CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
BarhamO. Technology trends in fuze and munitions power sources[C]//The 54th Fuze Conference. Kansas: 2010.
参考文献 2
ClescaO. Next generation fuzing for next generation weapons[C]//The 56th Annual Fuze Conference. Baltimore: 2012.
参考文献 3
FeynmanR P. There's plenty of room at the bottom[J]. Journal of Microelectromechanical Systems, 2002, 1(1): 60-66.
参考文献 4
ComtoisJ, MichalicekA, CowanW, et al. Surface‑micromachined polysilicon MOEMS for adaptive optics[J]. Sensors & Actuators A Physical, 1999, 78(1): 54-62.
参考文献 5
WangJ, XuC, AnC, et al. Preparation and properties of CL‑20 based composite by direct ink writing[J]. Propellants, Explosives, Pyrotechnics, 2017, 42: 1139-1142.
参考文献 6
WeiY, WangJ, AnC, et al. GAP/CL‑20‑based compound explosive: a new booster formulation used in a small‑sized initiation network[J]. Journal of Energetic Materials, 2016, 35(1):53-62.
参考文献 7
WangD, ZhengB, GuoC, et al. Formulation and performance of functional sub‑micro CL‑20‑based energetic polymer composite ink for direct‑write assembly[J]. Rsc Advances, 2016, 6(113): 112325-112331.
参考文献 8
曹宇.激光‑微笔/微喷直写集成制造MEMS微结构关键技术研究[D]. 武汉: 华中科技大学,2009.
CAOYu. Study on laser‑micropen/microjet direct writing technology for integrated fabrication of MEMS micro‑structures[D]. Wuhan: Huazhong University of Science and Technology, 2009.
参考文献 9
TherriaultD, WhiteS R, LewisJ A. Chaotic mixing in three‑dimensional microvascular networks fabricated by direct‑write assembly[J]. Nat Mater, 2003, 2(4): 265-271.
参考文献 10
MichnaS, WuW, LewisJ A. Concentrated hydroxyapatite inks for direct‑write assembly of 3‑D periodic scaffolds[J]. Biomaterials, 2005, 26(28): 5632-5639.
参考文献 11
WangY, YangZ, LiH, et al. A novel cocrystal explosive of HNIW with good comprehensive properties[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4):590-596.
参考文献 12
LiX, ChenS, WangX, et al. Effect of polymer binders on safety and detonation properties of ε‑CL‑20‑based pressed‑polymer‑bonded explosives[J]. Materials Express, 2017, 7(3):209-215.
参考文献 13
朱自强, 陈瑾, 谯志强, 等.CL‑20基直写炸药油墨的制备与表征[J]. 含能材料, 2013, 21(2):235-238.
ZHUZi‑qiang, CHENJin, QIAOZhi‑qiang, et al. Preparation and characterization of direct write explosive ink based on CL‑20[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013, 21(2):235-238.
参考文献 14
AnC, LiH, GuoW, et al. Nano cyclotetramethylene tetranitramine particles prepared by a green recrystallization process[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(5): 701-706.
参考文献 15
杨利, 王绍宗, 赵鹏娟, 等.超细CL‑20晶形控制技术研究[J]. 含能材料, 2008, 16(3):254-257.
YANGLi, WANGShao‑zong, ZHAOPeng‑juan, et al. Morphology controlling technique for submicron CL‑20[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2008, 16(3):254-257.
参考文献 16
奥尔连科. 爆炸物理学[M].孙承纬,译. 北京: 科学出版社, 2011: 313‑314.
П. OPЛEHKOЛ.. Explosion physics[M]. SUN Cheng‑wei, translated. Beijing: Science Press, 2011: 313-314.
参考文献 17
of DefenseDepartment. MIL‑STD‑1751A: Safety and performance tests for the qualification of explosives (high explosives,propellants, and pyrotechnics)[S]. Washington:US Government Printing, 2001.
参考文献 18
王利侠, 戴致鑫, 周涛, 等.压装工艺对CL‑20基炸药性能及聚能破甲威力的影响[J]. 火炸药学报, 2016, 39(4):56-60.
WANGLi‑xia, DAIZhi‑xin, ZHOUTao, et al. Effect of pressing molding on the property and shaped charge penetration power of CL‑20‑based PBX [J]. Chinese Journal of Propellants and Explosives, 2016, 39(4):56-60.
参考文献 19
WangD, GaoB, YangG, et al. Preparation of CL‑20 explosive nanoparticles and their thermal decomposition property[J]. Journal of Nanomaterials, 2016, 2016(38):1-7
参考文献 20
于江, 杨振英, 安瑱.油墨炸药的粒度对其传爆性能的影响[J]. 含能材料, 2005, 13(3):155-157.
YUJiang, YANGZhen‑ying, ANZhen. Effects of the particle size of ink explosive on the explosion transfer performance [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(3): 155-157.
目录 contents

