CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
王浩, 王亲会, 金大勇, 等. DNTF基含硼和含铝炸药的水下能量[J]. 火炸药学报, 2007, 30(6): 38-40.
WANGHao, WANGQin-hui, JINDa-yong, et al. Underwater energy of DNTF based boron-contained and aluminum-contained explosive[J]. Chinese Journal of Explosives and Propellants, 2007, 30(6): 38-40.
参考文献 2
张光全, 董海山. 2,4-二硝基苯甲醚为基熔铸炸药的研究进展[J]. 含能材料, 2010, 18(5): 604-609.
ZHANGGuang-quan, DONGHai-shan. Review on melt-cast explosives based on 2,4-dinitroanisole[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010, 18(5): 604-609.
参考文献 3
SheffieldS A, BloomquistD D, TarverC M. Subnanosecond measurements of detonation fronts in solid high explosives[J]. Journal of Chemical Physics, 1984, 80(8): 3831-3844.
参考文献 4
SeitzW L, StacyH L, WackerleJ. Detonation reaction zone studies on TATB explosives[C]//Proceedings of 8th Symposium on Detonation. Albuquerque,NM, USA, 1985.
参考文献 5
GustavsenR L, SheffieldS A, AlconR R. Detonation wave profiles in HMX based explosives[J]. Office of Scientific & Technical Information Technical Reports, 1998, 429(429): 739-742.
参考文献 6
GustavsenR L, BartramB D, SanchezN. Detonation wave profiles measured in plastic bonded explosives using 1550nm photon Doppler velocimetry[C]//Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 253-256.
参考文献 7
BouyerV, HebertP, DoucetM, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives[C]// Shock Compression of Condensed Matter 2011. USA: American Institute of Physics, 2012: 209-212.
参考文献 8
张涛, 谷岩, 赵继波, 等. JBO-9021炸药的化学反应区宽度[J]. 爆炸与冲击, 2017, 37(3): 415-421.
ZHANGTao, GUYan, ZHAOJi-bo, et al. Chemical reaction zone length of JBO-9021[J]. Explosion and Shock Waves, 2017, 37(3): 415-421.
参考文献 9
裴红波, 黄文斌, 覃锦程, 等. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485-490.
PEIHong-bo, HUANGWen-bin, QINJin-cheng, et al. Reaction zone structure of JB-9014 explosive measured by PDV[J]. Explosion and Shock Waves, 2018, 38(3): 485-490.
参考文献 10
TarverC M, TaoW C, LeeC G. Sideways plate push test for detonating solid explosives[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(5): 238-246.
参考文献 11
陈朗, 张寿齐, 赵玉华. 不同铝粉尺寸含铝炸药加速金属能力的研究[J]. 爆炸与冲击, 1999, 19(3): 250-255.
CHENLang, ZHANGShou-qi, ZHAOYu-hua. Study of the metal acceleration capacities of aluminized explosive with spherical aluminum particles of different diameter[J]. Explosion and Shock Waves, 1999, 19(3): 250-255.
参考文献 12
BouyerV, DoucetM, DecarisL, et al. Experimental measurements of the detonation wave profile in a TATB based explosive[C]// EPJ Web of Conference. France: EDP Sicence, 2010: 378-384.
参考文献 13
郭向利, 韩勇, 刘世俊, 等. TATB基含铝炸药做功能力的试验研究[J]. 火炸药学报, 2015, 39(3): 81-85.
GUOXiang-li, HANYong, LIUShi-jun, et al. Experimental study on work ability of TATB-based aluminized explosives[J]. Chinese Journal of Explosives & Propellants, 2015, 38(3): 81-85.
参考文献 14
刘丹阳, 陈朗, 杨坤, 等. CL-20基炸药爆轰产物JWL状态方程实验标定方法研究[J]. 兵工学报, 2016, 37(增刊): 141-145.
LIUDan-yang, CHENLang, YANGKun, et al. Calibration method of parameters in JWL equation of state for detonation products of CL-20-based explosives[J]. Acta Armamentarii, 2016, 37(Suppl.): 283-288.
参考文献 15
WengJ, TanH, WangX, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Applied Physics Letters, 2006, 89(11): 111101.
参考文献 16
孙宝平. 机械刺激下炸药装药点火若干问题研究[D]. 北京: 北京理工大学, 2012.
SUNBao-ping. Study on some Issues in Ignition of Explosives/ Charge under Mechanical Stimuli[D]. Beijing: Beijing Institute of Technology.
参考文献 17
赵万广, 周显明, 李加波, 等. LiF单晶的高压折射率及窗口速度的修正[J]. 高压物理学报, 2014, 28(5): 571-576.
ZHAOWan-guang, ZHOUXian-ming, LIJia-bo, et al. Refractive index of LiF single crystal at high pressure and its window correction[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571-576.
参考文献 18
TarverC M. Detonation reaction zones in condensed explosives[C]//Shock Compression Condensed Matter 2005. USA: American Institute of Physics, 2005: 1026-1029.
参考文献 19
陈清畴, 蒋小华, 李敏, 等. HNS-IV炸药的点火增长模型[J]. 爆炸与冲击, 2012, 32(3): 328-332.
CHENQing-chou, JIANGXiao-hua, LIMin, et al. Ignition and growth reactive flow model for HNS-IV explosives[J].Explosion and Shock Waves, 2012, 32(3): 328-332.
参考文献 20
LubyatinskyS N, LoboikoB G. Density effect on detonation reaction zone length in solid explosives[C]//AIP Conference Proceedings, 1998, 429(1): 743-746.
目录 contents

