1 引言
爆炸箔起爆器(EFIs)是一种具有高安全性和可靠性的火工品,由爆炸箔、飞片、加速膛和炸药组成。在爆炸箔起爆器作用过程中,爆炸箔起着能量转换的关键作用,是影响冲击片雷管起爆性能的关键元件,其中国内外的爆炸箔材料大多以纯铜为
主[1,2,3] 。随着工程应用小型化和低能化的发展,亟需找到一种可以降低冲击片雷管起爆能量的爆炸箔新材料。国内外学者尝试将含能复合膜应用于爆炸箔材料,以期提高爆炸箔等离子体的输出能力,主流纳米含能复合薄膜为Al/Ni[4,5,6,7,8,9] 。Morris C J等[4] 对比了相同厚度的Al/Ni复合薄膜和Cu爆炸箔驱动飞片的能力,指出多层膜驱动飞片的动能高于Cu箔。蒋洪川等[7] 研究在Cu桥箔上集成Al/Ni复合薄膜,发现Cu/Al/Ni复合爆炸箔电爆炸的阈值电压比纯Cu箔低,电爆炸温度比纯Cu箔高。王窈等[8,9] 进一步研究了Al/Ni复合爆炸箔的电和能量输出特性,结果表明Al/Ni复合爆炸箔比纯Cu箔和纯Ni箔的爆发电压高,爆发时间短,吸收能量高,驱动飞片速度也更高。以上试验结果均表明Al/Ni含能复合薄膜有利于优化现有EFI系统。但是,上述研究没有Al/Ni复合材料与纯Al的电爆炸性能对比分析,实验数据无法分析获得Al/Ni电爆炸性能优于Cu箔的准确原因,即复合爆炸箔的作用机理尚不明确。已知Cu和Ni具有相同的面心立方体晶体结构,原子大小也基本相同(Cu 124 μm,Ni 120 μm
)[10,11,12] ,Ni/Cu复合材料不存在合金化反应,因此为了探索复合爆炸箔的作用机理,本研究采用Ni/Cu复合材料作为爆炸箔,与纯Cu和纯Ni箔进行对比,研究了电爆炸等离子体发射光谱特性及飞片推动性能。采用等离子体发射光谱[13,14] 及飞片速度PDV测试手段,对比了不同结构的Ni/Cu复合多层膜和纯Cu、Ni金属膜的等离子体发射光谱谱线强度以及推动飞片速度曲线特征。2 实验部分
2.1 样品制备及表征
采用电化学沉积工艺进行金属薄膜的制备。首先在玻璃基底(PYREX7740)上磁控溅射一层厚约100 nm的Ge层作为导电层,然后分别电化学沉积调制周期为300 nm/400 nm和200 nm/300 nm的Ni/Cu复合多层膜。Ni/Cu复合多层膜采用交替沉积Ni层和Cu层的方式:调制周期为300 nm/400 nm时交替沉积5次,最后沉积一层300 nm的Ni膜,记为(N
i300 Cu400 )5 Ni300 ;调制周期为200 nm/300 nm时交替沉积8次,记为(Ni200 Cu300 )8 。纯Cu膜和Ni膜为一次性沉积至约4 μm。对制备好的Ni/Cu复合薄膜进行了SEM及XRD测试表征。2.2 等离子体发射光谱特性测试方法
通过测试等离子体的发射光谱,利用Boltzmann图谱
法[15] 计算电爆炸等离子体的电子温度。已知等离子体在满足局部热力学平衡(Local Thermodynamic Equilibrium,LTE)[16] 条件下,等离子体中各粒子在其束缚能级上按Boltzmann分布,同一电离级两条光谱线的强度关系可表示为:式中,标号1、2代表不同的谱线,Amn为相应谱线的跃迁几率,
s-1 ,gm为上能级的统计权重,Em是相应上能级能量,cm-1 ,λ为波长,nm,K=1.3806504×10-23 ,为玻尔兹曼常数,J∙K-1 。在求电子温度时,以其中某条谱线Imn(1)做基准,其他谱线的强度Imn(2)与Imn(1)相比,再取对数,则式(1)可写为:式中,c0为常数。由式(2)可知,只需作谱线相对强度的对数值与Em的Boltzmann图,求出其斜率(-1/KT),便可确定电子温度T,K。
计算Ni/Cu、Cu等离子体电子温度选用的铜原子谱线及相关光谱物理参
数[17] 见表1。wavelength / nm Em / c m-1 Amn / 1 07 s-1 gm 458.697 62948.260 3.2 6 510.554 30783.697 0.2 4 515.324 49935.195 6 4 570.024 30783.697 0.024 4 NOTE: Em is the energy of upper level. Amn is the transition probability. gm is the partition coefficient associated with the excited level.