    摘要

    为研究微笔直写沉积装药技术条件下,炸药粒度对六硝基六氮杂异伍兹烷(CL‑20)基炸药油墨临界传爆厚度的影响规律,分别采用机械球磨法和溶剂‑非溶剂法对原料CL‑20进行细化,得到了三种不同粒度的CL‑20炸药,以水性聚氨酯(WPU)和乙基纤维素(EC)组成双组份粘结分散体系,制备了适用于微笔直写沉积装药工艺的CL‑20基炸药油墨。分别采用激光粒度分析仪和扫描电子显微镜(SEM)对制备的CL‑20炸药及相应的油墨成型样品的粒度分布和形貌进行了表征;采用X射线衍射仪(XRD)对油墨成型样品中CL‑20的晶型进行了测试;利用楔形装药炸痕法测试了不同粒度CL‑20炸药油墨样品在装药宽度为1 mm时的临界传爆厚度。结果表明:机械球磨法制备的两种CL‑20炸药呈近球形,表面光滑,中值粒径分别为140 nm和1.5 μm,油墨成型样品呈蜂窝状,分散效果较好,横切面均匀致密;溶剂‑非溶剂法制备的CL‑20炸药呈纺锤形,中值粒径为15 μm,油墨成型样品分散效果较差,炸药颗粒与粘结体系难以形成复合结构;XRD测试结果表明三种炸药油墨样品中CL‑20均为ε型;成型油墨样品在装药宽度为1 mm时的临界传爆厚度随着CL‑20粒度的减小而减小,最小可达69 μm,表明减小CL‑20炸药的粒度能够显著增强其临界传爆性能。

    Abstract

    To study the influence of particle size on critical detonation performance of hexanitrohexaazaisowurtzitane (CL‑20)‑based explosives ink by micro‑flow direct writing technology, three different particle sizes of CL‑20 explosives were prepared by mechanical ball grinding method and solvent‑nonsolvent method, respectively. The CL‑20‑based explosive ink by micro‑flow direct writing technology was prepared by a two‑component adhesive dispersion system consisting of waterborne polyurethane (WPU) and ethyl cellulose (EC). The particle size distribution and morphology of the prepared CL‑20 explosives and the corresponding ink samples were characterized by laser particle size analyzer and scanning electron microscope (SEM), respectively. The crystal type of the CL‑20 in ink samples were measured by X‑ray diffractometer (XRD). The critical detonation thickness of CL‑20 explosive ink samples with different particle sizes were tested by wedge shaped charge test. The results show that the two CL‑20 explosives prepared by mechanical ball grinding method have a nearly spherical shape and smooth surface, whose median size are 140 nm and 1.5 μm, respectively. The corresponding ink samples have a honeycomb shape, with good dispersing effect and uniform compact cross‑section. The CL‑20 explosive prepared by solvent‑nonsolvent method has a fusiform shape with a median size of 15 μm. The corresponding ink sample has poor dispersing effect, and the explosive particles and adhesive system are difficult to form a composite structure. The XRD test results indicate that three crystal types of the CL‑20 in ink samples are all ε form. The critical detonation thickness of CL‑20 explosive ink samples with a charge width of 1 mm is as small as 69 μm, and decreases with the decrease of CL‑20 particle size, indicating that reducing the particle size of the CL‑20 can significantly enhance its critical detonation performance.