    摘要

    为研究2,4-二硝基苯甲醚(DNAN)基含铝炸药的爆轰性能,采用全光纤激光干涉测速仪(DISAR),测量了两种含铝炸药——RBOL-2(DNAN/HMX/Al/添加剂)和RMOE-2(DNAN/HMX/NTO/Al/添加剂)爆轰端面与窗口界面粒子速度以及驱动金属平板自由表面速度,得到两种炸药的爆轰反应区宽度分别为(1.073±0.111)mm和(1.559±0.094)mm,CJ压力分别为(25.42±0.44)GPa 和(20.99±0.15)GPa,冯·诺依曼峰值压力分别为41.27 GPa 和 27.69 GPa 等爆轰波结构参数。金属平板自由表面速度结果表明:RBOL-2炸药的做功能力强于RMOE-2炸药;含铝炸药达到的稳定爆轰状态与起爆加载条件有关,加载压力越高,含铝炸药的做功能力越强,在较高的加载压力(21 GPa)下,加载压力越高,参与爆轰反应区反应的铝粉越多,含铝炸药达到的爆轰状态越强。

    Abstract

    To study the detonation performance of 2,4-dinitroanisole (DNAN) based aluminized explosives,the detonating explosive / LiF interface particle velocity and free surface velocity imparted to thin metal plates for aluminized explosives RBOL-2 (DNAN/HMX/Al/additives) and RMOE-2 (DNAN/HMX/NTO/Al/additives) were measured by a laser displacement interferometer system for any reflector (DISAR). The detonation wave parameters were obtained for these two explosives according to the interfacial particle velocity histories. The reaction zone lengths are (1.073±0.111) mm and (1.559±0.094) mm, the CJ pressures are (25.42±0.44) GPa and (20.99±0.15) GPa, and the Von-Neumann pressures are 27.69 GPa and 41.27 GPa for RBOL-2 and RMOE-2, respectively. The velocity histories of the metal plate show that the work capacity of RBOL-2 is better than that of RMOE-2. In addition, under the experimental conditions, the steady detonation status obtained by aluminized explosive is related to the initiation loading conditions and the loading pressure affects the work capacity of aluminized explosives. The greater the loading pressure, the stronger the work capacity. Under high loading pressure (21 GPa), the higher the loading pressure, the more aluminum particles react in the detonation reaction zone, and the stronger the detonation state of the aluminized explosive.

    Graphic Abstract

    图文摘要

    html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F009.jpg

    A laser displacement interferometer system for any reflector (DISAR) was used to measure the particle velocity history at a detonating explosive / LiF interface. The reaction zone lengths, CJ pressures and Von-Neumann peak pressures of the two explosives (RBOL-2 and RMOE-2) were obtained. And an unconstrained explosive-driven metal plate experiment was built to study the work capacicty of both explosives.

  • 1 引 言

    含铝炸药具有高密度、高爆热和高威力等特点,目前已经大量应用于各种常规兵[1]。以2,4-二硝基苯甲醚(DNAN)为基的钝感熔铸炸药,因其具有突出的安全性,目前受到国内外的广泛关[2]。RBOL-2(DNAN/奥克托今(HMX)/Al/添加剂)和RMOE-2(DNAN/HMX/3-硝基-1,2,4-三唑-5-酮(NTO)/Al/添加剂)炸药是我国研制的新型DNAN基钝感含铝熔铸炸药,有望成为不敏感战斗部的备选配方,研究其爆轰反应区结构,确定产物状态方程参数,评估其做功能力,对该钝感炸药的推广应用和不敏感战斗部设计等具有重要意义。