计算Ni等离子体电子温度选用的镍原子谱线及相关光谱物理参
数[17] 见表2。wavelength / nm Em / c m-1 Amn / 1 07 s-1 gm 438.287 54251.308 0.15 7 452.314 22102.325 3.2e‑8 9 463.303 49158.480 0.0078 11 483.118 49777.569 1.6 7 等离子体发射光谱测试采集原理示意图如图1所示。测试系统主要包含两部分:爆炸箔放电测试电路和光谱信号采集分析系统,其中放电回路主要包含电子开关VCS、0.47 μF薄膜电容和爆炸箔,爆炸箔表面焊接铜箔作为电极,采用高压电源(PS350/5000 V-25 W)为电容充电,罗氏线圈(PEM CWTMini 30B)测量放电回路电流并用示波器监测,信号发生器(Agilent 33500B)用于触发VCS。光谱信号采集分析系统主要包含光纤探测器、光谱仪(Shamrock 303i A,采用Andor DH720‑18F‑03型ICCD)和计算机。在与爆炸箔表面的法线方向观测光谱信号,光谱信号经光纤采集传输至光谱仪再输入到计算机进行分析。通过同步机(DG545)实现放电回路和光谱仪的同步延时。
2.3 飞片速度PDV测试方法
采用光子多普勒测速仪(PDV)进行飞片速度测量,测试示意图如图2所示。
测速仪采用波长为1550 nm的激光作为光源,采用微型光纤探头作为末端传感器。激光器输出的光被1×2光纤分束器分成2路,一束光经过环形器1端口从环形器2端口出射,再由光纤探头射向飞片,从飞片反射回来的光由同一探头收集进入环形器2端口,然后从环形器3端口出射,到达2×1光纤耦合器中。分束器分出来的另一束光经过一个衰减器后进入2×1光纤耦合器,与信号光发生光学混频干涉。当飞片运动时,由于多普勒效应,信号光频率产生与飞片运动速度成正比的偏移,导致干涉光频率发生正比于飞片速度的变化。最后由光电探测器获取混频信号,并由高速数字示波器(Agilent DSA‑X93204A)记录下干涉光的频率变化,即可计算获得飞片运动的速度历程。
根据光的干涉理论,干涉波形信号可表示为:
式中,I0(t)为参考光光强,cd;Id(t)为靶面回光光强,cd;f0(t)为参考光频率,Hz;fd(t)为信号光频率,Hz;φ0为初始相位角。式(3)等号右边的前两项为直流分量,第3项为带有与飞片运动速度相关的频率变化的交流分量。由第3项表达式可知,飞片不动,fd(t)=f0(t);飞片运动,则在某一特定时刻可得到二者的频率差为fd(t)-f0(t),对以该时刻为中心时刻的短时波形信号进行短时傅里叶变换(STFT)之后,频谱能量主要集中在fd(t)-f0(t)频率处,即用短时傅里叶变换从时频能量谱上通过分辨出能量集中频段,可辨别出该中心时刻以fd(t)-f0(t)为特征频率的信息。由多普勒频移原理
可得
式中,v(t)为飞片运动速度,m·
s-1 ,λ0为中心波长,nm。即获得特征频率之后,经线性转换便获得了特征速度。3 结果与讨论
3.1 Ni/Cu复合爆炸箔制备
Ni/Cu复合薄膜SEM测试结果如图3所示。由图3可以看出,Ni和Cu层间的分界比较清晰,Cu层的厚度控制较好,基本保持一致,但是Ni层的厚度均一性较差。由图3a还可以看出,在Cu层中有较多泡状结构,导致Cu层与Ni层的交界不均匀,从而造成Ni金属层均一性变差,同时也会降低金属膜的密度。
Ni/Cu复合薄膜XRD测试结果如图4所示。Ni/Cu复合薄膜在43.35°、44.51°、50.51°、51.83°和74.23°处有五个明显的衍射峰,这五个明显的特征衍射峰分别与Cu(111)、Ni(111)、Cu(200)、Ni(200)和Cu(220)晶面相对应,而不同调制周期的Ni/Cu复合薄膜X射线衍射峰与面心立方体Cu和面心立方体Ni的衍射峰基本一致,这说明制备的Ni/Cu复合薄膜具有较好的结晶度,其晶型为面心立方体。
制备好的薄膜采用皮秒激光加工进行图形化,最终成为爆炸箔,(N
i200 Cu300 )8 样品照片如图5所示。加工的爆炸箔桥区为方形,尺寸为0.4 mm×0.4 mm。一片直径4寸的玻璃片上可加工出54片爆炸箔样品,相比于化学刻蚀,样品制备效率较高。采用微电阻计测量了Ni/Cu复合爆炸箔及纯Cu、纯Ni爆炸箔电阻,结果统计如表3所示。表3 Ni/Cu复合爆炸箔及纯Cu、纯Ni爆炸箔电阻
Table 3 The electrical resistance of the Ni/Cu composites, pure Cu and pure Ni exploding foil
exploding foil number average
