CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
DippoldA A, KlapötkeT M. Nitrogen‑rich bis‑1,2,4‑triazoles‑a comparative study of structural and energetic properties[J]. Chemistry a European Journal, 2012,18(52):16742-16753.
参考文献 2
KaraghiosoffK, KlapötkeT M, MayerP, et al. Salts of methylated 5‑aminotetrazoles with energetic anions[J]. Inorganic Chemistry, 2008,47(3):1007-1019.
参考文献 3
KlapötkeT M, KrummB, MartinF A, et al. New azidotetrazoles: structurally interesting and extremely sensitive[J]. Chemistry an Asian Journal, 2012, 7(1): 214-224.
参考文献 4
KlapötkeT M, MartinF A, StierstorferJ. C2N14: An energetic and highly sensitive binary azidotetrazole[J]. Angewandte Chemie International Edition, 2011,50(18):4227-4229.
参考文献 5
StierstorferJ, KlapötkeT M, HammerlA, et al. 5‐Azido‐1H‐tetrazole improved synthesis, crystal structure and sensitivity data[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2008, 634(6‑7):1051-1057.
参考文献 6
KlapötkeT M, PierceyD G. 1,1′‑azobis(tetrazole): A highly energetic nitrogen‑rich compound with a N10 chain[J]. Inorganic Chemistry, 2011, 50(7): 2732-2734.
参考文献 7
DippoldA A, KlapötkeT M, WinterN. Insensitive nitrogen‐rich energetic compounds based on the 5,5′‐dinitro‐3,3′‐bi‐1,2,4‐triazol‐2‐ide anion[J]. European Journal of Inorganic Chemistry, 2012(21): 3474-3484.
参考文献 8
YinP, ParrishD A, ShreeveJ M. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen‑bond induced high energy density materials[J]. Journal of the American Chemical Society, 2015, 137(14): 4778-4786.
参考文献 9
HeC, ShreeveJ M. Energetic materials with promising properties: synthesis and characterization of 4,4'‑bis(5‑nitro‑1,2,3‑2H‑triazole) derivatives[J]. Angew Chem Int Ed Engl, 2015,127(21): 6358-6362.
参考文献 10
RadhakrishnanS, TalawarM B, VenugopalanS, et al. Synthesis, characterization and thermolysis studies on 3,7‑dinitro‑1,3,5,7‑tetraazabicyclo[3,3,1]nonane (DPT): a key precursor in the synthesis of most powerful benchmark energetic materials (RDX/HMX) of today[J]. Journal of Hazardous Materials, 2008, 152(3): 1317-1324.
参考文献 11
WeiH, HeC, ZhangJ, et al. Combination of 1,2,4‐oxadiazole and 1,2,5‐oxadiazole moieties for the generation of high‐performance energetic materials[J]. Angew Chem Int Ed Engl, 2015, 54(32): 9367-9371.
参考文献 12
KaushikR, KushwahaK, ChandM, et al. Design and synthesis of 2,5‐disubstituted‐1,3,4‐oxadiazole hybrids bearing pyridine and 1,2,3‐triazole pharmacophores[J]. Journal of Heterocyclic Chemistry, 2017, 54(2): 1042-1047.
参考文献 13
MetelkinaE L, NovikovaT A, BerdonosovaS N, et al. 2‑nitroguanidine derivatives: IX. reaction of 1‑amino‑2‑nitroguanidine with oxalic acid as a method of synthesis of 3(5)‑Nitroamino‑1,2,4‑triazole‑5(3)‑carboxylic acid and 5,5′‑bi(3‑nitroamino‑1,2,4‑triazole) salts[J]. Russian Journal of Organic Chemistry, 2005,41(3):440-443.
参考文献 14
DippoldA A, KlapötkeT M. A study of dinitro‑bis‑1,2,4‑triazole‑1,1′‑diol and derivatives: design of high‑performance insensitive energetic materials by the introduction of n‑oxides[J]. Journal of the American Chemical Society, 2013,135(26):9931-9938.
参考文献 15
ChavezD E, HiskeyM A, GilardiR D. 3,3′‐Azobis(6‐amino‐1,2,4,5‐tetrazine): a novel high‐nitrogen energetic material[J]. Angewandte Chemie, 2000, 39(10):1791-1793.
参考文献 16
WangR, XuH, GuoY, et al. Bis[3‑(5‑nitroimino‑1,2,4‑triazolate)]‑based energetic salts: synthesis and promising properties of a new family of high‑density insensitive materials[J]. Journal of the American Chemical Society, 2010,132(34):11904-11905.
参考文献 17
DippoldA A, KlapötkeT M, OswaldM. Asymmetrically substituted 5,5'‑bistriazoles‑nitrogen‑rich materials with various energetic functionalities[J]. Dalton Trans, 2013,42(31):11136-11145.
参考文献 18
ZhangJ, SuH, GuoS, et al. Fine‑tuning the energetic properties of complexes through ligand modification[J]. Crystal Growth & Design, 2018, 18(4): 2217-2224.
参考文献 19
武碧栋. 叠氮和重氮类新型高氮含能配合物的制备、表征及性能研究[D]. 北京: 北京理工大学, 2014.
WUBi‑dong. Studies on synthesis, characterization and properities of the novel azide and diazo energetic compounds[D]. Beijing: Beijing Institute of Technology, 2014
参考文献 20
ChenD, JingD, ZhangQ, et al. Study of six green insensitive high energetic coordination polymers based on alkali/alkali‑earth metals and 4,5‑bis(tetrazol‑5‑yl)‑2H‑1,2,3‑triazole[J]. Chemistry an Asian Journal, 2017,12(24):3141-3149.
目录 contents

