CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
FischerN, FischerD, KlapötkeT M, et al. Pushing the limits of energetic materials‑the synthesis and characterization of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Journal of Materials Chemistry, 2012, 22: 20418-20422.
参考文献 2
DregerA Z, StashA I, YuZ G, et al. High‑pressure structural response of an insensitive energeticcrystal: dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate(TKX‑50)[J]. The Journal of Physical Chemistry C, 2017, 121: 5761-5767.
参考文献 3
GottfriedJ L, KlapötkeTM, WitkowskiT G, et al. Estimated detonation velocities for TKX‑50, MAD‑X1, BDNAPM, BTNPM, TKX‑55, and DAAF using the laser‑induced air shock from energetic materials technique[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4): 353-359.
参考文献 4
MengL Y, LuZ P, WeiX F, et al. Two‑sided effects of strong hydrogen bonding on the stability of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate(TKX‑50)[J]. Cryst Eng Comm, 2016, 18(13): 2258-2267.
参考文献 5
WangJ F, ChenS S,YaoQ, et al. Preparation, characterization, thermal evaluation and sensitivities of TKX‑50/GO composite[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(9): 1104-1110.
参考文献 6
居平文, 凌亦飞, 谷玉凡, 等.TKX‑50合成方法改进[J]. 含能材料, 2015, 23(9): 887-891.
JUPing‑wen, LINGYi‑fei, GUYu‑fan, et al. Improved synthesis of TKX‑50[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(9): 887-891.
参考文献 7
JiaJ H, LiuY, HuangS L, et al. Crystal structure transformation and step‑by‑stepthermal decomposition behavior ofdihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. RSC Advances, 2017, 7: 49105-49113.
参考文献 8
宗和厚, 张伟斌, 李华荣, 等.TKX‑50高压下结构、力学性质及电子特性的第一性原理研究[J]. 含能材料, 2018, 26(1): 46−52.
ZONGHe‑hou, ZHANGWei‑bin, LIHua‑rong, et al. Structural, mechanical and electronic properties of dihydroxylammonium 5,5‑bistetrazole‑1,1‑diolate(TKX‑50) under high pressuses: a fisrt‑principles study[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1): 46-52.
参考文献 9
余一, 张蕾, 姜胜利, 等.TKX‑50热分解氮气形成机理的分子动力学模拟[J]. 含能材料, 2018, 26(1): 75-79.
YUYi, ZHANGLei, JIANGSheng‑li, et al. Molecular simulation on the nitrogen generation in thermal decomposition of TKX‑50[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1): 75-79.
参考文献 10
AnQ, ChengT, GoddardW A, et al. Anisotropic impact sensitivity and shock induced plasticity of TKX‑50 (Dihydroxylammonium 5,5′‑bis(tetrazole)‑1,1′‑diolate) singlecrystals: from large‑scale molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2015, 119: 2196-2207.
参考文献 11
LuZ P, XueX G, ZhangC Y, et al. A theoretical prediction on the shear‑inducedphase transformation of TKX‑50[J]. Physical Chemistry Chemical Physics, 2017, 19: 31054-31062.
参考文献 12
AnQ, LiuW G, GoddardW A, et al. Initial steps of thermal decomposition of dihydroxylammonium5,5′‑bistetrazole‑1,1′‑diolate crystals from quantum mechanics[J]. The Journal of Physical Chemistry C, 2014, 118: 27175-27181.
参考文献 13
HuangH F, ShiY M, YangJ, et al. Compatibility study of dihydroxylammonium 5,5′‑Bistetrazole‑1,1′‑diolate(TKX‑50) with some energetic materials and inert materials[J]. Journal of Energetic Materials, 2015, 33(1): 66-72.
参考文献 14
HuangB, QiaoZ Q, NieF D, et al. Fabrication of FOX‑7 quasi‑three‑dimensional grids of one‑dimensionalnanostructures via a spray freeze‑drying technique and size‑dependence ofthermal properties[J]. Journal of Hazardous Materials, 2010, 184: 561-566.
参考文献 15
HuangB, CaoM H, NieF D, et al. Construction and properties of structure‑ and size‑controlled micro/nano‑energetic materials[J]. Defence Technology, 2013, 9 (2): 59-79.
参考文献 16
ZhangH L, LiuY, LiS C, et al. Three‑dimensional hierarchical 2,2,4,4,6,6‑hexanitrostilbene crystalline clusters prepared bycontrollablesupramolecular assembly anddeaggregation process[J]. Cryst Eng Comm, 2016, 18(41): 7940-7944.
参考文献 17
DengP, LiuY, LuoP, et al. Two‑steps synthesis of sandwich‑like graphene oxide/LLM‑105 nanoenergetic composites using functionalized graphene[J]. Materials Letters, 2017, 194: 156-159.
目录 contents