resistance / mΩ
standard
deviation / mΩ
(N i200 Cu300 )8 15 34.0 2.1 (N i300 Cu400 )5 Ni300 14 34.0 1.7 Cu 13 20.2 1.5 Ni 12 75.9 8.9 由表3可以看出,纯Cu爆炸箔电阻最小,纯Ni爆炸箔电阻最大,(N
i200 Cu300 )8 和(Ni300 Cu400 )5 Ni300 电阻介于二者之间。3.2 等离子体发射光谱特性测试
按照图1进行了爆炸箔等离子体发射光谱测试,放电电流设为1.5 kA、2.0 kA和2.5 kA。将采集光谱时刻相对于放电电流零点时刻的时间作为延迟时间。为研究复合爆炸箔的时间分辨发射光谱,在不同放电电流下,分别选择延迟时间1000 ns、1200 ns和1400 ns,设置快门速度为200 ns。Ni/Cu复合爆炸箔、纯Cu爆炸箔和纯Ni爆炸箔的发射光谱测试结果如图6所示。
图6 (N
i200 Cu300 )8 、(Ni300 Cu400 )5 Ni300 、Cu、Ni等离子体发射光谱曲线Fig.6 The plasma emission spectroscopic curves of the (N
i200 Cu300 )8 ,(Ni300 Cu400 )5 Ni300 , Cu and Ni图6可以看出:(N
i200 Cu300 )8 和(Ni300 Cu400 )5 Ni300 发射光谱兼具纯Cu和纯Ni的谱线特征;随着放电电流升高,四种爆炸箔等离子发射光谱谱线强度均升高;在相同放电电流和延迟时间下,四种爆炸箔中Ni的发射光谱谱线强度最低;时间延迟相同时,放电电流为1.5 kA,发射光谱谱线强度排序为Cu≈(Ni300 Cu400 )5 Ni300 >(Ni200 Cu300 )8 >Ni,放电电流为2.0 kA,发射光谱谱线强度排序为Cu≈(Ni200 Cu300 )8 >(Ni300 Cu400 )5 Ni300 >Ni,放电电流为2.5 kA,发射光谱谱线强度排序为(Ni200 Cu300 )8 >(Ni300 Cu400 )5 Ni300 >Cu>Ni。为了更清楚地观察不同爆炸箔样品中发射光谱谱线强度的变化规律,首先对比了(N
i200 Cu300 )8 、(Ni300 Cu400 )5 Ni300 和纯Cu发射光谱中较强的几条谱线(CuⅡ 461.966 nm、CuⅠ 510.554 nm和CuⅠ 515.324 nm),结果如表4所示。表4 CuII 461.966 nm、CuI 510.554 nm和CuI 515.324 nm谱线随时间变化
Table 4 The spectral line strength of CuII 461.966 nm, CuI 510.554 nm and CuI 515.324 nm changes with delay time
discharge current /kA sample delay time /ns CuII 461.966 nm CuI 510.554 nm CuI 515.324 nm 1000 2515 1892 4233 (N i200 Cu300 )8 1200 1434 2290 2822 1400 613 1029 1308 1000 2193 2374 2798 1.5 (N i300 Cu400 )5 Ni300 1200 3745 4908 5712 1400 1412 1746 2043 1000 2970 3136 3731 Cu 1200 3877 4583 5509 1400 1012 2069 2603 1000 8156 8308 8824 (N i200 Cu300 )8 1200 10171 11171 11958 1400 7351 9152 11127 1000 5756 6030 6616 2.0 (N i300 Cu400 )5 Ni300 1200 6650 7016 7673 1400 3106 4501 5133 1000 10603 10613 11698 Cu 1200 9835 11688 13380 1400 4988 8651 9876 1000 19306 16929 17509 (N i200 Cu300 )8 1200 20474 19720 20491 1400 14486 15127 14842 1000 17834 15105 15214 2.5 (N i300 Cu400 )5 Ni300 1200 14641 13946 13659 1400 14486 15030 14842 1000 17003 13995 15402 Cu 1200 12108 12229 13003 1400 10416 11577 12659 由表4可以看出:对于(N