  • 1 引 言

    1

    随着光电器件、微波半导体器件、集成电路和信息处理等技术的迅速发展,各种小型化、高精度的武器系统迅速发展,处于毁伤与反毁伤最前端的引信技术的突破成为提高武器系统性能的关键。微型传爆序列是实现火工品小型化的重要途径,如何实现微小型火工品的高精度装药,并保证其在小尺寸条件下的可靠稳定爆轰,是制约微机电系统(MEMS, Micro‑Electro‑Mechanical System)火工品发展的一个难[1,2,3,4,5]

    传统装药方法主要有压装法和铸装法,采用压装法虽然装药表面平整光滑,密度均匀,但是极其容易损坏微小型装药元器件,并且其工艺条件具有一定的危险性;铸装法可对复杂结构通道进行装药,但液相炸药固化过程中容易产生孔隙和裂缝,这会对火工品的性能和安全性造成影[6,7]

    微笔直写沉积装药技术是基于“自由堆积/去除”原理,由预先设计的图形数据驱动在某种材料的表面实现材料的沉积、转移或处理,炸药的直写沉积是通过数字控制的直写装置将炸药油墨直接书写在MEMS器件的基底表面或沉积到装药孔道或沟槽中,待墨水中的溶剂挥发后,炸药固体便沉积在预定的位置。采用直写技术来进行MEMS传爆序列装置的微装药,具有安全、可批量沉积以及精确图形化的特点,这正是发展MEMS引信的关键。直写技术的这种优势,使其成为了极具潜力的MEMS器件的微装药方[8,9,10]

    炸药的临界尺寸是指在外界能量激发下,能使炸药爆速成长的最小装药尺寸。六硝基六氮杂异伍兹烷(HNIW,CL‑20)是现有能量最高的单质炸药之[11,12],爆轰感度较高,临界尺寸极小,非常有潜力作为MEMS火工品的主装药。2012年,朱自[13]以聚乙烯醇和乙基纤维素为粘结剂制备了一种CL‑20炸药油墨,经楔形狭缝装药炸痕法在装药厚度为0.54 mm时测得爆轰临界尺寸为0.36 mm。为研究微笔直写装药技术条件下,炸药粒度对CL‑20基炸药油墨临界传爆厚度的影响规律,本研究采用机械球磨[14]制备了中值粒径为140 nm和1.5 μm的CL‑20炸药,用重结晶[15]制备了中值粒径为15 μm的CL‑20炸药。以水性聚氨酯(WPU)和乙基纤维素(EC)为粘结剂,同时EC作为增稠剂、分散剂和防潮剂,以无水乙醇为溶剂,通过设计双组份粘结剂体系,配制适用于微笔直写沉积装药工艺的炸药油墨。并测试了油墨成型样品的微观结构、装药密度和临界传爆厚度,研究了不同粒度尺寸的CL‑20炸药对油墨成型样品临界传爆特性的影响。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    ε‑CL‑20原料,工业级,粒径为80~150 μm,辽宁庆阳化工有限公司;水性聚氨酯(J7091),工业级,优美特(北京)环境材料科技股份公司;乙基纤维素(EK‑70),化学纯,广州文嘉化工有限公司;正庚烷、乙酸乙酯、无水乙醇,分析纯,天津市恒兴化学试剂制造有限公司。

    行星式球磨机(MITR‑YXQM‑2L),长沙米淇仪器设备有限公司;超声清洗池(CH‑1006A),苏州创惠电子有限公司;循环水式多用真空泵(SHZ‑CD),上海振捷实验设备有限公司;真空冷冻干燥机(FD‑1A‑50),北京博医康实验仪器有限公司;磁力搅拌器(X85‑2S),上海梅颖浦仪器仪表制造有限;超声细胞粉碎机(Scientz‑IID),宁波新芝生物科技股份有限公司;恒温水浴烘箱(GM‑101‑0A),南京理工大学;三维数控移动平台(ZCX‑DJ300),深圳市众创鑫科技有限公司;电子密度测时仪(MZ‑220SD),深圳市力达信仪器有限公司;激光粒度分析仪(BI‑90PLUS),美国Brookhaven;X射线衍射仪(DX‑2700),丹东浩元仪器有限公司;扫描电子显微镜(JSM‑7500F),日本电子株式会社(JEOL)。

  • 2.2 实验过程

    2.2

    机械球磨法制备CL‑20炸药样品:ε‑CL‑20原料10 g,纯净水100 mL,氧化锆珠(粒径0.1 mm)200 g均匀混合置于球磨罐中,球磨4 h后将混合悬浊液进行超声分离,取CL‑20炸药悬浮液进行抽滤并真空冷冻干燥6 h,得到1# CL‑20炸药样品。方法原理同上,换用氧化锆珠(粒径1 mm)球磨2 h,得到2# CL‑20炸药样品。