    摘要

    为了研究纳米化1,1′‑二羟基‑5,5'‑联四唑二羟铵盐(TKX‑50)的热分解性能与燃烧特性,采用快速冷冻干燥法制备了具有网络纳米结构的TKX‑50样品,用扫描电子显微镜(SEM)、X射线衍射仪(XRD)对其进行形貌、结构表征,用热重分析‑差示扫描量热(TG‑DSC)分析了热分解性能,用相机拍摄燃烧过程,讨论了纳米化结构对TKX‑50热分解以及燃烧过程的影响。结果表明,采用快速冷冻干燥法得到的纳米化TKX‑50具有纳米级网络骨架连接结构和良好的晶型稳定性;纳米化TKX‑50两步热分解峰温为238.0 ℃和267.7 ℃,与原料TKX‑50相比分别降低了12.1 ℃与5.6 ℃。纳米化TKX‑50样品具有较低的点火延迟,以及更快的燃烧速率,表明对比原料TKX‑50,采用快速冷冻干燥法制备的具有纳米网络结构的TKX‑50样品的表面活性原子和基团增多,样品易活化,促进了TKX‑50热分解以及燃烧。

    Abstract

    To study the thermal decomposition properties and combustion characteristics of nano‑scale dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate(TKX‑50), TKX‑50 samples with network‑like nanostructure were prepared by rapid freeze‑drying method. Their morphologies and structures were characterized by scanning electron microscope(SEM)and X‑ray diffractometer (XRD). Thermal decomposition properties were measured by thermogravimetric analysis‑differential scanning calorimetry (TG‑DSC). Combustion process was tested by camera. The effects of nano‑sized structure on the thermal decomposition and combustion characteristics of TKX‑50 were discussed. Results show that the nano‑scale TKX‑50 obtained by rapid freeze‑drying method has a nano‑level network‑like connection structure and good crystal stability. The two‑step thermal decomposition peak temperatures of nano‑scaleTKX‑50 are 238.0 ℃ and 267.7 ℃, compared with raw TKX‑50, which are decreased by 12.1 ℃ and 5.6 ℃, respectively. The nano‑scaleTKX‑50 samples have lower ignition delay and higher burning rate, revealing that compared with raw TKX‑50, the surface active atoms and groups of nano‑scale TKX‑50 samples prepared by rapid freeze‑drying method are increased and samples are easily activated, which promotes the thermal decomposition and combustion of TKX‑50.