    近年发展起来的高分辨率时空测量手段,如全光纤激光干涉测速仪(DISAR)和光子多普勒速度计(PDV),能观测到炸药的爆轰波结构和爆轰驱动细节,是研究炸药爆轰性能的有效方法。国内外学[3,4,5,6,7,8,9]采用激光干涉法测量了炸药与窗口材料界面粒子速度,并以此分析了炸药爆轰反应区结构。根据ZND模型,爆轰波由前导冲击波和紧跟其后的化学反应区组成,由于前导冲击波的作用炸药粒子速度在瞬间达到最大值,随后炸药发生化学反应,粒子速度快速下降,在CJ点炸药反应结束,进入爆轰产物膨胀阶段,粒子速度下降较为缓慢。因此可将速度曲线中出现的速率变化拐点看作爆轰波结构中的CJ点,从而得出爆轰反应结束时间,确定爆轰反应区参数。炸药驱动金属平板实[10,11,12,13,14]是研究含铝炸药做功能力的有效方法,金属平板的最大动能可以用于表征炸药做功能力。此外,利用测量得到的金属平板粒子速度-时间曲线,还可以用于确定炸药爆轰产物状态方程参数。

    本研究采用DISAR测量了两种DNAN基含铝炸药——RBOL-2和RMOE-2的爆轰端面与窗口的界面粒子速度以及炸药爆轰驱动金属平板自由表面速度,获得了炸药反应区宽度(时间)、CJ压力和冯诺依曼峰压力等信息,研究了这两种炸药的做功能力和加载压力对做功能力的影响,可为进一步确定这两种炸药的爆轰产物JWL状态方程参数提供依据。

  • 2 实验方案

  • 2.1 炸药与窗口界面粒子速度测量实验

    炸药与窗口材料界面粒子速度测量实验装置如图1所示,实验装置主要由雷管、炸药平面波透镜、起爆药、铝夹板、被测炸药、窗口材料和有机玻璃环等组成。实验时,雷管起爆炸药平面波透镜,炸药平面透镜和起爆药柱爆炸后产生的平面冲击波作用于被测炸药,使其达到稳定爆轰状态。采用DISAR测量被测炸药与窗口材料的界面粒子速度。被测炸药RBOL-2的尺寸为-50 mm×50 mm,采用Φ50 mm直径的平面波透镜和Φ50 mm×10 mm的8701药柱起爆;被测炸药RMOE-2的尺寸为Φ80 mm×50 mm,采用直径为Φ80 mm的平面波透镜和Φ80 mm×10 mm的8701药柱起爆。铝夹板厚3 mm, LiF窗口材料尺寸为Φ24 mm×12 mm,窗口材料与炸药接触面端镀有约0.7 μm厚的铝膜作为激光信号的反射面。安装时采用有机玻璃环固定窗口材料,并在炸药表面涂抹适量真空硅脂后将窗口材料与炸药紧密按压在一起,确保两者接触面间没有空气隙。图2是现场实验装置图。

    图1
                            界面粒子速度实验装置结构示意图

    图1 界面粒子速度实验装置结构示意图

    Fig.1 Schematic of the interface particle velocity measurement

    图2
                            界面粒子速度实验现场

    图2 界面粒子速度实验现场

    Fig.2 Setup of the interface particle velocity measurement

    实验使用中国工程物理研究院流体物理研究所研制的DISAR[15],利用光学多普勒效应和光干涉原理,激光照射在待测运动物体表面,反射的激光因多普勒效应会产生与运动物体速度成正比的频移,使反射光与入射光发生干涉,测量物体表面干涉频率变化得到物体运动速度变化过程。DISAR系统的时间分辨率可达50 ps,测速范围0.1~8 km·s-1,是目前国际上响应最快,测速范围最广的激光干涉测速仪。

  • 2.2 炸药驱动金属平板实验

    炸药驱动金属平板实验装置如图3所示。实验时,雷管起爆炸药平面波透镜,平面波透镜和起爆药爆炸后产生平面冲击波直接起爆被测炸药,被测炸、药驱动金属平板运动,采用DISAR测量金属平板自由表面中心位置处的粒子速度。为研究起爆压力对炸药做功能力的影响,起爆药分别采用TNT和8701药柱,尺寸为Φ80 mm×104 mm。平面波透镜的直径为80 mm,被测炸药RBOL-2和RMOE-2的尺寸均为Φ80 mm×50 mm,金属平板飞片为Φ40 mm×1.5 mm的紫铜。铜板外是有机玻璃套,用于遮挡爆轰产物,避免对激光信号造成干扰。安装时在铜板表面涂抹适量真空硅脂后将铜板与炸药紧密按压在一起,确保两者接触面间没有空气隙。图4是现场实验装置图。