    重结晶法制备CL‑20炸药样品:ε‑CL‑20原料10 g缓慢溶解于50 mL乙酸乙酯溶液中,在超声分散作用下将炸药溶液缓慢喷入400 mL正庚烷中,并以200 r·min-1的速度进行搅拌,经真空抽滤后冷冻干燥6 h得到3#CL‑20炸药样品。

    将3.6 g 1# CL‑20炸药样品加入到20 mL无水乙醇中超声分散30 min。如图1所示,缓慢加入0.8 g水性聚氨酯(质量分数为30%)和2 g乙基纤维素的乙醇溶液(质量分数为8%),充分搅拌2 h使炸药油墨充分混合分散均匀,待溶剂缓慢挥发将CL‑20基炸药油墨装入点胶针筒,利用三维数控移动平台,选择直径为0.5 mm的点胶针头,在针筒上端施加0.1 MPa的压力,将炸药油墨逐层书写在宽度为1 mm楔形槽中,待炸药油墨沉积固化完成,放入恒温水浴烘箱(40 ℃)中进行烘干,得到CL‑20基炸药油墨成型样品A。同理分别采用2#3# CL‑20炸药样品制备CL‑20基炸药油墨成型样品B和C。

    图1
                            CL‑20炸药油墨制备过程示意图

    图1 CL‑20炸药油墨制备过程示意图

    Fig.1 Schematic diagram for the preparation of CL‑20 explosive inks

    利用楔形装药炸痕[16]测试炸药油墨的临界传爆厚度,测试装置如图2所示,在铝质基板上刻蚀长度为L0,宽度为1 mm的楔形槽,楔形槽左端大断面深度为H,槽深向右线性递减至0。用工业8#雷管从大断面起爆,通过测试熄爆处距离装药末端的距离Lx即可计算得到熄爆处的装药厚度,即为该炸药的临界传爆厚度DH,用公式 D H = H L X L 0 [17]进行计算。

    图2
                            楔形装药测试装置

    图2 楔形装药测试装置

    Fig.2 Wedge shaped charge testing device

  • 3 结果与讨论

    3
  • 3.1 微观结构分析

    3.1

    采用激光粒度分析仪测试1#2#3#三种CL‑20炸药样品的粒度分布情况,结果如图3所示;采用扫描电子显微镜对A,B,C三种炸药油墨样品的横切面的形貌和微观结构进行表征,结果如图4所示。

    结合图3,4分析可知,机械球磨法制备的CL‑20炸药样品1#(图4a)表面均匀光滑,呈近球形,粒径大小为80~250 nm,粒度分布均匀,中值粒径为140 nm;机械球磨法制备的CL‑20炸药样品2#(图4b)形貌与样品1#相似,但表面较为粗糙,粒径大小为0.5~3 μm,中值粒径为1.5 μm;重结晶法制备的CL‑20炸药样品3#(图4c)形貌与原料CL‑20相似,棱角较多,粒径大小为4~30 μm,中值粒径为15 μm。所得到的油墨成型样品A和B(图4d和图4e)分散效果较好,横切面均匀致密,其放大效果表明两者均呈蜂窝状结构,样品A相比样品B更加均匀和致密;油墨成型样品C(图4f)分散效果较差,炸药颗粒与粘结体系难以形成复合结构。

  • 3.2 物相分析

    3.2

    采用X射线衍射仪对CL‑20原料和三种炸药油墨成型样品进行表征。测试条件:铜靶,波长0.15406 nm,测量方式为步进测量,起始角度5°,终止角度50°,步进角度0.03°,采样时间0.5 s,管电压40 kV,管电流30 mA。结果如图5所示。

    图5
                            原料CL‑20和三种炸药油墨样品的X射线衍射图谱

    图5 原料CL‑20和三种炸药油墨样品的X射线衍射图谱

    Fig.5 XRD patterns of raw CL‑20 and three explosive ink samples

    从图5知,三种炸药油墨样品的主要衍射峰与原料ε‑CL‑20基本一致,其均在12.59°,13.82°和30.29°出现了较强的特征衍射峰,分别对应ε‑CL‑20的(1 1 -1),(2 0 0)和(2 0 -3)三个晶面,三种炸药油墨样品中CL‑20均为ε型,表明机械球磨过程并不会改变CL‑20的晶型,同时重结晶过程中CL‑20的晶型可以得到了有效控制,并且油墨制备和成型过程依旧保持CL‑20的原有晶型。