    摘要

    以3‑氨基‑1H‑1,2,4‑三氮唑‑5羧酸为原料首次合成不对称结构的联三唑类富氮含能化合物3‑氨基‑3′‑硝胺基‑5,5'‑联‑1H‑1,2,4‑三唑(3),并通过红外,核磁,质谱等表征产物结构。采用差示扫描量热─热重分析联用法研究了其热稳定性和分解历程。结果表明,化合物3的分解温度达到160 ℃;利用氧弹量热仪测得标准摩尔燃烧焓ΔCHθm为-1952.25 kJ·mol-1,根据Hess定律计算得标准摩尔生成焓ΔfHθm=-336.245 kJ·mol-1,采用粉末密度仪测得粉末密度为1.6137 g·cm-3,用EXPLO 5程序预测爆压为9.6 GPa,爆速为5745.5 m·s-1,撞击感度为80 J,摩擦感度为360 N,表明该物质是一种新型不敏感含能材料。

    Abstract

    Asymmetric triazole nitrogen‑rich energetic compound 3‑amino‑3'‑nitroamino‑5,5'‑bis‑1H‑1,2,4‑triazole (3)was synthesized using 3‑amino‑1H‑1,2,4‑triazole‑5carboxylic acid as raw material for the first time, and the product structure was characterized by IR, NMR and MS. Its thermal stability and decomposition process were studied by differential scanning calorimeter (DSC) combined with thermogravimetric analysis(TG). The results show that the decomposition temperature of compound 3 is as high as 160 ℃. The standard molar enthalpy of combustion (ΔCHθm) measured by an oxygen bomb calorimeter is -1952.25 kJ·mol-1. The standard molar enthalpy of formation (ΔfHθm) calculated and obtained according to Hess's law is -336.245 kJ·mol-1. The powder density measured by powder densitometer is 1.6137 g·cm-3. The detonation pressure and detonation velocity predicted by EXPLO 5 program are 9.6 GPa and 5745.5 m·s-1, respectively. The impact and friction sensitivities of this compound are 80 J and 360 N, respectively, which shows that this compound is a new type of insensitive energetic material.

    关键词

    含能配体三唑制备表征

  • 1 引 言

    相比传统的含能化合物如2,4,6‑三硝基甲苯(TNT)、环三次甲基三硝胺(RDX),富氮杂环化合物因其具有N─N、N N、C─N、C N和N─O而具有更高的生成[1,2,3],其爆轰产物氮气对环境几乎无污染而受到广泛关[4,5,6]。其中,三唑、四唑类富氮杂环化合物由于具有较高生成热、较高密度、高含氮量和低感度等特点更是成为了富氮含能材料的研究热点。虽然1,2,4‑三唑(ΔfHθm=+109 kJ·mol-1[7]的生成焓较低,但其骨架中链状氮原子相对较少使其稳定性相对更好;同时,由于1,2,4‑三唑环上碳原子分布对称减小了位阻效应使之可衍生的致爆基团更为丰富。R─NH─NO2是一种重要的致爆基[8],当其位于1,2,4‑三唑的3位或5位碳时,整个分子具有硝基、亚胺互变结构;与碱配对,硝基的强吸电子效应可使三唑环骨架或与其相连的含氢碳链去质子化而形成高能离子盐,引入此基团是修饰富氮杂环、增加爆轰性能、合成稳定高能材料的有效手[9,10,11,12,13]