    图3
                            炸药驱动金属平板实验装置示意图

    图3 炸药驱动金属平板实验装置示意图

    Fig.3 Schematic of the explosive-driven metal plate experiment

    图4
                            炸药驱动金属平板实验现场

    图4 炸药驱动金属平板实验现场

    Fig.4 Setup of the explosive-driven metal plate experiment

  • 2.3 试样准备

    实验之前,在8701药柱起爆下,利用压力探针分别测量了RBOL-2和RMOE-2两种炸药的爆速,实验时利用压力探针测量爆轰波到达炸药50 mm和75 mm处的起跳时间,利用探针信号得到的起跳时间差以及探针间距得到了两种炸药的爆速。实验所用8701的密度为1.717 g·cm-3,爆压为29.66 GPa;TNT的密度为1.63 g·cm-3,爆压为21 GPa[16]。测量得到的RBOL-2炸药的爆速为7117 m·s-1,RMOE-2炸药的爆速为6125 m·s-1。RBOL-2炸药的密度为1.861 g·cm-3,RMOE-2炸药的密度为1.840 g·cm-3

  • 3 实验结果与分析

  • 3.1 爆轰波结构测量

    在冲击波的作用下,LiF窗口的折射率会发生变化,导致DISAR测得的界面粒子速度与其真实值存在一定差异,因此,需要对实验结果进行修正,修正关系[17]

    up=ua/1.2678
    (1)

    式中,up为真实粒子速度,m·s-1ua为实验测量值,m·s-1。如无特别说明,本文中给出的粒子速度均为修正后的真实粒子速度。

    对RBOL-2 和RMOE-2炸药分别进行两发试验,得到修正后的界面粒子速度-时间曲线,如图5所示。从图5中可以看出,两种炸药的速度-时间曲线几乎重叠,说明实验具有较好的重复性。由于原始数据曲线存在较大的噪声,为了方便处理数据,对原始实验数据取平均并光滑处理,光滑后的结果如图6所示。从图6可知,粒子速度-时间曲线上存在一个拐点(对应CJ点)将曲线分成两部分,分别对应ZND模型中的爆轰反应区和Taylor膨胀区。为了确定该点的具体位置,对光滑后的界面粒子速度进行一阶求导并取相反数,如图7所示。由图7可知,-dup / dt曲线在初始阶段下降较快,对应炸药的快反应阶段,炸药化学反应主要的能量释放发生在这一阶段。随后界面粒子速度的-dup / dt曲线下降缓慢,该过程对应炸药的慢反应阶[18]。炸药化学反应结束后,即在CJ点之后,爆轰产物发生膨胀,受稀疏波的影响,界面粒子速度缓慢下降,对应界面粒子速度一阶导数为一接近于零的定值,通过读取-dup / dt曲线上的拐点可以确定CJ点。

    html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F010.jpg

    a. RBOL-2

    html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F011.jpg

    b. RMOE-2

    图5 炸药 / LiF界面粒子速度历程Fig.5 Detonating explosive/LiF interface particle velocity profiles

    图6
                            光滑后的炸药 / LiF界面粒子速度历程

    图6 光滑后的炸药 / LiF界面粒子速度历程

    Fig. 6 Detonating explosive / LiF interface particle velocity profiles after smoothing

    html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F006.jpg

    a. RBOL-2

    html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F007.jpg

    b. RMOE-2

    图7 炸药 / LiF界面粒子速度加速度

    Fig. 7 Detonating explosive / LiF interface particle acceleration profiles

    确定CJ点之后,可以计算CJ压力和爆轰反应区宽度。利用冲击波阻抗匹配关系可以计算炸药反应区内的压[19]

    p=12upρm0C0+λup+ρ0DCJ
    (2)

    式中,p为窗口材料与炸药界面处的压力,MPa;up为界面粒子速度,cm·us-1ρm0为窗口材料初始密度,g·cm-3C0λ为窗口材料的冲击绝热线常数;ρ0为炸药初始密度,g·cm-3DCJ为炸药爆速,cm·μs-1。LiF的密度ρm0为2.641 g·cm-3C0 =(5.176±0.023) cm·μs -1λ=1.353±0.010[17]。ZND模型中,炸药的反应区宽度x0[20]

    x0=0τ(DCJ-up)dt
    (3)

    式中,τ为炸药化学反应持续时间,ns。处理得到的两种炸药爆轰反应区参数见表1

    表1 RBOL-2和RMOE-2炸药的爆轰反应区参数

    Table 1 Reaction zone parameters of RBOL-2 and RMOE-2

    explosive

    uVN

    / m·s-1

    uCJ

    / m·s-1

    pVN

    / GPa

    pCJ

    / GPa

    τ

    / ns

    x0

    / mm

    RBOL⁃223401564±2341.2725.42±0.44202±201.073±0.111
    RMOE⁃217711402±1027.6920.99±0.15338±201.559±0.094

    NOTE: uVN is the particle velocity of Von-Neumann state. uCJ is the particle velocity of CJ state. pVN is the Von-Neumann pressure. pCJ is the CJ pressure..