  • 1 引 言

    1

    富氮高能量密度化合物1,1′‑二羟基‑5,5'‑联四唑二羟铵盐(TKX‑50)是Thomas M. Klapötke[1]于2012年首次合成的新型含能材料。与传统的硝基、硝胺以及硝酸酯类含能材料相比,富氮杂环类化合物TKX‑50因其独特的联四唑环上连氧原子化学结构,具有较高的氮含量、正的生成焓以及较高的密度,表现出了极大的潜[2]。据报[3,4],TKX‑50的理论爆速(9698 m·s-1)高于2,4,6‑三硝基甲苯(TNT,7459 m·s-1)、1,3,5‑三硝基1,3,5‑三氮杂环己烷(RDX, 8983 m·s-1)、β型1,3,5,7‑四硝基‑1,3,5,7‑四氮杂环辛烷(β‑HMX, 9221 m·s-1)和ε型六硝基六氮杂异伍兹烷(ε‑CL‑20, 9455 m·s-1),且具有较高的放气量。在安全性方面,TKX‑50独特的化学结构规避了含能官能团硝基的限制,化学稳定性也得到了极大改善,对热刺激与机械刺激表现为钝感。例如,TKX‑50的撞击感度为20 J,与TNT(15 J)、RDX(7.5 J)、HMX(7 J)以及CL‑20(4 J)相比表现更为钝感;在摩擦感度方面,TKX‑50炸药(120 N)也优于β‑HMX(112 N)以及ε‑CL‑20(48 N)[5]。此外,TKX‑50的合成方法简便,工艺简单易行,原料低廉,且毒性较[6]。因此,TKX‑50炸药有望成为未来武器弹药中重要含能成分,特别是在推进剂领域表现出光明的应用前景。

    TKX‑50优良的综合性能引起了国内外究者的广泛关注。特别是在TKX‑50合成,热分解行为、性能及机理,分子结构,相容性,高压稳定性以及TKX‑50基高聚物粘结炸药(PBX)特性方面具有一定研究,且取得了一定进[4,6,7,8,9,10,11,12,13],但在其微观结构调控方面的研究还未见报道。而研究表明,超细化技术可以有效调控炸药微观特征和结晶形态,同时所获得的微纳米炸药颗粒兼具特有的小尺寸效应、协同效应和耦合效应,以及更大的比表面积,对提升其燃烧和爆轰性能具有积极意[14]。因此,构筑具有特定微观结构的炸药晶体是提升和改善炸药性能的重要途径,也是目前高能钝感炸药的重要研究方[15,16]。然而,当前对TKX‑50特定微观结构研究并不多,且其微观结构与性能的构效关系还有待深入研究。基于此,本实验采用快速冷冻干燥法,制备了TKX‑50网络纳米结构,研究了纳米化TKX‑50的热分解以及燃烧特性,讨论了纳米结构对TKX‑50热分解以及燃烧过程影响,以期为TKX‑50微观结构调控研究以及后期应用提供参考。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    试剂:原料TKX‑50,中国工程物理研究院化工材料研究所;液氮,太原市泰能气体有限公司;去离子水,由实验室自制。

    仪器:FD‑1A‑50型真空冷冻干燥机,北京博医康实验仪器有限公司;Philips X′Pert Pro型X射线粉末衍射仪,荷兰帕纳科公司,步进角度为0.02°,管电压40 KV,管电流40 mA;Ultra 55型冷场发射扫描电子显微镜,德国蔡司公司,加载电压:5 KV;STA449F3型热重‑差示扫描量热同步热分析仪(TG‑DSC),德国耐驰公司,保护气体为氩气(Ar),升温速率为10 ℃·min-1;D850型单反摄像机,日本尼康公司,直流稳压电源电压参数为10 V,所测样品量为0.15 g。

  • 2.2 实验过程

    2.2

    称取10 mg原料TKX‑50溶于20 mL去离子水,加热搅拌至完全溶解。并采用注射器将TKX‑50水溶液手动加压快速注入盛有液氮的容器中,使水溶液快速结冰后放置于真空冷冻干燥机,开启冷冻干燥2 d后取出,得到超细化TKX‑50样品,标记为Nano TKX‑50。

  • 3 结果与讨论

    3
  • 3.1 形貌分析

    3.1

    TKX‑50原料和纳米化样品的形貌结果如1所示。由图1可以看出,相对于图1a中微米级大颗粒TKX‑50原料(颗粒尺寸约为100 μm),采用快速冷冻干燥法制备的超细TKX‑50(图1b)为纳米级,且具有较好的网络化纳米结构。通过局部放大(图1c)可知,网络化纳米结构是由纳米TKX‑50团簇,进而形成近似网络形貌。对样品进一步放大扫描(图1d)可以看出,TKX‑50网络纳米骨架的节点处尺寸相对较大,这是由于快速冷冻过程中,TKX‑50溶液浓度受到环境温度影响,溶质分子在受限空间中发生析晶、成核生长,并易局部团聚,形成了尺寸不规则的骨架结构。上述结果表明,快速冷冻干燥法成功制备了具有网络纳米结构的TKX‑50。

