CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
何冠松,林聪妹,刘佳辉,等. TATB基PBX界面粘结改善研究进展[J]. 含能材料,2016,24(3): 306-314.
HEGuan‑song, LINCong‑mei, LIUJia‑hui, et al. Review on interfacial bonding improving of TATB‑based PBX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(3): 306-314.
参考文献 2
AsayB W. Shock wave science and technology reference library, Vol. 5: Non‑shock initiation of explosives[M]. Springer‑Verlag Berlin Heidelberg: Springer, 2010: 3-5.
参考文献 3
董海山,周芬芬. 高能炸药及相关物性能[M]. 北京:科学出版社,1989: 2-4.
DONGHai‑shan, ZHOUFen‑fen. Performance of high energetic explosive and related compounds[M]. Beijing: Science Press,1989: 2-4.
参考文献 4
陈鹏万,黄风雷. 含能材料损伤理论及应用[M]. 北京:北京理工大学出版社,2006: 2-11.
CHENPeng‑wan, HUANGFeng‑lei. Damage theory of energetic materials and its applications[M]. Beijing: Beijing Institute of Technology Press, 2006: 2-11.
参考文献 5
杨仍才,田勇,张伟斌,等. TATB基PBX纳米孔隙的正电子湮没寿命谱[J]. 含能材料,2011,19(2): 200-203.
YANGReng‑cai, TIANYong, ZHANGWei‑bin, et al. Study on positron lifetime of nano‑void of TATB‑based PBX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2011, 19(2): 200-203.
参考文献 6
徐来,张伟斌,杨占锋,等. TATB造型颗粒单/双向温压成形PBX声学特性[Z]. 2014’(第六届)含能材料与钝感弹药技术学术研讨会论文集,中国 四川 成都:2014.
参考文献 7
梁华琼, 雍炼, 唐常良, 等. 压制过程中PBX炸药颗粒的破碎及损伤[J]. 火炸药学报, 2010, 33(1): 27-30.
LIANGHua‑qiong, YONGLian, TANGChang‑liang, et al. Crack and damage of PBX during pressing[J]. Chinese Journal of Explosives & Propellants, 2010, 33(1): 27-30.
参考文献 8
刘佳辉, 刘世俊, 黄明, 等. 钢模压制下高品质HMX晶体的损伤规律[J]. 火炸药学报, 2012, 35(3): 42-46.
LIUJia‑hui, LIUShi‑jun, HUANGMing, et al. Crack and damage in insensitive HMX crystal during pressing[J]. Chinese Journal of Explosives & Propellants, 2012, 35(3): 42-46.
参考文献 9
戴斌, 田勇, 张伟斌, 等. TATB造型颗粒模压结构演变的X射线层析成像[J]. 含能材料,2015, 23(10): 982-988.
DAIBin, TIANYong, ZHANGWei‑bin, et al. X‑ray tomography of structural evolution of TATB granules during compaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(10): 982-988.
参考文献 10
张伟斌,田勇,雍炼,等. TATB造型颗粒温等静压软模成型X射线微层析成像[J]. 含能材料, DOI:10.11943/CJEM2017371.
ZHANGWei‑bin, TIANYong, YONGLian, et al. X‑ray microtomography of TATB granules under isostatic warm soft compaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), DOI:10.11943/CJEM2017371.
参考文献 11
MangJ T, HjelmR P, FrancoisE G. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra‑small‑angle neutron scattering with contrast variation[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(1):7-14.
参考文献 12
MangJ T, HjelmR P. Small‑angle neutron scattering and contrast variation measurement of the interfacial surface area in PBX 9501 as a function of pressing intensity[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5): 439-445.
参考文献 13
WilleyT M, van BuurenT, LeeJ R I, et al. Changes in pore size distribution upon thermal cycling of TATB‑based explosives measured by ultra‑small angle X‑ray scattering[J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 466-471.
参考文献 14
WilleyT M, HoffmanD M, van BuurenT, et al. The Microstructure of TATB‑based explosive formulations during temperature cycling using ultra‑small‑angle X‑ray scattering[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(5): 406-414.
参考文献 15
PengM, SunL, ChenL, et al. A new small‑angle neutron scattering spectrometer at China Mianyang research reactor[J]. Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2016,810: 63-67.
参考文献 16
KeiderlingU. The new 'BerSANS‑PC' software for reduction and treatment of small angle neutron scattering data[J]. Applied Physics A: Materials Science & Processing, 2002,74(Suppl 1): s1455-s1457.
参考文献 17
TianQ, YanG Y, BaiL F, et al. Calibration of the Suanni small‑angle neutron scattering instrument at the China Mianyang Research Reactor[J]. Journal of Applied Crystallography, 2018, 51(6): 1662-1670.
参考文献 18
MangJ T, HjelmR P. Fractal networks of inter‐granular voids in pressed TATB[J]. Propellants, Explosives, Pyrotechnics. 2013, 38(6): 831-840.
参考文献 19
张伟斌, 戴斌, 杨雪海, 等. TATB造型颗粒内部微结构特征[J]. 含能材料, 2013, 21(2): 279-280.
ZHANGWei‑bin, DAIBin, YANGXue‑hai, et al. Internal micro‑structure characterization of TATB granules[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013,21(2): 279-280.
参考文献 20
SkidmoreC B, PhillipsD S, SonS F, et al. Characterization of HMX particles in PBX 9501[R]. AIP Conference Proceedings: Shock Compression of Condensed Matter‑1997, 1998, 429(1): 579-582.
参考文献 21
马婷婷,苟瑞君. PBX的制备及包覆工艺研究[J]. 山西化工,2010, 30(4): 13-16.
MATing‑ting, GOURui‑jun. Preparation and coating technology of pressed PBX[J].Chinese Shanxi Chemical Industry,2010, 30(4): 13-16.
目录 contents