    5,5'‑联‑1,2,4‑三唑含氮量为61.74%,通过在碳原子上引入不同的取代基,如NH2、NO2、NHNO2,可调控化合物的爆轰性能。目前,5,5'‑联‑1H‑1,2,4‑三唑的衍生物主要结构有3,3'‑二氨基‑5,5'‑联‑1H‑ 1,2,4‑三唑(H2DABT)、3,3'‑二硝基‑5,5'‑联‑1H‑ 1,2,4‑三唑(H2DNBT)、3,3'‑二硝胺基‑5,5'‑联‑1H‑ 1,2,4‑三唑(H2DNABT)、3‑氨基‑3'‑硝基‑5,5'‑联‑1H‑ 1,2,4‑三唑(ANBT)和3‑硝基‑3'‑硝胺基‑5,5'‑联‑1H‑ 1,2,4‑三唑(NNBT)、3‑氨基‑3'‑硝胺基‑5,5'‑联‑1H‑ 1,2,4‑三唑。Dippold[14]等以乙二醇和氨基胍盐酸盐为原料,合成H2DABT。Alexander[7,15,16]通过对H2DABT氧化、硝化和硝胺化制备出H2DNBT、H2DNABT、ANBT和NNBT;其中H2DNBT的密度高(1.9 g·cm-3)、爆速高8413 m·s-1),ANBT热稳定性好(分解温度为255 ℃),NNBT爆热高(3967 K)。这五种化合物可与碱性物质反应制备高能离子盐,其中H2DNBT的羟胺离子[15]具有撞击感度低(40 J,RDX为7 J)、热稳定性好(分解温度204 ℃)的特点;NNBT与羟胺反应得到的离子[16]爆速较高(8706 m·s-1)。Wang[17]制备得到的H2DNBT碳酰肼盐密度达到1.95 g·cm-3,爆速为9399 m·s-1,而与氨水反应制备得到的离子盐爆速达到9407 m·s-1。另外,此类联三唑化合物还可与金属反应制备金属配位化合物,庞思平[18]制备得到的[Cu(H2DNABT)(H2O)4]具有良好的爆轰性能与安全性(爆速为7220 m·s-1,撞击感度为17 J)。由此可见,5,5'‑联‑1H‑1,2,4‑三唑骨架衍生物具有作为高能、绿色、安全的含能材料的潜能。但3‑氨基‑3'‑硝胺基‑5,5'‑联‑1H‑1,2,4‑三唑的合成还未有过报道,属于未知化合物。

    因此,本研究以3‑氨基‑3′‑硝胺基‑5,5'‑联‑1H‑ 1,2,4‑三唑为目标化合物,确定了一条制备条件温和、步骤简便、目标产物收率高的绿色路线,同时对产物结构进行了表征,并评估其作为含能材料的潜在价值。

  • 2 实验部分

  • 2.1 试剂与仪器

    3‑氨基‑1H‑1,2,4‑三氮唑‑5羧酸,阿法埃莎(Alfa Aesa)中国化学有限公司;N‑甲基‑N硝基‑N亚硝基胍(MNNG),梯希爱(上海)化成工业发展有限公司;氢氧化钾,阿拉丁;80%水合肼,成都市联合化工试剂研究所;无水乙醇,50%发烟硫酸,硝酸,均为成都科隆化学品有限公司。所有试剂均为分析纯。

    分析天平(METTLER TOLEDO AL204);磁力搅拌器(Heidolph MR Hei‑Mix S);质谱仪(Agilent Varian 325‑LC‑MS);红外分析仪(Nicolet islo);核磁共振仪(Bruker AVANCE 400);差示扫描量热仪(TGA/DSC2,METTLER TOLEDO STAR e system);粉末密度仪(Micromeritics AccuPyc Ⅱ 1340);氧弹热量计(IKA@ C5000)。

  • 2.2 合成路线

    3‑氨基‑3′‑硝胺基‑5,5'‑联‑1,2,4‑三唑的合成路线如Scheme 1所示。

  • 2.3 实验过程

  • 2.3.1 3‑氨基‑1H‑1,2,4‑三唑‑5‑羧酸甲酯(1)的合成

    在250 mL三颈瓶中加入无水甲醇90 mL,称取3‑氨基‑1H‑1,2,4‑三氮唑‑5羧酸12.8 g(10 mmol),搅拌使其悬浮于无水甲醇,取6 mL 50%发烟H2SO4缓慢滴加于反应液,升温至85 ℃回流反应12 h。自然冷却,旋蒸除去部分甲醇,析出3‑氨基‑1H‑1,2,4‑三唑‑5‑羧酸甲酯硫酸盐沉淀。向沉淀中加入20 mL蒸馏水,用NaOH (5 mol·L-1)调节pH为5~6,抽滤得到白色沉淀,用无水乙醇洗涤2~3次,干燥得到3‑氨基‑1H‑1,2,4‑三唑‑5‑羧酸甲酯(产率73%)。IR (KBr,ν/cm-1):3341 (m),3139 (m),2609 (w),1720 (m),1682(s),1557(s),1523(w),1483(m),1437(m),1211(s),1127(m),882(s),778(m);MS(ESI),m/z:141.0[C4H5N4O2-],110.7[C3H3N4O-]13C NMR(125 MHz,D2O/NaOH‑d2,25 ℃)δ:164.7,163.21,157.92,48.86。