    html/hncl/CJEM2018294/media/7a168e46-2d60-4403-9a0b-89ad2d10aea8-image001.png

    a. raw TKX‑50 b. nano TKX‑50(5.00 KX)

    html/hncl/CJEM2018294/media/7a168e46-2d60-4403-9a0b-89ad2d10aea8-image002.png

    c. nano TKX‑50(20.00 KX) d. nano TKX‑50(50.00 KX)

    图1 TKX‑50 原料与网络纳米结构TKX‑50样品的SEM图

    Fig.1 SEM images of raw TKX‑50 and KX‑50 samples with network‑like nanostructure

  • 3.2 晶型分析

    3.2

    TKX‑50原料与其网络纳米结构的X射线衍射图谱如图2所示。由图2可以看出,对于TKX‑50原料,位于15.1°、15.4°、25.4°、26.9°、28.1°以及30.3°的X射线衍射峰对应于TKX‑50晶体的(0 2 0)、(0 1 1)、(1 2 -1)、(1 2 1)、(1 3 0)和(0 4 0)晶面。可以看出TKX‑50网络纳米结构主要的晶面衍射峰依然存在,表明其晶型没有变化,保持了TKX‑50的晶体稳定性,但衍射峰出现了宽化现象。并从图2可知,和TKX‑50原料衍射峰相比,纳米化TKX‑50特征峰相对强度发生明显变化,说明样品晶面暴露频率发生明显改变,间接印证了快速冷冻干燥法所得样品为纳米化产[15]

    图2
                            TKX‑50原料与网络纳米结构TKX‑50样品的X射线衍射图

    图2 TKX‑50原料与网络纳米结构TKX‑50样品的X射线衍射图

    Fig.2 XRD patterns of raw TKX‑50 and TKX‑50 sample with network‑like nanostructure

  • 3.3 网络纳米结构形成机理分析

    3.3

    根据以上分析结果,进一步讨论了TKX‑50网络纳米结构形成过程。如图3所示,溶解在水中的TKX‑50通过加压喷射到冷冻液氮中,由于受液氮温度影响,TKX‑50水溶液在较低温度下溶解度降低,快速达到饱和并开始大范围析晶。整个结晶过程时间短暂,水溶液极速结冰,TKX‑50分子在局部受限空间内发生成核且易与周围纳米级晶核发生团[14],但受到结晶环境的影响,不能进一步长[16,17],所以最终形成了纳米级的网络骨架结构。

    图3
                            TKX‑50网络纳米结构形成过程示意图

    图3 TKX‑50网络纳米结构形成过程示意图

    Fig.3 Schematic diagram of the formation process of TKX‑50 network‑like nanostructures

  • 3.4 热性能以及燃烧特性分析

    3.4
    html/hncl/CJEM2018294/alternativeImage/7a168e46-2d60-4403-9a0b-89ad2d10aea8-F006.jpg

    a. raw TKX‑50

    html/hncl/CJEM2018294/alternativeImage/7a168e46-2d60-4403-9a0b-89ad2d10aea8-F007.jpg

    b. nano TKX‑50

    图4 TKX‑50原料与网络纳米结构TKX‑50样品的TG‑DSC曲线

    Fig.4 TG‑DSC curves of raw TKX‑50 and TKX‑50 sample with network‑like nanostructure

    对TKX‑50原料和TKX‑50网络纳米结构进行了TG‑DSC测试,结果如图4所示。由图4a可以看出,TKX‑50原料的DSC曲线表现出两个放热峰,分别位于250.1 ℃和273.3 ℃,对应于TG曲线的两步质量损失过程,这与文献[7]的报道一致。由图4b可见,与TKX‑50原料相比,TKX‑50网络纳米结构的两个分解放热峰温分别提前12.1 ℃与5.6 ℃,这表明快速冷冻干燥法制备的TKX‑50网络纳米结构更易活化。