  • 3.2 平板驱动实验

    对两种炸药分别进行了两发平板驱动实验,测量得到RBOL-2炸药和RMOE-2炸药分别在8701和TNT起爆下爆轰驱动铜板自由表面速度-时间曲线,如图8所示。铜板的最大运动速度vmax或最大比动能emax=vmax2/2可以用于评定炸药的做功能力。从图8可知,铜板在RBOL-2炸药驱动下的最大速度明显高于在RMOE-2炸药驱动下的速度,表明RBOL-2炸药比RMOE-2炸药具有更高的做功能力。8701起爆条件下,RMOE-2炸药驱动铜板获得的最大比动能为4.38 kJ·g-1,比RBOL-2炸药驱动的小18.3%;TNT起爆下,RMOE-2炸药驱动铜板获得的最大比动能为4.10 kJ·g-1,比RBOL-2炸药驱动的小18.8%。实验条件与实验结果如表2所示。

    图8
                            炸药驱动铜板实验结果

    图8 炸药驱动铜板实验结果

    Fig.8 Experimental results of explosive-driven copper plate

    表2 平板驱动实验初始条件和结果

    Table 2 Initial conditions and results of explosive-driven plates

    explosivebooster

    thickness

    of copper

    vmax

    / m·s-1

    emax

    / kJ·g-1

    RBOL⁃287011.4532755.36
    TNT1.4331795.05
    RMOE⁃287011.4429604.38
    TNT1.4328644.10

    分别观察两种炸药的实验结果可以发现,与TNT相比,采用8701起爆时的铜板自由表面粒子速度更高,表明在8701起爆下DNAN基钝感含铝炸药对铜板的做功能力更强。对于RBOL-2炸药,TNT起爆时驱动铜板的最大速度为3179 m·s-1,而8701起爆时则为3275 m·s-1,比TNT高3%,铜板获得的比动能比TNT起爆时高6%;对于RMOE-2炸药,TNT起爆时驱动铜板的最大速度为2864 m·s-1,而8701起爆时则为2960 m·s-1,比TNT高出3.4%,铜板获得的比动能比TNT起爆时高7%。

    上述实验结果表明,在本实验条件下,起爆压力的大小影响含铝炸药的做功能力。在本实验条件下,加载压力越大,含铝炸药的做功能力越大;反之,加载压力越小,含铝炸药的做功能力越小。这表明,强起爆的加载条件可能影响含铝炸药的爆轰状态,在较高的加载压力下,加载压力越高,参与爆轰反应区反应的铝粉越多。进一步的证据可以通过对不同加载下含铝炸药的爆压的精细测量来确定。

  • 4 结 论

    (1) 采用全光纤激光干涉测速仪(DISAR)测量了RBOL-2和RMOE-2两种含铝炸药爆轰炸药/窗口界面粒子速度,得到了两种炸药爆轰反应区参数,RBOL-2和RMOE-2两种含铝炸药的爆轰反应时间分别为(202±20) ns和(338±20) ns,反应区宽度分别为(1.073±0.111) mm和(1.559±0.094) mm,CJ压力分别为(25.42±0.44) GPa和(20.99±0.15) GPa,冯·诺依曼峰值压力分别为41.27 GPa和27.69 GPa。

    (2) 炸药驱动金属平板实验获得了RBOL-2和RMOE-2两种炸药爆轰驱动铜板的速度-时间曲线。结果表明,RBOL-2炸药对铜板的做功能力高于RMOE-2炸药。实验结果可为标定RBOL-2和RMOE-2炸药爆轰产物JWL状态方程提供依据。

    (3) 在本实验条件下,加载压力的大小影响含铝炸药的做功能力,加载压力越大,含铝炸药做功能力越强;反之,加载压力越小,含铝炸药做功能力越小,表明强起爆条件下含铝炸药达到的稳定爆轰状态与起爆加载条件有关,加载压力越高,参与爆轰反应区反应的铝粉越多,含铝炸药达到的爆轰状态越强。

  • 参考文献

    • 1

      王浩, 王亲会, 金大勇, 等. DNTF基含硼和含铝炸药的水下能量[J]. 火炸药学报, 2007, 30(6): 38-40.

      WANG Hao, WANG Qin-hui, JIN Da-yong, et al. Underwater energy of DNTF based boron-contained and aluminum-contained explosive[J]. Chinese Journal of Explosives and Propellants, 2007, 30(6): 38-40.

    • 2

      张光全, 董海山. 2,4-二硝基苯甲醚为基熔铸炸药的研究进展[J]. 含能材料, 2010, 18(5): 604-609.