    Scheme 1 Synthetic route of N‑(5'‑amino‑1H,1'H‑[3,3'‑bi(1,2,4‑triazol)]‑5‑yl) nitramide

  • 2.3.2 3‑氨基‑1H‑1,2,4‑三唑‑5‑碳酰肼(2)的合成

    向50 mL单口瓶加入3‑氨基‑1H‑1,2,4‑三唑‑5‑羧酸甲酯4.26 g(30 mmol),缓慢滴加80%水合肼9.6 mL,70 ℃搅拌反应2 h,冷却至室温,乙酸调节pH为5,抽滤得到白色固体,干燥制得3‑氨基‑1H‑ 1,2,4‑三唑‑5‑碳酰肼(产率85%)。IR (KBr,ν/cm-1):3409(m),3308(s),3159(w),2931(m),1677(s),1651(m),1580(m),1498(s),1250(s),1130(s),1044(s),820(s),722(s),574 (m);MS(ESI),m/z:140.9[C3H5N6O-],110.9[C3H3N4O-]13C NMR (125 MHz,D2O/NaOH‑d2,25 ℃)δ:164.3,162.2,153.87。

  • 2.3.3 3‑氨基‑3′‑硝胺基‑5,5′‑联⁃1H‑1,2,4‑三唑(3)的合成

    向100 mL三口瓶中加入3‑氨基‑1H‑1,2,4‑三唑‑5‑碳酰肼2.1 g(14.8 mmol)并悬浮于20 mL去离子水,取4.35 g(含水量50%,30 mmol)MNNG悬浮于20 mL甲醇后缓慢滴加于反应液中,升温至80 ℃回流反应2 h。冷却至50 ℃以下,缓慢加入KOH水溶液(KOH/H2O=2.8 g/15 mL),再升温至80 ℃回流反应3 h;冷却至室温,用HNO3调节pH至3~4,冷却过夜,抽滤得到黄色沉淀,用无水乙醇洗涤2次,干燥得到黄色固体(产率93%)。IR (KBr,ν/cm-1):3206(m),2957(m),2767(w),1698(s),1510(m),1314(m),1252(w),1229(w),1076(s),1038(m),850(w),974 (s),767 (s),710 (s);MS (ESI),m/z:209.9 [C4H4N9O2-]13C NMR(125 MHz,D2O/NaOH‑d2,25 ℃)δ:161.9,163.08,154.5,155.32。

  • 2.3.4 3‑氨基‑3′‑硝胺基‑5,5′‑联⁃1H‑1,2,4‑三唑(3)恒压反应热的测定

    称量苯甲酸800 mg、待测样200 mg研磨、混合、压片,采用氧弹热量计测得恒压反应热,单次测量3组求得平均值为恒压反应热。

  • 3 结果与讨论

  • 3.1 目标产物IR与13C NMR表征分析

    化合物1-3的红外谱图如图1所示,核磁共振碳谱(13C NMR)特征峰列于图2

    图1
                            化合物1-3的红外光谱图

    图1 化合物1-3的红外光谱图

    Fig.1 Infrared spectra of compounds 1-3

    图2
                            物质1-3的13C NMR谱

    图2 物质1-313C NMR谱

    Fig.2 13C NMR spectra of substances 1-3

    由文献[19]可知,三唑环的骨架振动在1400~1500,820 cm-1附近,─NH2的弯曲振动吸收峰为3000~3400,2500 cm-1。3‑氨基‑1H‑1,2,4‑三氮唑‑ 5羧酸通过酯化反应合成化合物1,从红外谱图(图1)可清晰找到三唑骨架振动1557,1437,822 cm-1、新增的酯基振动峰(1211 cm-1);同时化合物113C NMR数据中显示该结构中含有四种不同化学环境的碳原子,其峰位分别为164.7,163.21,157.92,48.86,其中48.86为其特有的甲酯基端碳位移;采用质谱仪获得了该分子质谱数据,得到荷质比(m/z)为141.0,110.7的两个峰,分别为化合物1失去[H+]和[CH3O+]的离子峰(理论值分别为m/z=141.05,111.05)。综合表明通过浓硫酸作为催化剂的简单方法获得了甲酯化产品,收率可达73%。

    化合物1经肼解生成化合物2(3‑氨基‑1H‑1,2,4‑三唑‑5‑碳酰肼),红外谱图中显示的1534 cm-1与1250 cm-1为碳酰肼特有的酰胺Ⅱ带、酰胺Ⅲ带吸收峰13C NMR数据显示该结构中只含有三种环境的碳元素,原有的48.86的甲酯基碳峰消失,同时该三种碳峰位与化合物1中对应位置的碳峰位相比化学位移下降,说明共轭效应增加;其质谱负离子谱图中存在荷质比(m/z)为140.9的负离子峰(理论值m/z=141.06),此为3‑氨基‑1H‑1,2,4‑三唑‑5‑碳酰肼失去一个[H+]的碎片峰。由此可综合证明化合物2合成成功,得率为85%。