    采用电热点火方式对TKX‑50原料和TKX‑50网络纳米结构的燃烧过程进行了测试,结果如图5所示。由图5a可见,对于TKX‑50原料,可以观察到明显的点火延迟(约为1.2 s),整个燃烧过程发生在1.2~2.4 s,表明原料TKX‑50的燃烧过程较为缓慢。由图5b可见,TKX‑50网络纳米结构的点火延迟则相对较短(约120 ms),整个燃烧过程发生在440 ms以内,表明纳米化的TKX‑50更容易激活,具有一个较高的燃烧速率。同时可以观察到剧烈的燃烧发生在240~440 ms,表明蓬松的纳米化TKX‑50更易快速燃烧,这是因为纳米化样品有利于传质、传热。综合热性能与燃烧过程分析结果,认为纳米化TKX‑50相对于原料TKX‑50表现出更优异的性能,这是因为TKX‑50纳米化后拥有更大的比表面积、孔隙率,其表面活性原子和基团增多,更易活化,因此促进了TKX‑50分解和燃烧。

    图5
                            TKX‑50原料与网络纳米结构TKX‑50样品的点火及燃烧过程

    图5 TKX‑50原料与网络纳米结构TKX‑50样品的点火及燃烧过程

    Fig.5 The ignition and combustion process of raw TKX‑50 and TKX‑50 sample with network‑like nanostructure

  • 4 结 论

    4

    采用快速冷冻干燥法制备了TKX‑50网络纳米结构,分析了形貌与结构,初步阐明了网络纳米结构的形成机理,并对热性能以及燃烧特性进行了研究,得到如下结论:

    (1) 快速冷冻干燥法可以制备出具有网络纳米结构的TKX‑50,其纳米化产物具有纳米级三维空间网络骨架连接结构,晶体稳定性较高。提出了极速冷冻过程中的受限空间析晶、成核并生长的网络纳米结构形成机理。

    (2) 与TKX‑50原料相比,具有网络纳米结构的TKX‑50的两步热分解峰温分别提前12.1 ℃与5.6 ℃,其点火延迟较低,燃烧速率更高,这是因为制备的纳米化TKX‑50样品表面活性原子和基团增多,易活化,促进了TKX‑50热分解与燃烧。

    《含能材料》“含能共晶”征稿

    含能共晶是不同含能分子通过氢键等相互作用力形成的具有稳定结构和性能的分子晶体。含能共晶充分组合了单质含能分子的优点,呈现出感度低,综合性能优良的特点,具有潜在的应用前景,共晶研究已经引起国内外含能材料学界的高度关注。为推动含能共晶的研究和交流,本刊特推出“含能共晶”专栏,主要征稿范围包括含能共晶晶体设计与性能预测、含能共晶的制备、结构解析、性能等。来稿请注明“含能共晶”专栏。

    《含能材料》编辑部图文摘要:

  • 参考文献

    • 1

      Fischer N, Fischer D, Klapötke T M, et al. Pushing the limits of energetic materials‑the synthesis and characterization of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Journal of Materials Chemistry, 2012, 22: 20418-20422.

    • 2

      Dreger A Z, Stash A I, Yu Z G, et al. High‑pressure structural response of an insensitive energeticcrystal: dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate(TKX‑50)[J]. The Journal of Physical Chemistry C, 2017, 121: 5761-5767.

    • 3

      Gottfried J L, KlapötkeT M, Witkowski T G, et al. Estimated detonation velocities for TKX‑50, MAD‑X1, BDNAPM, BTNPM, TKX‑55, and DAAF using the laser‑induced air shock from energetic materials technique[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4): 353-359.

    • 4

      Meng L Y, Lu Z P, Wei X F, et al. Two‑sided effects of strong hydrogen bonding on the stability of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate(TKX‑50)[J]. Cryst Eng Comm, 2016, 18(13): 2258-2267.