i200 Cu300 )8 爆炸箔,当放电电流从1.5 kA升高到2.0 kA时CuⅠ和CuⅡ谱线强度提升最大,约300%以上;对于(Ni300 Cu400 )5 Ni300 爆炸箔,当放电电流从2.0 kA升高到2.5 kA时CuⅠ和CuⅡ谱线强度提升最大,约100%以上;对于纯Cu爆炸箔,当放电电流从1.5 kA升高到2.0 kA时CuⅠ和CuⅡ谱线强度提升最大,约150%以上。以上结果说明,(Ni200 Cu300 )8 和纯Cu箔在2.0 kA时爆发比较充分,而(Ni300 Cu400 )5 Ni300 则是在2.5 kA时爆发比较充分。进一步对比分析了(N
i200 Cu300 )8 、(Ni300 Cu400 )5 Ni300 和Ni中NiI谱线随时间的变化规律。由于(Ni200 Cu300 )8 、(Ni300 Cu400 )5 Ni300 中CuⅠ光谱较强,湮灭了大部分NiⅠ谱线,仅有NiⅠ 463.303 nm和483.118 nm谱线可以分辨出来,两条谱线随时间的变化情况如表5所示。表5 NiⅠ 463.303 nm和483.118 nm谱线随时间变化
Table 5 The spectral line strength of NiⅠ 463.303 nm and 483.118 nm changes with delay time
discharge current
/ kA
sample Delay time
/ ns
NiⅠ
463.303 nm
NiⅠ
483.118 nm
1000 892 1176 (N i200 Cu300 )8 1200 668 917 1400 406 491 1000 975 1412 1.5 (N i300 Cu400 )5 Ni300 1200 1392 2437 1400 640 995 1000 375 372 Ni 1200 931 660 1400 448 384 1000 3586 4694 (N i200 Cu300 )8 1200 4051 5817 1400 2710 3802 1000 2911 4133 2.0 (N i300 Cu400 )5 Ni300 1200 2746 4178 1400 1152 1986 1000 2386 1678 Ni 1200 2190 1427 1400 1654 1095 1000 9730 12224 (N i200 Cu300 )8 1200 8780 12205 1400 5968 8937 1000 10162 13369 2.5 (N i300 Cu400 )5 Ni300 1200 7147 9931 1400 5968 8937 1000 10181 6759 Ni 1200 9095 6481 1400 4735 3193 由表5可以看出:对于(N
i200 Cu300 )8 爆炸箔,当放电电流从1.5 kA升高到2.0 kA时NiⅠ谱线强度提升最大,约400%以上;对于(Ni300 Cu400 )5 Ni300 爆炸箔,当放电电流从2.0 kA升高到2.5 kA时NiⅠ谱线强度提升最大,约200%以上;对于纯Ni爆炸箔,当放电电流从2.0 kA升高到2.5 kA时NiⅠ谱线强度提升最大,约300%以上。以上结果说明,(Ni200 Cu300 )8 在2.0 kA时爆发比较充分,而(Ni300 Cu400 )5 Ni300 和纯Ni箔则是在2.5 kA时爆发比较充分,与表4分析结论一致。根据发射光谱谱线,可以对等离子体的电子温度进行分析。以延迟时间为1200 ns为例,根据式(2),以CuⅠ 515.324 nm谱线作基准,绘出表1中谱线相对强度值与对应谱线跃迁上能级能量的Boltzmann图,由最小二乘法拟合得到斜率。图7为延迟1200 ns时不同放电条件下(N
i200 Cu300 )8 发射光谱的Boltzmann图。图7 延迟1200 ns时(N
i200 Cu300 )8 发射光谱Boltzmann图Fig.7 Boltzmann diagram of the (N
i200 Cu300 )8 emission spectrum when the delay time is 1200 ns图7a、图7b和图7c中拟合直线的斜率(-1/KT)分别为(-7.4105×1
018 )、(-7.20316×1018 )和(-7.05056×1018 ),则电子温度分别为9773.9 K、10055.3 K和10272.9 K,拟合度均达90%以上。采用相同方法可以获得不同延迟时间不同放电电流下(N