    利用化合物2中的碳酰肼与MNNG进行关环反应,可一步生成最终目标化合物3。从化合物3的IR谱图可知,该产品结构含有三唑骨架,其吸收峰分别在1557,1437,822 cm-1处,而3206、2597 cm-1处为─NH2的弯曲振动吸收峰,谱图并未显示─C O的吸收峰,推测是甲酰肼基上的羰基已经与MNNG进行了关环脱水反应;同时,在1318 cm-1处出现NO2吸收峰,进一步表明MNNG与甲酰肼基进行了关环反应生成了3‑硝胺基‑1H‑1,2,4‑三唑基。另外,该化合物13C NMR数据显示其含有四种环境碳元素,与产物2相比增加一种,且对应位置的化学位移值下降,证明产物存在大共轭。综合分析该化合物的红外与核磁数据可知该产物中存在着三唑环、氨基和硝基且含有四种化学环境的碳;质谱分析得到该产物荷质比(m/z)为209.9离子峰,此为失去一个[H+]的碎片峰(理论值m/z=210.06),综合分析所获得最终产物为3‑氨基‑3′‑硝胺基‑5,5′‑联‑1H‑1,2,4‑三唑,该步反应产率可达93%。

  • 3.2 3‑氨基‑3'‑硝胺基‑5,5'‑联⁃1H‑1,2,4‑三唑(3)热分析

    采用热重‑差示扫描量热联用(TG‑DSC)分析化合物3的热行为,升温速率为5 K·min-1。结果见图3。由图3可知其起始分解温度为160 ℃。化合物3有两个放热峰,峰温分别为225,297 ℃。第一个放热峰峰形较宽,跨度较大,说明化合物在此温度附近分解缓慢、放热量小;第二个放热峰尖而窄,说明该温度下化合物迅速分解、大量放热。同时,化合物3只存在一个失重过程,说明化合物经历的两个热分解过程是连续不间断的,未达熔点即开始分解,整个过程为固相分解过程,质量损失为36.26%。

    图3
                            3‑氨基‑3′‑硝胺基‑5,5'‑联⁃1H‑1,2,4‑三唑的TG‑DSC曲线

    图3 3‑氨基‑3′‑硝胺基‑5,5'‑联⁃1H‑1,2,4‑三唑的TG‑DSC曲线

    Fig.3 TG‑DSC curve of N‑(5'‑amino‑1H,1'H‑[3,3'‑bi(1,2,4‑triazol)]‑5‑yl) nitramide

  • 3.3 爆轰能力与安全性评估

    为了测定化合物3的爆轰性能,采用氧弹仪实测恒压反应热转换得到的标准摩尔燃烧焓为-1952.25 kJ·mol-1,根据该数值结合EXPLO 5程序预测其爆轰性能。化合物测得的恒压反应热(ΔCU)可以基于等式(1)转换成标准摩尔燃烧焓(ΔCHθm),产物3的完全燃烧反应方程式如式(a)所示。再根据公式(2)即可求得标准摩尔生成[20]

    ΔCHmθ=ΔCU+ΔnRT
    (1)

    式中,Δn=ng()-ng()ng为产物或反应物气体摩尔总和,R=8.314 J·mol-1·K-1,T=298.15 K。

    C4H5N9O2+17/4O2(g)=4CO2(g)+5/2H2O(l)+9/2N2(g)(a)
    ΔfHmθ() =ΔfHmθ() -ΔCHmθ()
    (2)

    式中,ΔfHmθ(CO2,g)=-393.5 kJ·mol-1ΔfHmθ(H2O,l)=-285.8 kJ·mol-1

    根据Hess定律计算得标准摩尔生成焓ΔfHmθ=-336.245 kJ·mol-1

    采用粉末密度仪测定3‑氨基‑3′‑硝胺基‑ 5,5'‑联‑1H‑1,2,4‑三唑的粉末密度。平行试验三次求得平均值为1.6137 g·cm-3;采用EXPLO 5程序预测其爆压为9.6 GPa,爆速为5745.5 m·s-1

    采用BAM落锤撞击感度仪测得该化合物的撞击感度为80 J,利用BAM摩擦感度仪测得该化合物的摩擦感度为360 N,证明该化合物为不敏感含能材[18]