    • 5

      Wang J F, Chen S S,Yao Q, et al. Preparation, characterization, thermal evaluation and sensitivities of TKX‑50/GO composite[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(9): 1104-1110.

    • 6

      居平文, 凌亦飞, 谷玉凡, 等.TKX‑50合成方法改进[J]. 含能材料, 2015, 23(9): 887-891.

      JU Ping‑wen, LING Yi‑fei, GU Yu‑fan, et al. Improved synthesis of TKX‑50[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(9): 887-891.

    • 7

      Jia J H, Liu Y, Huang S L, et al. Crystal structure transformation and step‑by‑stepthermal decomposition behavior ofdihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. RSC Advances, 2017, 7: 49105-49113.

    • 8

      宗和厚, 张伟斌, 李华荣, 等.TKX‑50高压下结构、力学性质及电子特性的第一性原理研究[J]. 含能材料, 2018, 26(1): 46−52.

      ZONG He‑hou, ZHANG Wei‑bin, LI Hua‑rong, et al. Structural, mechanical and electronic properties of dihydroxylammonium 5,5‑bistetrazole‑1,1‑diolate(TKX‑50) under high pressuses: a fisrt‑principles study[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1): 46-52.

    • 9

      余一, 张蕾, 姜胜利, 等.TKX‑50热分解氮气形成机理的分子动力学模拟[J]. 含能材料, 2018, 26(1): 75-79.

      YU Yi, ZHANG Lei, JIANG Sheng‑li, et al. Molecular simulation on the nitrogen generation in thermal decomposition of TKX‑50[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1): 75-79.

    • 10

      An Q, Cheng T, Goddard W A, et al. Anisotropic impact sensitivity and shock induced plasticity of TKX‑50 (Dihydroxylammonium 5,5′‑bis(tetrazole)‑1,1′‑diolate) singlecrystals: from large‑scale molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2015, 119: 2196-2207.

    • 11

      Lu Z P, Xue X G, Zhang C Y, et al. A theoretical prediction on the shear‑inducedphase transformation of TKX‑50[J]. Physical Chemistry Chemical Physics, 2017, 19: 31054-31062.

    • 12

      An Q, Liu W G, Goddard W A, et al. Initial steps of thermal decomposition of dihydroxylammonium5,5′‑bistetrazole‑1,1′‑diolate crystals from quantum mechanics[J]. The Journal of Physical Chemistry C, 2014, 118: 27175-27181.

    • 13

      Huang H F, Shi Y M, Yang J, et al. Compatibility study of dihydroxylammonium 5,5′‑Bistetrazole‑1,1′‑diolate(TKX‑50) with some energetic materials and inert materials[J]. Journal of Energetic Materials, 2015, 33(1): 66-72.

    • 14

      Huang B, Qiao Z Q, Nie F D, et al. Fabrication of FOX‑7 quasi‑three‑dimensional grids of one‑dimensionalnanostructures via a spray freeze‑drying technique and size‑dependence ofthermal properties[J]. Journal of Hazardous Materials, 2010, 184: 561-566.

    • 15

      Huang B, Cao M H, Nie F D, et al. Construction and properties of structure‑ and size‑controlled micro/nano‑energetic materials[J]. Defence Technology, 2013, 9 (2): 59-79.

    • 16

      Zhang H L, Liu Y, Li S C, et al. Three‑dimensional hierarchical 2,2,4,4,6,6‑hexanitrostilbene crystalline clusters prepared bycontrollablesupramolecular assembly anddeaggregation process[J]. Cryst Eng Comm, 2016, 18(41): 7940-7944.

    • 17

      Deng P, Liu Y, Luo P, et al. Two‑steps synthesis of sandwich‑like graphene oxide/LLM‑105 nanoenergetic composites using functionalized graphene[J]. Materials Letters, 2017, 194: 156-159.