      ZHANG Guang-quan, DONG Hai-shan. Review on melt-cast explosives based on 2,4-dinitroanisole[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010, 18(5): 604-609.

    • 3

      Sheffield S A, Bloomquist D D, Tarver C M. Subnanosecond measurements of detonation fronts in solid high explosives[J]. Journal of Chemical Physics, 1984, 80(8): 3831-3844.

    • 4

      Seitz W L, Stacy H L, Wackerle J. Detonation reaction zone studies on TATB explosives[C]//Proceedings of 8th Symposium on Detonation. Albuquerque,NM, USA, 1985.

    • 5

      Gustavsen R L, Sheffield S A, Alcon R R. Detonation wave profiles in HMX based explosives[J]. Office of Scientific & Technical Information Technical Reports, 1998, 429(429): 739-742.

    • 6

      Gustavsen R L, Bartram B D, Sanchez N. Detonation wave profiles measured in plastic bonded explosives using 1550nm photon Doppler velocimetry[C]//Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 253-256.

    • 7

      Bouyer V, Hebert P, Doucet M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives[C]// Shock Compression of Condensed Matter 2011. USA: American Institute of Physics, 2012: 209-212.

    • 8

      张涛, 谷岩, 赵继波, 等. JBO-9021炸药的化学反应区宽度[J]. 爆炸与冲击, 2017, 37(3): 415-421.

      ZHANG Tao, GU Yan, ZHAO Ji-bo, et al. Chemical reaction zone length of JBO-9021[J]. Explosion and Shock Waves, 2017, 37(3): 415-421.

    • 9

      裴红波, 黄文斌, 覃锦程, 等. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485-490.

      PEI Hong-bo, HUANG Wen-bin, QIN Jin-cheng, et al. Reaction zone structure of JB-9014 explosive measured by PDV[J]. Explosion and Shock Waves, 2018, 38(3): 485-490.

    • 10

      Tarver C M, Tao W C, Lee C G. Sideways plate push test for detonating solid explosives[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(5): 238-246.

    • 11

      陈朗, 张寿齐, 赵玉华. 不同铝粉尺寸含铝炸药加速金属能力的研究[J]. 爆炸与冲击, 1999, 19(3): 250-255.

      CHEN Lang, ZHANG Shou-qi, ZHAO Yu-hua. Study of the metal acceleration capacities of aluminized explosive with spherical aluminum particles of different diameter[J]. Explosion and Shock Waves, 1999, 19(3): 250-255.

    • 12

      Bouyer V, Doucet M, Decaris L, et al. Experimental measurements of the detonation wave profile in a TATB based explosive[C]// EPJ Web of Conference. France: EDP Sicence, 2010: 378-384.

    • 13

      郭向利, 韩勇, 刘世俊, 等. TATB基含铝炸药做功能力的试验研究[J]. 火炸药学报, 2015, 39(3): 81-85.

      GUO Xiang-li, HAN Yong, LIU Shi-jun, et al. Experimental study on work ability of TATB-based aluminized explosives[J]. Chinese Journal of Explosives & Propellants, 2015, 38(3): 81-85.

    • 14

      刘丹阳, 陈朗, 杨坤, 等. CL-20基炸药爆轰产物JWL状态方程实验标定方法研究[J]. 兵工学报, 2016, 37(增刊): 141-145.

      LIU Dan-yang, CHEN Lang, YANG Kun, et al. Calibration method of parameters in JWL equation of state for detonation products of CL-20-based explosives[J]. Acta Armamentarii, 2016, 37(Suppl.): 283-288.

    • 15

      Weng J, Tan H, Wang X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Applied Physics Letters, 2006, 89(11): 111101.

    • 16

      孙宝平. 机械刺激下炸药装药点火若干问题研究[D]. 北京: 北京理工大学, 2012.

      SUN Bao-ping. Study on some Issues in Ignition of Explosives/ Charge under Mechanical Stimuli[D]. Beijing: Beijing Institute of Technology.

    • 17

      赵万广, 周显明, 李加波, 等. LiF单晶的高压折射率及窗口速度的修正[J]. 高压物理学报, 2014, 28(5): 571-576.

      ZHAO Wan-guang, ZHOU Xian-ming, LI Jia-bo, et al. Refractive index of LiF single crystal at high pressure and its window correction[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571-576.

    • 18

      Tarver C M. Detonation reaction zones in condensed explosives[C]//Shock Compression Condensed Matter 2005. USA: American Institute of Physics, 2005: 1026-1029.

    • 19

      陈清畴, 蒋小华, 李敏, 等. HNS-IV炸药的点火增长模型[J]. 爆炸与冲击, 2012, 32(3): 328-332.

      CHEN Qing-chou, JIANG Xiao-hua, LI Min, et al. Ignition and growth reactive flow model for HNS-IV explosives[J].