  • 4 结 论

    (1) 首次以3‑氨基‑1H‑1,2,4‑三氮唑‑5羧酸为原料成功合成3‑氨基‑3′‑硝胺基‑5,5'‑联‑1H‑1,2,4‑三唑,产物总收率57.7%。

    (2) 制备所得3‑氨基‑3′‑硝胺基‑5,5'‑联‑1,2,4‑三唑密度为1.6137 g·cm-3、分解温度为160 ℃。

    (3) 实测得到标准摩尔燃烧焓ΔCHθm值为-1952.25 kJ·mol-1,标准摩尔生成焓ΔfHθm=-336.245 kJ·mol-1;预测其爆压为9.6 GPa、爆速为5745.5 m·s-1;实测其撞击感度80 J,摩擦感度为360 N,属于不敏感含能材料。

    (责编:张 琪)

  • 参考文献

    • 1

      Dippold A A, Klapötke T M. Nitrogen‑rich bis‑1,2,4‑triazoles‑a comparative study of structural and energetic properties[J]. Chemistry a European Journal, 2012,18(52):16742-16753.

    • 2

      Karaghiosoff K, Klapötke T M, Mayer P, et al. Salts of methylated 5‑aminotetrazoles with energetic anions[J]. Inorganic Chemistry, 2008,47(3):1007-1019.

    • 3

      Klapötke T M, Krumm B, Martin F A, et al. New azidotetrazoles: structurally interesting and extremely sensitive[J]. Chemistry an Asian Journal, 2012, 7(1): 214-224.

    • 4

      Klapötke T M, Martin F A, Stierstorfer J. C2N14: An energetic and highly sensitive binary azidotetrazole[J]. Angewandte Chemie International Edition, 2011,50(18):4227-4229.

    • 5

      Stierstorfer J, Klapötke T M, Hammerl A, et al. 5‐Azido‐1H‐tetrazole improved synthesis, crystal structure and sensitivity data[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2008, 634(6‑7):1051-1057.

    • 6

      Klapötke T M, Piercey D G. 1,1′‑azobis(tetrazole): A highly energetic nitrogen‑rich compound with a N10 chain[J]. Inorganic Chemistry, 2011, 50(7): 2732-2734.

    • 7

      Dippold A A, Klapötke T M, Winter N. Insensitive nitrogen‐rich energetic compounds based on the 5,5′‐dinitro‐3,3′‐bi‐1,2,4‐triazol‐2‐ide anion[J]. European Journal of Inorganic Chemistry, 2012(21): 3474-3484.

    • 8

      Yin P, Parrish D A, Shreeve J M. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen‑bond induced high energy density materials[J]. Journal of the American Chemical Society, 2015, 137(14): 4778-4786.

    • 9

      He C, Shreeve J M. Energetic materials with promising properties: synthesis and characterization of 4,4'‑bis(5‑nitro‑1,2,3‑2H‑triazole) derivatives[J]. Angew Chem Int Ed Engl, 2015,127(21): 6358-6362.

    • 10

      Radhakrishnan S, Talawar M B, Venugopalan S, et al. Synthesis, characterization and thermolysis studies on 3,7‑dinitro‑1,3,5,7‑tetraazabicyclo[3,3,1]nonane (DPT): a key precursor in the synthesis of most powerful benchmark energetic materials (RDX/HMX) of today[J]. Journal of Hazardous Materials, 2008, 152(3): 1317-1324.

    • 11

      Wei H, He C, Zhang J, et al. Combination of 1,2,4‐oxadiazole and 1,2,5‐oxadiazole moieties for the generation of high‐performance energetic materials[J]. Angew Chem Int Ed Engl, 2015, 54(32): 9367-9371.

    • 12

      Kaushik R, Kushwaha K, Chand M, et al. Design and synthesis of 2,5‐disubstituted‐1,3,4‐oxadiazole hybrids bearing pyridine and 1,2,3‐triazole pharmacophores[J]. Journal of Heterocyclic Chemistry, 2017, 54(2): 1042-1047.

    • 13

      Metelkina E L, Novikova T A, Berdonosova S N, et al. 2‑nitroguanidine derivatives: IX. reaction of 1‑amino‑2‑nitroguanidine with oxalic acid as a method of synthesis of 3(5)‑Nitroamino‑1,2,4‑triazole‑5(3)‑carboxylic acid and 5,5′‑bi(3‑nitroamino‑1,2,4‑triazole) salts[J]. Russian Journal of Organic Chemistry, 2005,41(3):440-443.

    • 14

      Dippold A A, Klapötke T M. A study of dinitro‑bis‑1,2,4‑triazole‑1,1′‑diol and derivatives: design of high‑performance insensitive energetic materials by the introduction of n‑oxides[J]. Journal of the American Chemical Society, 2013,135(26):9931-9938.