曹雄

机 构:中北大学 环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

邮 箱:cx92rl@163.com

作者简介:曹雄(1968-),男,教授,主要从事含能材料研究。e‑mail:cx92rl@163.com

杨丽媛

机 构:中北大学 环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

王华煜

机 构:中北大学 环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

尚伊平

机 构:中北大学 环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

胡双启

机 构:中北大学 环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

邓鹏

机 构:中北大学 环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

胡立双

机 构:中北大学 环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

html/hncl/CJEM2018294/media/7a168e46-2d60-4403-9a0b-89ad2d10aea8-image001.png
html/hncl/CJEM2018294/media/7a168e46-2d60-4403-9a0b-89ad2d10aea8-image002.png
html/hncl/CJEM2018294/media/7a168e46-2d60-4403-9a0b-89ad2d10aea8-image003.png
html/hncl/CJEM2018294/media/7a168e46-2d60-4403-9a0b-89ad2d10aea8-image004.png
html/hncl/CJEM2018294/alternativeImage/7a168e46-2d60-4403-9a0b-89ad2d10aea8-F006.jpg
html/hncl/CJEM2018294/alternativeImage/7a168e46-2d60-4403-9a0b-89ad2d10aea8-F007.jpg
html/hncl/CJEM2018294/alternativeImage/7a168e46-2d60-4403-9a0b-89ad2d10aea8-F008.jpg
html/hncl/CJEM2018294/alternativeImage/7a168e46-2d60-4403-9a0b-89ad2d10aea8-F005.jpg

图1 TKX‑50 原料与网络纳米结构TKX‑50样品的SEM图 -- a. raw TKX‑50 b. nano TKX‑50(5.00 KX)

Fig.1 SEM images of raw TKX‑50 and KX‑50 samples with network‑like nanostructure -- a. raw TKX‑50 b. nano TKX‑50(5.00 KX)

图1 TKX‑50 原料与网络纳米结构TKX‑50样品的SEM图 -- c. nano TKX‑50(20.00 KX) d. nano TKX‑50(50.00 KX)

Fig.1 SEM images of raw TKX‑50 and KX‑50 samples with network‑like nanostructure -- c. nano TKX‑50(20.00 KX) d. nano TKX‑50(50.00 KX)

图2 TKX‑50原料与网络纳米结构TKX‑50样品的X射线衍射图

Fig.2 XRD patterns of raw TKX‑50 and TKX‑50 sample with network‑like nanostructure

图3 TKX‑50网络纳米结构形成过程示意图

Fig.3 Schematic diagram of the formation process of TKX‑50 network‑like nanostructures

图4 TKX‑50原料与网络纳米结构TKX‑50样品的TG‑DSC曲线 -- a. raw TKX‑50

Fig.4 TG‑DSC curves of raw TKX‑50 and TKX‑50 sample with network‑like nanostructure -- a. raw TKX‑50

图4 TKX‑50原料与网络纳米结构TKX‑50样品的TG‑DSC曲线 -- b. nano TKX‑50

Fig.4 TG‑DSC curves of raw TKX‑50 and TKX‑50 sample with network‑like nanostructure -- b. nano TKX‑50

图5 TKX‑50原料与网络纳米结构TKX‑50样品的点火及燃烧过程

Fig.5 The ignition and combustion process of raw TKX‑50 and TKX‑50 sample with network‑like nanostructure

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Fischer N, Fischer D, Klapötke T M, et al. Pushing the limits of energetic materials‑the synthesis and characterization of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Journal of Materials Chemistry, 2012, 22: 20418-20422.

    • 2

      Dreger A Z, Stash A I, Yu Z G, et al. High‑pressure structural response of an insensitive energeticcrystal: dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate(TKX‑50)[J]. The Journal of Physical Chemistry C, 2017, 121: 5761-5767.

    • 3

      Gottfried J L, KlapötkeT M, Witkowski T G, et al. Estimated detonation velocities for TKX‑50, MAD‑X1, BDNAPM, BTNPM, TKX‑55, and DAAF using the laser‑induced air shock from energetic materials technique[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4): 353-359.