    图3
                            所制备CL‑20炸药的粒度分布图

    a. 1# b. 2# c. 3#

    图3 所制备CL‑20炸药的粒度分布图

    Fig.3 Particle size distribution of the prepared CL‑20 explosives

    html/hncl/CJEM2018257/alternativeImage/aa615e2c-037a-412a-8bb1-b2ab038ec93a-F005.jpg

    a. 1# b. 2# c. 3#

    html/hncl/CJEM2018257/alternativeImage/aa615e2c-037a-412a-8bb1-b2ab038ec93a-F006.jpg

    d. explosive ink A e. explosive ink B f. explosive ink C

    图4 所制备CL‑20炸药及其油墨成型样品的SEM图

    Fig.4 SEM images of the prepared CL‑20 explosives and their ink samples

  • 3.3 成型密度

    3.3

    待炸药油墨复合材料沉积成型完成,进行烘干,测试其成型密度,结果见表1。从表1可以看出,通过微笔直写沉积工艺制备的复合材料相较压装[18]具有较低的成型密度,不同粒度油墨样品最终成型复合材料的密度相差较小,有利于保证不同粒度炸药油墨临界传爆厚度测试条件的一致性。

    表1 三种炸药油墨样品成型密度

    Table 1 Density of three explosive ink samples

    sampleρ / g·cm-3
    A1.423
    B1.431
    C1.427
    表1
                    三种炸药油墨样品成型密度
  • 3.4 临界传爆厚度

    3.4

    采用楔形装药炸痕法测试炸药油墨在装药宽度为1 mm时的临界传爆厚度,传爆测试结果如图6所示,计算得到临界传爆厚度见表2

    从图6可以看出,油墨成型样品A几乎完全传爆,样品C装药末端残留较长距离未能传爆,样品B介于两者之间。从表2中可知,随着炸药粒径的减小,临界传爆厚度逐渐降低,最小可达69 μm。这主要是由于炸药的比表面积与其粒径成反[19],更大的比表面积有利于形成活化中心导致体积燃烧速率越快,化学反应区变窄,侧向能量损失减小,同时化学反应区的宽度变小,爆轰反应区内完成化学反应所需的时间减少,爆轰感度越高,有利于爆轰波的传递,这与文献[20]中报道的结论基本一致。

    表2 三种炸药油墨样品的临界传爆厚度

    Table 2 Critical detonation thickness of three explosive ink samples

    sampleLX / mmDH / μm
    A2.369
    B4.8144
    C7.9237
    表2
                    三种炸药油墨样品的临界传爆厚度

    NOTE: LX is the length of the unexploded charge. DH is critical detonation thickness.

    图6
                            三种炸药油墨样品临界传爆厚度测试结果

    图6 三种炸药油墨样品临界传爆厚度测试结果

    Fig.6 Critical detonation thickness test results for three explosive ink samples

  • 4 结 论

    4

    (1)机械球磨法制备的两种CL‑20炸药颗粒呈近球形,粒度均匀,表面光滑,中值粒径分别为140 nm和1.5 μm;溶剂‑非溶剂法制备的CL‑20炸药形貌与原料CL‑20相似,呈纺锤形,棱角较多,中值粒径为15 μm,三者均为ε晶型。

    (2)机械球磨法细化得到的CL‑20炸药所制备的油墨样品成型后呈蜂窝状,粘结体系与炸药颗粒分散效果良好,均匀致密,且随着粒径的减小,这种效果更加明显;溶剂‑非溶剂法细化的CL‑20炸药所制备的油墨样品成型后难以形成均匀致密的复合结构,粘结体系与炸药颗粒分散效果较差。

    (3)油墨成型样品的临界传爆厚度随CL‑20炸药粒径的减小而减小,在装药宽度为1 mm时,其最小可达69 μm,表明CL‑20炸药粒径越小,其爆轰波传播能力越强,越有利于其在极小尺寸的通道内可靠稳定传爆。

  • 参考文献

    • 1

      Barham O. Technology trends in fuze and munitions power sources[C]//The 54th Fuze Conference. Kansas: 2010.