    • 15

      Chavez D E, Hiskey M A, Gilardi R D. 3,3′‐Azobis(6‐amino‐1,2,4,5‐tetrazine): a novel high‐nitrogen energetic material[J]. Angewandte Chemie, 2000, 39(10):1791-1793.

    • 16

      Wang R, Xu H, Guo Y, et al. Bis[3‑(5‑nitroimino‑1,2,4‑triazolate)]‑based energetic salts: synthesis and promising properties of a new family of high‑density insensitive materials[J]. Journal of the American Chemical Society, 2010,132(34):11904-11905.

    • 17

      Dippold A A, Klapötke T M, Oswald M. Asymmetrically substituted 5,5'‑bistriazoles‑nitrogen‑rich materials with various energetic functionalities[J]. Dalton Trans, 2013,42(31):11136-11145.

    • 18

      Zhang J, Su H, Guo S, et al. Fine‑tuning the energetic properties of complexes through ligand modification[J]. Crystal Growth & Design, 2018, 18(4): 2217-2224.

    • 19

      武碧栋. 叠氮和重氮类新型高氮含能配合物的制备、表征及性能研究[D]. 北京: 北京理工大学, 2014.

      WU Bi‑dong. Studies on synthesis, characterization and properities of the novel azide and diazo energetic compounds[D]. Beijing: Beijing Institute of Technology, 2014

    • 20

      Chen D, Jing D, Zhang Q, et al. Study of six green insensitive high energetic coordination polymers based on alkali/alkali‑earth metals and 4,5‑bis(tetrazol‑5‑yl)‑2H‑1,2,3‑triazole[J]. Chemistry an Asian Journal, 2017,12(24):3141-3149.

王霆威

机 构:

1. 南京理工大学化工学院, 江苏 南京 210094

2. 中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:

1. School of Chemical Engineering,Nanjing University of Science and Technology, Nanjing 210094, China

2. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

邮 箱:1157873476@qq.com

作者简介:王霆威(1994-),男,硕士研究生,主要从事含能材料的有机合成研究。e‑mail:1157873476@qq.com

李燕

机 构:南京理工大学化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering,Nanjing University of Science and Technology, Nanjing 210094, China

陈东

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

张祺

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

角 色:通讯作者

Role:Corresponding author

邮 箱:jackzhang531@caep.cn

作者简介:张祺(1983-),男,副教授,主要从事含能金属配合物的研究。e‑mail:jackzhang531@caep.cn

朱顺官

机 构:南京理工大学化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering,Nanjing University of Science and Technology, Nanjing 210094, China

角 色:通讯作者

Role:Corresponding author

邮 箱:zhusg@mail.njust.edu.cn

作者简介:朱顺官(1962-),男,研究员,主要从事火工药剂、起爆药的研究。e‑mail:zhusg@mail.njust.edu.cn

html/hncl/CJEM2018300/media/adf0a63d-253e-4b4b-8f90-8f642f1ef80c-image001.png
html/hncl/CJEM2018300/alternativeImage/adf0a63d-253e-4b4b-8f90-8f642f1ef80c-F002.png
html/hncl/CJEM2018300/alternativeImage/adf0a63d-253e-4b4b-8f90-8f642f1ef80c-F003.png
html/hncl/CJEM2018300/media/adf0a63d-253e-4b4b-8f90-8f642f1ef80c-image004.png

Scheme 1 Synthetic route of N‑(5'‑amino‑1H,1'H‑[3,3'‑bi(1,2,4‑triazol)]‑5‑yl) nitramide

图1 化合物1-3的红外光谱图

Fig.1 Infrared spectra of compounds 1-3

图2 物质1-313C NMR谱

Fig.2 13C NMR spectra of substances 1-3

图3 3‑氨基‑3′‑硝胺基‑5,5'‑联⁃1H‑1,2,4‑三唑的TG‑DSC曲线

Fig.3 TG‑DSC curve of N‑(5'‑amino‑1H,1'H‑[3,3'‑bi(1,2,4‑triazol)]‑5‑yl) nitramide

image /

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Dippold A A, Klapötke T M. Nitrogen‑rich bis‑1,2,4‑triazoles‑a comparative study of structural and energetic properties[J]. Chemistry a European Journal, 2012,18(52):16742-16753.

    • 2

      Karaghiosoff K, Klapötke T M, Mayer P, et al. Salts of methylated 5‑aminotetrazoles with energetic anions[J]. Inorganic Chemistry, 2008,47(3):1007-1019.

    • 3

      Klapötke T M, Krumm B, Martin F A, et al. New azidotetrazoles: structurally interesting and extremely sensitive[J]. Chemistry an Asian Journal, 2012, 7(1): 214-224.

    • 4

      Klapötke T M, Martin F A, Stierstorfer J. C2N14: An energetic and highly sensitive binary azidotetrazole[J]. Angewandte Chemie International Edition, 2011,50(18):4227-4229.