i200 Cu300 )8 、(Ni300 Cu400 )5 Ni300 和Cu发射光谱Boltzmann图拟合直线的斜率。同样,以NiⅠ 463.303 nm谱线作基准,绘出表2中谱线相对强度值与对应谱线跃迁上能级能量的Boltzmann图,由最小二乘法拟合得到斜率。根据拟合直线的斜率(-1/KT)可计算获得等离子体的电子温度,结果如表6所示。表6 等离子体电子温度计算结果
Table 6 Results of calculated electron temperature
sample discharge
current
/ kA
calculated electron temperature / K 1000 ns 1200 ns 1400 ns (N i200 Cu300 )8 1.5 8608 9773.9 9276.9 2 10203.5 10055.3 9827.3 2.5 10624.1 10272.9 10242.4 (N i300 Cu400 )5 Ni300 1.5 9804.6 9888.5 9797.5 2 10466.9 10391.9 10126.7 2.5 11327.5 10990.6 10966.1 Cu 1.5 10128.7 10053.9 9442.1 2 10471.1 10360.4 9994.8 2.5 10532.7 10308.9 10166.5 Ni 1.5 2943.7 2870.3 2856.7 2 2847.5 2859.2 2865.1 2.5 2859.3 2846.2 2855.2 由表6可以看出:Ni电爆炸等离子体电子温度较低(<3000 K),Ni/Cu复合材料电爆炸等离子体电子温度与Cu在同一量级(1
04 K),且在1.5 kA和2.0 kA时,Ni/Cu复合材料电爆炸等离子体温度整体比Cu低,当电流升高到2.5 kA时,Ni/Cu复合材料电爆炸等离子体温度变得比Cu高。综合上述实验结果,分析认为:当放电电流较低时(1.5 kA和2.0 kA),Ni/Cu复合爆炸箔中的Ni电爆炸不充分,而Ni会吸收部分能量,从而导致Ni/Cu复合爆炸箔等离子体的能量比纯Cu低,原子发射光谱强度和等离子体电子温度都比Cu低;当放电电流较高时(2.5 kA),Ni/Cu复合爆炸箔中的Ni电爆炸比较充分,Ni吸收的能量贡献到Ni/Cu复合爆炸箔等离子体中,使Ni/Cu复合爆炸箔等离子体的能量比纯Cu高,即原子发射光谱强度和等离子体电子温度都比Cu高。
3.3 飞片速度PDV测试
采用不锈钢加速膛(长0.4 mm,孔径为Φ0.6 mm)、聚酰亚胺飞片(厚50 μm),与(N
i200 Cu300 )8 、(Ni300 Cu400 )5 Ni300 、纯Cu和纯Ni爆炸箔进行匹配,按照图2所示在放电电流为1.5、1.75、2.0、2.25 kA和2.5 kA条件下进行PDV飞片速度测试,飞片速度随时间变化如图8所示。由图8可以看出:随着放电电流升高,(N
i200 Cu300 )8 、(Ni300 Cu400 )5 Ni300 、纯Cu和纯Ni推动飞片的速度均升高,即推动飞片能力提高;在放电电流较低时(1.5 kA和1.75 kA),Cu爆炸箔推动飞片速度最高;放电电流为2.0 kA时,(Ni200 Cu300 )8 爆炸箔推动飞片速度超过了Cu;放电电流为2.25 kA时,(Ni200 Cu300 )8 、(Ni300 Cu400 )5 Ni300 和纯Cu推动飞片速度相当;放电电流为2.5 kA时,(Ni200 Cu300 )8 和(Ni300 Cu400 )5 Ni300 爆炸箔推动飞片加速时间更长,使得飞片速度均超过了纯Cu。4 结 论
基于等离子体发射光谱和飞片速度PDV测试手段,获得了(N
i200 Cu300 )8 、(Ni300 Cu400 )5 Ni300 、纯Cu和纯Ni等离子体发射光谱特性及推动飞片性能,主要得出以下结论:(1)(N
i200 Cu300 )8 和(Ni300 Cu400 )5 Ni300 发射光谱兼具纯Cu和纯Ni的谱线特征;放电电流为2.5 kA时,(Ni200 Cu300 )8 和(Ni300 Cu400 )5 Ni300 发射光谱谱线强度均高于Cu。(2)在本研究实验条件下,纯Ni电爆炸等离子体电子温度较低(<3000 K),Ni/Cu复合材料电爆炸等离子体电子温度与Cu在同一量级(1
04 K),电流为2.5 kA时,Ni/Cu复合材料电爆炸等离子体温度比Cu高。(3)放电电流为2.5 kA时,Ni/Cu复合爆炸箔推动飞片加速时间更长,使得飞片速度均超过了纯Cu。