      Explosion and Shock Waves, 2012, 32(3): 328-332.

    • 20

      Lubyatinsky S N, Loboiko B G. Density effect on detonation reaction zone length in solid explosives[C]//AIP Conference Proceedings, 1998, 429(1): 743-746.

杨洋

机 构:北京理工大学 爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology,Beijing 100081, China

邮 箱:yang960539666@163.com

作者简介:杨洋(1989-),男,博士研究生。主要从事钝感弹药起爆机理、爆轰及其安全性研究。e-mail:yang960539666@163.com

段卓平

机 构:北京理工大学 爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology,Beijing 100081, China

角 色:通讯作者

Role:Corresponding author

邮 箱:duanzp@bit.edu.cn

作者简介:段卓平(1965 -),男,研究员。主要从事爆炸与冲击动力学实验技术研究。e-mail:duanzp@bit.edu.cn

张连生

机 构:北京理工大学 爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology,Beijing 100081, China

黄风雷

机 构:北京理工大学 爆炸科学与技术国家重点实验室,北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology,Beijing 100081, China

html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F001.jpg
html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F002.jpg
html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F003.jpg
html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F004.jpg
html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F010.jpg
html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F011.jpg
html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F005.jpg
html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F006.jpg
html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F007.jpg
explosive

uVN

/ m·s-1

uCJ

/ m·s-1

pVN

/ GPa

pCJ

/ GPa

τ

/ ns

x0

/ mm

RBOL⁃223401564±2341.2725.42±0.44202±201.073±0.111
RMOE⁃217711402±1027.6920.99±0.15338±201.559±0.094
html/hncl/CJEM2018327/alternativeImage/2f156b53-56f4-4820-9647-70b0b81040e1-F008.jpg
explosivebooster

thickness

of copper

vmax

/ m·s-1

emax

/ kJ·g-1

RBOL⁃287011.4532755.36
TNT1.4331795.05
RMOE⁃287011.4429604.38
TNT1.4328644.10

图1 界面粒子速度实验装置结构示意图

Fig.1 Schematic of the interface particle velocity measurement

图2 界面粒子速度实验现场

Fig.2 Setup of the interface particle velocity measurement

图3 炸药驱动金属平板实验装置示意图

Fig.3 Schematic of the explosive-driven metal plate experiment

图4 炸药驱动金属平板实验现场

Fig.4 Setup of the explosive-driven metal plate experiment

图5 炸药 / LiF界面粒子速度历程Fig.5 Detonating explosive/LiF interface particle velocity profiles -- a. RBOL-2

图5 炸药 / LiF界面粒子速度历程Fig.5 Detonating explosive/LiF interface particle velocity profiles -- b. RMOE-2

图6 光滑后的炸药 / LiF界面粒子速度历程

Fig. 6 Detonating explosive / LiF interface particle velocity profiles after smoothing

图7 炸药 / LiF界面粒子速度加速度 -- a. RBOL-2

Fig. 7 Detonating explosive / LiF interface particle acceleration profiles -- a. RBOL-2

图7 炸药 / LiF界面粒子速度加速度 -- b. RMOE-2

Fig. 7 Detonating explosive / LiF interface particle acceleration profiles -- b. RMOE-2

表1 RBOL-2和RMOE-2炸药的爆轰反应区参数

Table 1 Reaction zone parameters of RBOL-2 and RMOE-2

图8 炸药驱动铜板实验结果

Fig.8 Experimental results of explosive-driven copper plate

表2 平板驱动实验初始条件和结果

Table 2 Initial conditions and results of explosive-driven plates

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

uVN is the particle velocity of Von-Neumann state. uCJ is the particle velocity of CJ state. pVN is the Von-Neumann pressure. pCJ is the CJ pressure..

无注解

无注解

  • 参考文献

    • 1

      王浩, 王亲会, 金大勇, 等. DNTF基含硼和含铝炸药的水下能量[J]. 火炸药学报, 2007, 30(6): 38-40.

      WANG Hao, WANG Qin-hui, JIN Da-yong, et al. Underwater energy of DNTF based boron-contained and aluminum-contained explosive[J]. Chinese Journal of Explosives and Propellants, 2007, 30(6): 38-40.

    • 2

      张光全, 董海山. 2,4-二硝基苯甲醚为基熔铸炸药的研究进展[J]. 含能材料, 2010, 18(5): 604-609.

      ZHANG Guang-quan, DONG Hai-shan. Review on melt-cast explosives based on 2,4-dinitroanisole[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010, 18(5): 604-609.

    • 3

      Sheffield S A, Bloomquist D D, Tarver C M. Subnanosecond measurements of detonation fronts in solid high explosives[J]. Journal of Chemical Physics, 1984, 80(8): 3831-3844.