    • 4

      Meng L Y, Lu Z P, Wei X F, et al. Two‑sided effects of strong hydrogen bonding on the stability of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate(TKX‑50)[J]. Cryst Eng Comm, 2016, 18(13): 2258-2267.

    • 5

      Wang J F, Chen S S,Yao Q, et al. Preparation, characterization, thermal evaluation and sensitivities of TKX‑50/GO composite[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(9): 1104-1110.

    • 6

      居平文, 凌亦飞, 谷玉凡, 等.TKX‑50合成方法改进[J]. 含能材料, 2015, 23(9): 887-891.

      JU Ping‑wen, LING Yi‑fei, GU Yu‑fan, et al. Improved synthesis of TKX‑50[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(9): 887-891.

    • 7

      Jia J H, Liu Y, Huang S L, et al. Crystal structure transformation and step‑by‑stepthermal decomposition behavior ofdihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. RSC Advances, 2017, 7: 49105-49113.

    • 8

      宗和厚, 张伟斌, 李华荣, 等.TKX‑50高压下结构、力学性质及电子特性的第一性原理研究[J]. 含能材料, 2018, 26(1): 46−52.

      ZONG He‑hou, ZHANG Wei‑bin, LI Hua‑rong, et al. Structural, mechanical and electronic properties of dihydroxylammonium 5,5‑bistetrazole‑1,1‑diolate(TKX‑50) under high pressuses: a fisrt‑principles study[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1): 46-52.

    • 9

      余一, 张蕾, 姜胜利, 等.TKX‑50热分解氮气形成机理的分子动力学模拟[J]. 含能材料, 2018, 26(1): 75-79.

      YU Yi, ZHANG Lei, JIANG Sheng‑li, et al. Molecular simulation on the nitrogen generation in thermal decomposition of TKX‑50[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1): 75-79.

    • 10

      An Q, Cheng T, Goddard W A, et al. Anisotropic impact sensitivity and shock induced plasticity of TKX‑50 (Dihydroxylammonium 5,5′‑bis(tetrazole)‑1,1′‑diolate) singlecrystals: from large‑scale molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2015, 119: 2196-2207.

    • 11

      Lu Z P, Xue X G, Zhang C Y, et al. A theoretical prediction on the shear‑inducedphase transformation of TKX‑50[J]. Physical Chemistry Chemical Physics, 2017, 19: 31054-31062.

    • 12

      An Q, Liu W G, Goddard W A, et al. Initial steps of thermal decomposition of dihydroxylammonium5,5′‑bistetrazole‑1,1′‑diolate crystals from quantum mechanics[J]. The Journal of Physical Chemistry C, 2014, 118: 27175-27181.

    • 13

      Huang H F, Shi Y M, Yang J, et al. Compatibility study of dihydroxylammonium 5,5′‑Bistetrazole‑1,1′‑diolate(TKX‑50) with some energetic materials and inert materials[J]. Journal of Energetic Materials, 2015, 33(1): 66-72.

    • 14

      Huang B, Qiao Z Q, Nie F D, et al. Fabrication of FOX‑7 quasi‑three‑dimensional grids of one‑dimensionalnanostructures via a spray freeze‑drying technique and size‑dependence ofthermal properties[J]. Journal of Hazardous Materials, 2010, 184: 561-566.

    • 15

      Huang B, Cao M H, Nie F D, et al. Construction and properties of structure‑ and size‑controlled micro/nano‑energetic materials[J]. Defence Technology, 2013, 9 (2): 59-79.

    • 16

      Zhang H L, Liu Y, Li S C, et al. Three‑dimensional hierarchical 2,2,4,4,6,6‑hexanitrostilbene crystalline clusters prepared bycontrollablesupramolecular assembly anddeaggregation process[J]. Cryst Eng Comm, 2016, 18(41): 7940-7944.

    • 17

      Deng P, Liu Y, Luo P, et al. Two‑steps synthesis of sandwich‑like graphene oxide/LLM‑105 nanoenergetic composites using functionalized graphene[J]. Materials Letters, 2017, 194: 156-159.