(4)当放电电流较高时(2.5 kA),Ni/Cu复合爆炸箔中的Ni电爆炸比较充分,对Ni/Cu复合爆炸箔电爆炸具有促进作用。
(责编:姜 梅)
参考文献
- 1
陈楷, 徐聪, 朱朋, 等. 加速膛与复合飞片对集成爆炸箔起爆器性能的影响[J]. 含能材料, 2018, 26(3): 273-278.
CHEN Kai, XU Cong, ZHU Peng, et al. Effect of barrel and multilayer flyer on the performances of micro chip exploding foil initiator[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(3): 273-278.
- 2
房旷, 陈清畴, 付秋菠, 等. 集成爆炸箔起爆器的制备和飞片驱动能力表征[J]. 含能材料, 2016, 24(9): 892-897.
FANG Kuang, CHEN Qing‑chou, FU Qiu‑bo, et al. Fabrication and flyer driving capability characterisation of an integrated exploding foil initiator[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(9): 892-897.
- 3
袁士伟, 曾庆轩, 冯长根,等. 冲击片雷管飞片参数设计与估算[J]. 火工品, 2003,(4): 18-20.
YUAN Shi‑wei, ZENG Qing‑xuan, FENG Chang‑gen, et al.The designing and estimating of flying plate parameters of slapper detonator[J].Initiators and Pyrotechnics,2003,(4):18-20.
- 4
Morris C J, Marya B, Zakar E, et al. Rapid initiation of reactions in Al/Ni multilayers with nanoscale layering[J]. Journal of Physics & Chemistry of Solids, 2010, 71(2): 84-89.
- 5
黄娜, 唐洪佩, 黄寅生, 等. 冲击片雷管爆炸箔的制备与电爆性能[J]. 含能材料, 2014, 22(4): 514-520.
HUANG Na, TANG Hong‑pei, HUANG Yin‑sheng, et al. Preparation and electrical performance of exploding foil in slapper detonator[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(4): 514-520.
- 6
王涛, 曾庆轩, 李明愉, 等. Al/Ni反应多层膜的电爆炸及驱动性能研究[J]. 火工品, 2016,(5): 1-5.
WANG Tao, ZENG Qing‑xuan, LI Ming‑yu, et al. Explosion and flyer‑driving performance of Al/Ni reactive multilayers[J]. Initiators and Pyrotechnics,2016,(5): 1-5.
- 7
ZHANG Yu‑xin, JIANG Hong‑chuan, ZHAO Xiao‑hui, et al.Characteristics of the energetic microinitiator through integrating Al/Ninanomultilayers with Cu film bridge[J]. Nanoscale Research Letters, 38(12): 1-6.
- 8
王窈, 孙秀娟, 郭菲, 等. Al/Ni爆炸箔电爆特性及驱动飞片能力研究[J]. 火工品, 2016,(3): 5-8.
WANG Yao, SUN Xiu‑juan, GUO Fei, et al. Study on Electrical characteristic and flyer driven ability of Al/Ni exploding foil[J]. Initiators and Pyrotechnics, 2016,(3): 5-8.