    • 4

      Seitz W L, Stacy H L, Wackerle J. Detonation reaction zone studies on TATB explosives[C]//Proceedings of 8th Symposium on Detonation. Albuquerque,NM, USA, 1985.

    • 5

      Gustavsen R L, Sheffield S A, Alcon R R. Detonation wave profiles in HMX based explosives[J]. Office of Scientific & Technical Information Technical Reports, 1998, 429(429): 739-742.

    • 6

      Gustavsen R L, Bartram B D, Sanchez N. Detonation wave profiles measured in plastic bonded explosives using 1550nm photon Doppler velocimetry[C]//Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 253-256.

    • 7

      Bouyer V, Hebert P, Doucet M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives[C]// Shock Compression of Condensed Matter 2011. USA: American Institute of Physics, 2012: 209-212.

    • 8

      张涛, 谷岩, 赵继波, 等. JBO-9021炸药的化学反应区宽度[J]. 爆炸与冲击, 2017, 37(3): 415-421.

      ZHANG Tao, GU Yan, ZHAO Ji-bo, et al. Chemical reaction zone length of JBO-9021[J]. Explosion and Shock Waves, 2017, 37(3): 415-421.

    • 9

      裴红波, 黄文斌, 覃锦程, 等. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485-490.

      PEI Hong-bo, HUANG Wen-bin, QIN Jin-cheng, et al. Reaction zone structure of JB-9014 explosive measured by PDV[J]. Explosion and Shock Waves, 2018, 38(3): 485-490.

    • 10

      Tarver C M, Tao W C, Lee C G. Sideways plate push test for detonating solid explosives[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(5): 238-246.

    • 11

      陈朗, 张寿齐, 赵玉华. 不同铝粉尺寸含铝炸药加速金属能力的研究[J]. 爆炸与冲击, 1999, 19(3): 250-255.

      CHEN Lang, ZHANG Shou-qi, ZHAO Yu-hua. Study of the metal acceleration capacities of aluminized explosive with spherical aluminum particles of different diameter[J]. Explosion and Shock Waves, 1999, 19(3): 250-255.

    • 12

      Bouyer V, Doucet M, Decaris L, et al. Experimental measurements of the detonation wave profile in a TATB based explosive[C]// EPJ Web of Conference. France: EDP Sicence, 2010: 378-384.

    • 13

      郭向利, 韩勇, 刘世俊, 等. TATB基含铝炸药做功能力的试验研究[J]. 火炸药学报, 2015, 39(3): 81-85.

      GUO Xiang-li, HAN Yong, LIU Shi-jun, et al. Experimental study on work ability of TATB-based aluminized explosives[J]. Chinese Journal of Explosives & Propellants, 2015, 38(3): 81-85.

    • 14

      刘丹阳, 陈朗, 杨坤, 等. CL-20基炸药爆轰产物JWL状态方程实验标定方法研究[J]. 兵工学报, 2016, 37(增刊): 141-145.

      LIU Dan-yang, CHEN Lang, YANG Kun, et al. Calibration method of parameters in JWL equation of state for detonation products of CL-20-based explosives[J]. Acta Armamentarii, 2016, 37(Suppl.): 283-288.

    • 15

      Weng J, Tan H, Wang X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Applied Physics Letters, 2006, 89(11): 111101.

    • 16

      孙宝平. 机械刺激下炸药装药点火若干问题研究[D]. 北京: 北京理工大学, 2012.

      SUN Bao-ping. Study on some Issues in Ignition of Explosives/ Charge under Mechanical Stimuli[D]. Beijing: Beijing Institute of Technology.

    • 17

      赵万广, 周显明, 李加波, 等. LiF单晶的高压折射率及窗口速度的修正[J]. 高压物理学报, 2014, 28(5): 571-576.

      ZHAO Wan-guang, ZHOU Xian-ming, LI Jia-bo, et al. Refractive index of LiF single crystal at high pressure and its window correction[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571-576.

    • 18

      Tarver C M. Detonation reaction zones in condensed explosives[C]//Shock Compression Condensed Matter 2005. USA: American Institute of Physics, 2005: 1026-1029.

    • 19

      陈清畴, 蒋小华, 李敏, 等. HNS-IV炸药的点火增长模型[J]. 爆炸与冲击, 2012, 32(3): 328-332.

      CHEN Qing-chou, JIANG Xiao-hua, LI Min, et al. Ignition and growth reactive flow model for HNS-IV explosives[J].

      Explosion and Shock Waves, 2012, 32(3): 328-332.

    • 20

      Lubyatinsky S N, Loboiko B G. Density effect on detonation reaction zone length in solid explosives[C]//AIP Conference Proceedings, 1998, 429(1): 743-746.