5172.501.88×10122.06×10-3
C/AP340.5352.3361.9369.9168.981.84×10122.73×10-3
Ni/AP346.2358.3367.9375.8146.115.04×10113.99×10-3
Ni@C‑800/AP331.3345.1351.1360.1141.434.15×10113.97×10-3
Ni@C‑900/AP321.8336.0343.6350.5140.314.96×10113.96×10-3
Ni@C‑1000/AP309.4323.8331.7339.1130.041.06×10113.86×10-3
html/hncl/CJEM2018353/media/15788f7d-fe63-4d0a-b069-3f4a957e4b35-image012.png

图1 Ni@C纳米棒制备流程示意图

Fig.1 Schematic diagram of the preparation process of Ni@C nanorods

图2 Ni‑MOF及Ni@C‑800纳米棒的形貌表征图 -- a. SEM image of Ni‑MOF

Fig.2 Morphological characterizations of Ni‑MOF and Ni@C‑800 nanorods -- a. SEM image of Ni‑MOF

图2 Ni‑MOF及Ni@C‑800纳米棒的形貌表征图 -- b. TEM image of Ni‑MOF

Fig.2 Morphological characterizations of Ni‑MOF and Ni@C‑800 nanorods -- b. TEM image of Ni‑MOF

图2 Ni‑MOF及Ni@C‑800纳米棒的形貌表征图 -- c. SEM image of Ni@C‑800 nanorodes

Fig.2 Morphological characterizations of Ni‑MOF and Ni@C‑800 nanorods -- c. SEM image of Ni@C‑800 nanorodes

图2 Ni‑MOF及Ni@C‑800纳米棒的形貌表征图 -- d. TEM image of Ni@C nanorods

Fig.2 Morphological characterizations of Ni‑MOF and Ni@C‑800 nanorods -- d. TEM image of Ni@C nanorods

图3 Ni@C纳米棒的结构及元素表征图 -- a. XRD

Fig.3 Structural and elementary characterizations of Ni@C nanorods -- a. XRD

图3 Ni@C纳米棒的结构及元素表征图 -- b. EDS of Ni@C‑800

Fig.3 Structural and elementary characterizations of Ni@C nanorods -- b. EDS of Ni@C‑800

图3 Ni@C纳米棒的结构及元素表征图 -- c. high‑resolution Ni 2p spectrum of Ni@C‑800

Fig.3 Structural and elementary characterizations of Ni@C nanorods -- c. high‑resolution Ni 2p spectrum of Ni@C‑800

图3 Ni@C纳米棒的结构及元素表征图 -- d. high‑resolution C 1s spectrum of Ni@C‑800

Fig.3 Structural and elementary characterizations of Ni@C nanorods -- d. high‑resolution C 1s spectrum of Ni@C‑800

图4 酸刻蚀后Ni@C‑800纳米棒的高倍透射电镜图 -- a. TEM image of Ni@C nanorods after etching

Fig.4 HRTEM images of Ni@C‑800 nanorods after etching by HCl -- a. TEM image of Ni@C nanorods after etching

图4 酸刻蚀后Ni@C‑800纳米棒的高倍透射电镜图 -- b. HRTEM of carbon layer

Fig.4 HRTEM images of Ni@C‑800 nanorods after etching by HCl -- b. HRTEM of carbon layer

图5 Ni@C纳米棒的热重分析图及拉曼光谱图 -- a. TG curve of Ni@C‑800 nanorods in air

Fig.5 TGA curve and Raman spectra of Ni@C nanorods -- a. TG curve of Ni@C‑800 nanorods in air

图5 Ni@C纳米棒的热重分析图及拉曼光谱图 -- b. Raman spectra of Ni@C nanorods

Fig.5 TGA curve and Raman spectra of Ni@C nanorods -- b. Raman spectra of Ni@C nanorods

表1 Ni‑MOF和不同煅烧温度下Ni@C纳米棒的氮气吸附‑脱吸附测试结果

Table 1 Nitrogen adsorption‑desorption test results of Ni‑MOF and Ni@C nanorods at different calcination temperatures.

图6 纯AP及不同AP混合物的DSC曲线 -- a. DSC curves of pure AP and AP mixed with Ni NP, C and Ni@C‑800.

Fig.6 DSC curves of pure AP and different AP mixtures -- a. DSC curves of pure AP and AP mixed with Ni NP, C and Ni@C‑800.

图6 纯AP及不同AP混合物的DSC曲线 -- b. DSC curves of pure AP and AP mixed with Ni@C‑800, Ni@C‑900 and Ni@C‑1000

Fig.6 DSC curves of pure AP and different AP mixtures -- b. DSC curves of pure AP and AP mixed with Ni@C‑800, Ni@C‑900 and Ni@C‑1000

表2 纯AP及不同AP混合物的DSC测试结果

Table 2 DSC test results of pure AP and different AP mixtures

表3 纯AP及不同AP混合物的高温分解动力学参数

Table 3 Kinetic parameters of high temperature decomposition process for pure AP and different AP mixtures

图7 Ni@C纳米棒催化AP热分解机理

Fig.7 Mechanism diagram of the thermal decomposition of AP catalyzed by Ni@C nanorods

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

SBET is the specific surface area calculated by the Brunauer‑Emmett‑ Teller model, Vpore is the total pore volume.

无注解

无注解

TL is the peak temperature of LTD process, TH is the peak temperature of HTD process, H is the apparent heat of decomposition, ΔH and GR are the increment and growth rate of apparent heat of decomposition, respectively.

无注解

无注解

  • 参考文献

    • 1

      汪营磊, 赵凤起, 仪建华. 固体火箭推进剂用燃烧催化剂研究新进展[J]. 火炸药学报, 2012, 35(5): 1-8.