    • 2

      Clesca O. Next generation fuzing for next generation weapons[C]//The 56th Annual Fuze Conference. Baltimore: 2012.

    • 3

      Feynman R P. There's plenty of room at the bottom[J]. Journal of Microelectromechanical Systems, 2002, 1(1): 60-66.

    • 4

      Comtois J, Michalicek A, Cowan W, et al. Surface‑micromachined polysilicon MOEMS for adaptive optics[J]. Sensors & Actuators A Physical, 1999, 78(1): 54-62.

    • 5

      Wang J, Xu C, An C, et al. Preparation and properties of CL‑20 based composite by direct ink writing[J]. Propellants, Explosives, Pyrotechnics, 2017, 42: 1139-1142.

    • 6

      Wei Y, Wang J, An C, et al. GAP/CL‑20‑based compound explosive: a new booster formulation used in a small‑sized initiation network[J]. Journal of Energetic Materials, 2016, 35(1):53-62.

    • 7

      Wang D, Zheng B, Guo C, et al. Formulation and performance of functional sub‑micro CL‑20‑based energetic polymer composite ink for direct‑write assembly[J]. Rsc Advances, 2016, 6(113): 112325-112331.

    • 8

      曹宇.激光‑微笔/微喷直写集成制造MEMS微结构关键技术研究[D]. 武汉: 华中科技大学,2009.

      CAO Yu. Study on laser‑micropen/microjet direct writing technology for integrated fabrication of MEMS micro‑structures[D]. Wuhan: Huazhong University of Science and Technology, 2009.

    • 9

      Therriault D, White S R, Lewis J A. Chaotic mixing in three‑dimensional microvascular networks fabricated by direct‑write assembly[J]. Nat Mater, 2003, 2(4): 265-271.

    • 10

      Michna S, Wu W, Lewis J A. Concentrated hydroxyapatite inks for direct‑write assembly of 3‑D periodic scaffolds[J]. Biomaterials, 2005, 26(28): 5632-5639.

    • 11

      Wang Y, Yang Z, Li H, et al. A novel cocrystal explosive of HNIW with good comprehensive properties[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4):590-596.

    • 12

      Li X, Chen S, Wang X, et al. Effect of polymer binders on safety and detonation properties of ε‑CL‑20‑based pressed‑polymer‑bonded explosives[J]. Materials Express, 2017, 7(3):209-215.

    • 13

      朱自强, 陈瑾, 谯志强, 等.CL‑20基直写炸药油墨的制备与表征[J]. 含能材料, 2013, 21(2):235-238.

      ZHU Zi‑qiang, CHEN Jin, QIAO Zhi‑qiang, et al. Preparation and characterization of direct write explosive ink based on CL‑20[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013, 21(2):235-238.

    • 14

      An C, Li H, Guo W, et al. Nano cyclotetramethylene tetranitramine particles prepared by a green recrystallization process[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(5): 701-706.

    • 15

      杨利, 王绍宗, 赵鹏娟, 等.超细CL‑20晶形控制技术研究[J]. 含能材料, 2008, 16(3):254-257.

      YANG Li, WANG Shao‑zong, ZHAO Peng‑juan, et al. Morphology controlling technique for submicron CL‑20[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2008, 16(3):254-257.

    • 16

      奥尔连科. 爆炸物理学[M].孙承纬,译. 北京: 科学出版社, 2011: 313‑314.

      Л. П. OPЛEHKO. Explosion physics[M]. SUN Cheng‑wei, translated. Beijing: Science Press, 2011: 313-314.

    • 17

      Department of Defense. MIL‑STD‑1751A: Safety and performance tests for the qualification of explosives (high explosives,propellants, and pyrotechnics)[S]. Washington:US Government Printing, 2001.

    • 18

      王利侠, 戴致鑫, 周涛, 等.压装工艺对CL‑20基炸药性能及聚能破甲威力的影响[J]. 火炸药学报, 2016, 39(4):56-60.

      WANG Li‑xia, DAI Zhi‑xin, ZHOU Tao, et al. Effect of pressing molding on the property and shaped charge penetration power of CL‑20‑based PBX [J]. Chinese Journal of Propellants and Explosives, 2016, 39(4):56-60.