    • 5

      Stierstorfer J, Klapötke T M, Hammerl A, et al. 5‐Azido‐1H‐tetrazole improved synthesis, crystal structure and sensitivity data[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2008, 634(6‑7):1051-1057.

    • 6

      Klapötke T M, Piercey D G. 1,1′‑azobis(tetrazole): A highly energetic nitrogen‑rich compound with a N10 chain[J]. Inorganic Chemistry, 2011, 50(7): 2732-2734.

    • 7

      Dippold A A, Klapötke T M, Winter N. Insensitive nitrogen‐rich energetic compounds based on the 5,5′‐dinitro‐3,3′‐bi‐1,2,4‐triazol‐2‐ide anion[J]. European Journal of Inorganic Chemistry, 2012(21): 3474-3484.

    • 8

      Yin P, Parrish D A, Shreeve J M. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen‑bond induced high energy density materials[J]. Journal of the American Chemical Society, 2015, 137(14): 4778-4786.

    • 9

      He C, Shreeve J M. Energetic materials with promising properties: synthesis and characterization of 4,4'‑bis(5‑nitro‑1,2,3‑2H‑triazole) derivatives[J]. Angew Chem Int Ed Engl, 2015,127(21): 6358-6362.

    • 10

      Radhakrishnan S, Talawar M B, Venugopalan S, et al. Synthesis, characterization and thermolysis studies on 3,7‑dinitro‑1,3,5,7‑tetraazabicyclo[3,3,1]nonane (DPT): a key precursor in the synthesis of most powerful benchmark energetic materials (RDX/HMX) of today[J]. Journal of Hazardous Materials, 2008, 152(3): 1317-1324.

    • 11

      Wei H, He C, Zhang J, et al. Combination of 1,2,4‐oxadiazole and 1,2,5‐oxadiazole moieties for the generation of high‐performance energetic materials[J]. Angew Chem Int Ed Engl, 2015, 54(32): 9367-9371.

    • 12

      Kaushik R, Kushwaha K, Chand M, et al. Design and synthesis of 2,5‐disubstituted‐1,3,4‐oxadiazole hybrids bearing pyridine and 1,2,3‐triazole pharmacophores[J]. Journal of Heterocyclic Chemistry, 2017, 54(2): 1042-1047.

    • 13

      Metelkina E L, Novikova T A, Berdonosova S N, et al. 2‑nitroguanidine derivatives: IX. reaction of 1‑amino‑2‑nitroguanidine with oxalic acid as a method of synthesis of 3(5)‑Nitroamino‑1,2,4‑triazole‑5(3)‑carboxylic acid and 5,5′‑bi(3‑nitroamino‑1,2,4‑triazole) salts[J]. Russian Journal of Organic Chemistry, 2005,41(3):440-443.

    • 14

      Dippold A A, Klapötke T M. A study of dinitro‑bis‑1,2,4‑triazole‑1,1′‑diol and derivatives: design of high‑performance insensitive energetic materials by the introduction of n‑oxides[J]. Journal of the American Chemical Society, 2013,135(26):9931-9938.

    • 15

      Chavez D E, Hiskey M A, Gilardi R D. 3,3′‐Azobis(6‐amino‐1,2,4,5‐tetrazine): a novel high‐nitrogen energetic material[J]. Angewandte Chemie, 2000, 39(10):1791-1793.

    • 16

      Wang R, Xu H, Guo Y, et al. Bis[3‑(5‑nitroimino‑1,2,4‑triazolate)]‑based energetic salts: synthesis and promising properties of a new family of high‑density insensitive materials[J]. Journal of the American Chemical Society, 2010,132(34):11904-11905.

    • 17

      Dippold A A, Klapötke T M, Oswald M. Asymmetrically substituted 5,5'‑bistriazoles‑nitrogen‑rich materials with various energetic functionalities[J]. Dalton Trans, 2013,42(31):11136-11145.

    • 18

      Zhang J, Su H, Guo S, et al. Fine‑tuning the energetic properties of complexes through ligand modification[J]. Crystal Growth & Design, 2018, 18(4): 2217-2224.

    • 19

      武碧栋. 叠氮和重氮类新型高氮含能配合物的制备、表征及性能研究[D]. 北京: 北京理工大学, 2014.

      WU Bi‑dong. Studies on synthesis, characterization and properities of the novel azide and diazo energetic compounds[D]. Beijing: Beijing Institute of Technology, 2014

    • 20

      Chen D, Jing D, Zhang Q, et al. Study of six green insensitive high energetic coordination polymers based on alkali/alkali‑earth metals and 4,5‑bis(tetrazol‑5‑yl)‑2H‑1,2,3‑triazole[J]. Chemistry an Asian Journal, 2017,12(24):3141-3149.