      WANG Ying‑lei, ZHAO Feng‑qi, YI Jian‑hua. New progress of study on combustion catalysts used for solid rocket propellants[J]. Chinese Journal of Explosives & Propellants, 2012, 35(5): 1-8.

    • 2

      Luo X, Wang M, Yang D, et al. Hydrothermal synthesis of morphology controllable Cu2O and their catalysis in thermal decomposition of ammonium perchlorate[J]. Journal of Industrial and Engineering Chemistry, 2015, 32: 313-318.

    • 3

      Tan L, Xu J, Zhang X, et al. Synthesis of g‑C3N4/CeO2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Applied Surface Science, 2015, 356: 447-453.

    • 4

      Zhang Y, Meng C. Facile fabrication of Fe3O4 and Co3O4 microspheres and their influence on the thermal decomposition of ammonium perchlorate[J]. Journal of Alloys and Compounds, 2016, 674: 259-265.

    • 5

      郝嘎子, 刘杰, 侯晓婷,等. 纳米β‑Cu的制备及其对超细AP的催化性能[J]. 含能材料, 2015, 23(10): 947-951.

      HAO Ga‑zi, LIU Jie, HOU Xiao‑ting, et al. Preparation of nano‑sized β‑Cu and its catalytic effects on the ammonium perchlorate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(10): 947-951.

    • 6

      Hao G, Lie J, Gao H, et al. Preparation of nano‑sized copper β‑resorcylate (β‑Cu) and its excellent catalytic activity for the thermal decomposition of ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 2016, 40(6): 848-853.

    • 7

      Chaturvedi S, Dave P. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate[J]. Journal of Saudi Chemical Society, 2013, 17(2): 135-149.

    • 8

      Liu L, Li F, Tan L, et al. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(1): 34-38.

    • 9

      Fertassi M, Alali K, Liu Q, et al. Catalytic effect of CuO nanoplates, a graphene (G)/CuO nanocomposite and an Al/G/CuO composite on the thermal decomposition of ammonium perchlorate[J]. RSC Advances, 2016, 6(78): 74155-74161.

    • 10

      Pandas H, Fazli M. Preparation and application of La2O3 and CuO nano particles as catalysts for ammonium perchlorate thermal decomposition[J]. Propellants, Explosives, Pyrotechnics, 2018, 43: 1-10.

    • 11

      Sharma J, Srivastava P, Singh G, et al. Catalytic thermal decomposition of ammonium perchlorate and combustion of composite solid propellants over green synthesized CuO nanoparticles[J]. Thermochimica Acta, 2015, 614: 110-115.

    • 12

      Wang J, Zhang W, Zheng Z, et al. Enhanced thermal decomposition properties of ammonium perchlorate through addition of 3DOM core‑shell Fe2O3/Co3O4 composite[J]. Journal of Alloys and Compounds, 2017, 724: 720-727.

    • 13

      Zhao W, Zhang T, Zhang L, et al. Large‑scale production of (2, 4‑DHB)nM micro‑nano spheres by spray drying and their application as catalysts for ammonium perchlorate[J]. Journal of Industrial and Engineering Chemistry, 2016, 38: 73-81.

    • 14

      Hao G, Liu J, Xiao L, et al. Effect of drying methods on catalytic performance of nano‑sized copper β‑resorcylate[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124: 1367-1374.

    • 15

      Lan Y, Jin B, Deng J, et al. Graphene/nickel aerogel: an effective catalyst for the thermal decomposition of ammonium perchlorate[J] RSC Advances, 2016, 6(85): 82112-82117.

    • 16

      Yan Q, Gozin M, Zhao F, et al. Highly energetic compositions based on functionalized carbon nanomaterials[J]. Nanoscale, 2016, 8: 4799-4851.

    • 17

      Isert S, Xin L, Xie J, et al. The effect of decorated graphene addition on the burning rate of ammonium perchlorate composite propellants[J]. Combustion and Flame, 2017, 183: 322-329.

    • 18

      Yuan Y, Jiang W, Wang Y, et al. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Applied Surface Science, 2014, 303: 354-359.

    • 19

      Chen T, Du P, Jang W, et al. A facile one‑pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate[J]. RSC Advances, 2016, 6: 83838-83847.

    • 20

      Chen J, He S, Huang B, et al. Highly space‑confined ammonium perchlorate in three‑dimensional hierarchically ordered porous carbon with improved thermal decomposition properties[J]. Applied Surface Science, 2018, 457: 508-515.

    • 21

      Fan G, Wang H, Xiang X, et al. Co‑Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property[J]. Journal of Solid State Chemistry, 2013, 197: 14-22.

    • 22

      Li N, Geng Z, Cao M, et al. Well‑dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate[J]. Carbon, 2013, 54: 124-132.

    • 23

      Zhao J, Liu Z, Qin Y, et al. Fabrication of Co3O4/graphene oxide composites using supercritical fluid and their catalytic application for the decomposition of ammonium perchlorate[J]. CrystEngComm, 2014, 16: 2001-2008.

    • 24

      Kaneti Y, Tang J, Salunkhe R, et al. Nanoarchitectured design of porous materials and nanocomposites from metal‑organic frameworks[J]. Advanced Materials, 2017, 29(12): 1604898-1604937.

    • 25

      Guan Y, Yu X, Wu H, et al. Complex nanostructures from materials based on metal‑organic frameworks for electrochemical energy storage and conversion[J]. Advanced Materials, 2017, 29(47): 1703614-1703633.

    • 26

      Boldyrev VV. Thermal decomposition of ammonium perchlorate[J]. Thermochimica Acta, 2006, 443(1): 1-36.