- 9
WANG Yao, SUNXiu‑juan, JIANG Hong‑chuan, et al. Investigation of electrically heated exploding foils in reactive Al/Ni multilayer[J]. Propellants Explos. Pyrotech., 2018, 43: 923-928.
- 10
WU Dong‑fang, TAN Qing‑qing, HU Li‑chong. Shape‑controlled synthesis of Cu‑Ni nanocrystals[J]. Materials Chemistry and Physics, 2018, 206(1): 150-157.
- 11
FU Zheng‑rong, ZHANGZheng, MENG Li‑fang, et al. Effect of strain rate on mechanical properties of Cu/Ni multilayered composites processed by electrodeposition[J]. Materials Science & Engineering A, 2018, 726(1): 154-159.
- 12
WANG Chuan‑jie, WANG Hai‑yang, GENG Fang‑fang, et al. Interactive effects of microstructure and interface on tensile deformation behaviors of Cu/Ni clad foils[J]. Materials Science & Engineering A, 2018, 714 -(1): 14-24.
- 13
赵小侠, 罗文峰, 张相武, 等. 基于LIBS技术的黄铜等离子体特征参量的研究[J]. 激光技术, 2013, 37(1): 93-96.
ZHAO Xiao‑xia, LUO Wen‑feng, ZHANG Xiang‑wu, et al.Measurement of brass plasma parameters based on laser‑induced breakdown spectroscopy[J]. Laser Technology, 2013,37(1): 93-96.
- 14
傅院霞, 徐丽, 葛立新, 等. 激光诱导镍等离子体电子温度的时间演化特性[J]. 蚌埠学院学报, 2016, 5(5): 30-37.
FU Yuan‑xia, XU Li, GE Li‑xin, et al. Investigation on the time evolution of the electron temperature in laser‑induced Ni plasma[J]. Journal of Bengbu University, 2016, 5(5): 30-37.
- 15
李澜, 陈冠英, 张树东, 等. 激光能量对激光诱导Cu等离子体特征辐射强度,电子温度的影响[J]. 原子与分子物理学报,2003, 20(3): 343-346.
LI Lan, CHEN Guan‑ying, ZHANG Shu‑dong, et al. Effects of laser energy on electron temperature and the emission spectra intensities of copper plasma ablated with laser[J]. Chinese Journal of Atomic and Molecular Physics, 2003, 20(3):343-346.
- 16
Calzada M D, Moisan M, Gamero A, et al. Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface‑wave‑sustained discharge at atmospheric pressure[J]. Journal of applied physics, 1996, 80(1): 46-55.
- 17
NIST atomic spectra database[OL], https://www.nist.gov/pml/atomic‑spectra‑database, 2018.
- 1
摘要
为探索复合多层膜爆炸箔电爆炸的作用机理,开展了Ni/Cu复合多层膜爆炸箔性能研究。采用电化学沉积方法制备了相同厚度的Ni/Cu复合多层膜(调制周期分别为200 nm/300 nm和300 nm/400 nm)及纯Cu、Ni金属膜,通过等离子体发射光谱特性测试分析,计算获得了不同放电电流条件下不同结构的Ni/Cu复合多层膜、纯Cu、Ni金属膜电爆炸等离子体电子温度。通过匹配加速膛、飞片进行了爆炸箔推动飞片的PDV速度测试和分析,获得了不同放电电流条件下Ni/Cu复合多层膜、纯Cu、Ni金属膜爆炸箔推动飞片性能。研究结果表明:在电流为2.5 kA时,(N
Abstract
To explore the exploding mechanism of composite multilayers, the properties of Ni/Cu multilayer exploding foil were studied. Ni/Cu composite multilayers (modulation period 200 nm/300 nm and 300 nm/400 nm, respectively), pure Cu and Ni films with the same thickness were prepared by electrochemical deposition. The plasma emission spectroscopy was measured. Under different discharge current conditions, the electron temperature of electrically exploded plasma of Ni/Cu composite multilayers with different structures, pure Cu and Ni films was calculated, respectively. After matching barrels and flyers with exploding foils, the velocity of flyer driven by different exploding foils was measured by PDV method. The performance of the exploding foils driving flyer under different discharge current conditions were obtained. The results show the plasma emission spectroscopy intensity and electron temperature of (N