    • 19

      Wang D, Gao B, Yang G, et al. Preparation of CL‑20 explosive nanoparticles and their thermal decomposition property[J]. Journal of Nanomaterials, 2016, 2016(38):1-7

    • 20

      于江, 杨振英, 安瑱.油墨炸药的粒度对其传爆性能的影响[J]. 含能材料, 2005, 13(3):155-157.

      YU Jiang, YANG Zhen‑ying, AN Zhen. Effects of the particle size of ink explosive on the explosion transfer performance [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(3): 155-157.

宋长坤

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

邮 箱:scklog@163.com

作者简介:宋长坤(1990-),男,硕士研究生,主要从事含能油墨的制备和性能研究。e‑mail:scklog@163.com

安崇伟

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

角 色:通讯作者

Role:Corresponding author

邮 箱:anchongwei@yeah.net

作者简介:安崇伟(1980-),男,博士,教授,主要从事含能化合物改性技术和新型传爆药技术研究。e‑mail:anchongwei@yeah.net

叶宝云

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

李千兵

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

王爽

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

王晶禹

机 构:中北大学环境与安全工程学院, 山西 太原 030051

Affiliation:School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

html/hncl/CJEM2018257/media/aa615e2c-037a-412a-8bb1-b2ab038ec93a-image001.png
html/hncl/CJEM2018257/alternativeImage/aa615e2c-037a-412a-8bb1-b2ab038ec93a-F002.jpg
html/hncl/CJEM2018257/alternativeImage/aa615e2c-037a-412a-8bb1-b2ab038ec93a-F003.jpg
html/hncl/CJEM2018257/media/aa615e2c-037a-412a-8bb1-b2ab038ec93a-image007.png
html/hncl/CJEM2018257/alternativeImage/aa615e2c-037a-412a-8bb1-b2ab038ec93a-F005.jpg
html/hncl/CJEM2018257/alternativeImage/aa615e2c-037a-412a-8bb1-b2ab038ec93a-F006.jpg
sampleρ / g·cm-3
A1.423
B1.431
C1.427
sampleLX / mmDH / μm
A2.369
B4.8144
C7.9237
html/hncl/CJEM2018257/media/aa615e2c-037a-412a-8bb1-b2ab038ec93a-image004.png

图1 CL‑20炸药油墨制备过程示意图

Fig.1 Schematic diagram for the preparation of CL‑20 explosive inks

图2 楔形装药测试装置

Fig.2 Wedge shaped charge testing device

图5 原料CL‑20和三种炸药油墨样品的X射线衍射图谱

Fig.5 XRD patterns of raw CL‑20 and three explosive ink samples

图3 所制备CL‑20炸药的粒度分布图

Fig.3 Particle size distribution of the prepared CL‑20 explosives a. 1# b. 2# c. 3#

图4 所制备CL‑20炸药及其油墨成型样品的SEM图 -- a. 1# b. 2# c. 3#

Fig.4 SEM images of the prepared CL‑20 explosives and their ink samples -- a. 1# b. 2# c. 3#

图4 所制备CL‑20炸药及其油墨成型样品的SEM图 -- d. explosive ink A e. explosive ink B f. explosive ink C

Fig.4 SEM images of the prepared CL‑20 explosives and their ink samples -- d. explosive ink A e. explosive ink B f. explosive ink C

表1 三种炸药油墨样品成型密度

Table 1 Density of three explosive ink samples

表2 三种炸药油墨样品的临界传爆厚度

Table 2 Critical detonation thickness of three explosive ink samples

图6 三种炸药油墨样品临界传爆厚度测试结果

Fig.6 Critical detonation thickness test results for three explosive ink samples

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

LX is the length of the unexploded charge. DH is critical detonation thickness.

无注解

  • 参考文献

    • 1

      Barham O. Technology trends in fuze and munitions power sources[C]//The 54th Fuze Conference. Kansas: 2010.

    • 2

      Clesca O. Next generation fuzing for next generation weapons[C]//The 56th Annual Fuze Conference. Baltimore: 2012.

    • 3

      Feynman R P. There's plenty of room at the bottom[J]. Journal of Microelectromechanical Systems, 2002, 1(1): 60-66.

    • 4

      Comtois J, Michalicek A, Cowan W, et al. Surface‑micromachined polysilicon MOEMS for adaptive optics[J]. Sensors & Actuators A Physical, 1999, 78(1): 54-62.

    • 5

      Wang J, Xu C, An C, et al. Preparation and properties of CL‑20 based composite by direct ink writing[J]. Propellants, Explosives, Pyrotechnics, 2017, 42: 1139-1142.

    • 6

      Wei Y, Wang J, An C, et al. GAP/CL‑20‑based compound explosive: a new booster formulation used in a small‑sized initiation network[J]. Journal of Energetic Materials, 2016, 35(1):53-62.

    • 7

      Wang D, Zheng B, Guo C, et al. Formulation and performance of functional sub‑micro CL‑20‑based energetic polymer composite ink for direct‑write assembly[J]. Rsc Advances, 2016, 6(113): 112325-112331.

    • 8

      曹宇.激光‑微笔/微喷直写集成制造MEMS微结构关键技术研究[D]. 武汉: 华中科技大学,2009.

      CAO Yu. Study on laser‑micropen/microjet direct writing technology for integrated fabrication of MEMS micro‑structures[D]. Wuhan: Huazhong University of Science and Technology, 2009.

    • 9

      Therriault D, White S R, Lewis J A. Chaotic mixing in three‑dimensional microvascular networks fabricated by direct‑write assembly[J]. Nat Mater, 2003, 2(4): 265-271.

    • 10

      Michna S, Wu W, Lewis J A. Concentrated hydroxyapatite inks for direct‑write assembly of 3‑D periodic scaffolds[J]. Biomaterials, 2005, 26(28): 5632-5639.

    • 11

      Wang Y, Yang Z, Li H, et al. A novel cocrystal explosive of HNIW with good comprehensive properties[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4):590-596.

    • 12

      Li X, Chen S, Wang X, et al. Effect of polymer binders on safety and detonation properties of ε‑CL‑20‑based pressed‑polymer‑bonded explosives[J]. Materials Express, 2017, 7(3):209-215.

    • 13

      朱自强, 陈瑾, 谯志强, 等.CL‑20基直写炸药油墨的制备与表征[J]. 含能材料, 2013, 21(2):235-238.

      ZHU Zi‑qiang, CHEN Jin, QIAO Zhi‑qiang, et al. Preparation and characterization of direct write explosive ink based on CL‑20[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013, 21(2):235-238.

    • 14

      An C, Li H, Guo W, et al. Nano cyclotetramethylene tetranitramine particles prepared by a green recrystallization process[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(5): 701-706.

    • 15

      杨利, 王绍宗, 赵鹏娟, 等.超细CL‑20晶形控制技术研究[J]. 含能材料, 2008, 16(3):254-257.

      YANG Li, WANG Shao‑zong, ZHAO Peng‑juan, et al. Morphology controlling technique for submicron CL‑20[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2008, 16(3):254-257.

    • 16

      奥尔连科. 爆炸物理学[M].孙承纬,译. 北京: 科学出版社, 2011: 313‑314.

      Л. П. OPЛEHKO. Explosion physics[M]. SUN Cheng‑wei, translated. Beijing: Science Press, 2011: 313-314.

    • 17

      Department of Defense. MIL‑STD‑1751A: Safety and performance tests for the qualification of explosives (high explosives,propellants, and pyrotechnics)[S]. Washington:US Government Printing, 2001.

    • 18

      王利侠, 戴致鑫, 周涛, 等.压装工艺对CL‑20基炸药性能及聚能破甲威力的影响[J]. 火炸药学报, 2016, 39(4):56-60.

      WANG Li‑xia, DAI Zhi‑xin, ZHOU Tao, et al. Effect of pressing molding on the property and shaped charge penetration power of CL‑20‑based PBX [J]. Chinese Journal of Propellants and Explosives, 2016, 39(4):56-60.

    • 19

      Wang D, Gao B, Yang G, et al. Preparation of CL‑20 explosive nanoparticles and their thermal decomposition property[J]. Journal of Nanomaterials, 2016, 2016(38):1-7

    • 20

      于江, 杨振英, 安瑱.油墨炸药的粒度对其传爆性能的影响[J]. 含能材料, 2005, 13(3):155-157.

      YU Jiang, YANG Zhen‑ying, AN Zhen. Effects of the particle size of ink explosive on the explosion transfer performance [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(3): 155-157.