    摘要

    为了探索冷压成型压力对高聚物粘结炸药(PBX)微结构的影响,采用衬度变换中子小角散射(SANS)技术测试了不同压力成型奥克托今(HMX)基PBX的中子小角散射信号,利用Porod定理获得了样品中炸药晶体‑粘结剂‑孔洞三者之间界面面积随成型压力的演化。结果表明,成型压力由64 MPa增加至178 MPa时,样品密度由1.55 g·cm-3增加至1.72 g·cm-3,HMX与粘结剂之间的界面结合率由23.7%增加至26.7%,单位质量PBX内部总界面面积Stotal减小6.1%(实验误差3%),HMX与粘结剂之间的界面面积SHB增加15.2%,HMX与孔洞之间的界面面积SHV基本不变,而粘结剂与孔洞之间的界面面积SBV则下降38.0%,表明这个过程中造型粉和粘结剂被逐渐压实;成型压力由178 MPa增加至382 MPa时,样品密度增加至1.79 g·cm-3,HMX与粘结剂之间的界面结合率增加至42.3%,Stotal减小11.2%,SHB增加49.0%,SHV减少25.8%,SBV下降45.5%,说明这个过程中除了造型粉和粘结剂被压实外,还有大量的粘结剂流动至HMX晶体表面。此外,成型压力由64 MPa增加至382 MPa时,SHVSHB之和(即单位质量PBX样品内HMX炸药晶体总的界面面积)基本保持不变,说明该冷压过程并未导致HMX晶体大量穿晶破碎,这与光学显微观察结果一致。

    Abstract

    To explore the influence of cold‑pressed forming pressure on the microstructure of polymer bonded explosive (PBX), the small angle neutron scattering (SANS) signals of different pressure‑formed octogen (HMX)‑based PBX were measured by contrast variation SANS technique. The evolution of interfacial surface area between explosive crystal, binder and void in sample with the forming pressure was obtained by Porod’s theorem. Results show that when the forming pressure increases from 64MPa to 178 MPa, the density of sample increases from 1.55g·cm-3 to 1.72 g·cm-3 , and the interfacial binding rate between HMX and binder increases from 23.7% to 26.7%, and the total internal interfacial surface area per unit mass PBX, Stotal decreases by 6.1% (the error of experiment is 3%), and the interfacial surface area between HMX and binder (SHB) increases by 15.2%, and the interfacial surface area between HMX and void (SHV) basically remains unchanged, while the interfacial surface area between binder and void (SBV) decreases by 38.0%, indicating that the modeling powder and binder are gradually compacted during the process. When the forming pressure increases from 178 MPa to 382 MPa, the density of sample increases to 1.79 g·cm-3, and the interfacial binding rate between HMX and binder increases to 42.3%, and Stotal decreases by 11.2%, and SHB increases by 49.0%, and SHV decreases by 25.8%, and SBV decreases by 45.5%, indicating that in this process, except the compaction of modeling powder and binder, a great amount of binder flows to the surface of HMX crystal. In addition, when the forming pressure increases from 64 MPa to 382 MPa, the sum of SHB and SHV (i.e. total internal interfacial surface area per unit mass PBX sample) remains basically unchanged, indicating that the cold‑pressed process does not lead to a large number of transcrystalline breakage of HMX crystal, which is consistent with the optical microscopic results.

  • 1 引 言

    高聚物粘结炸药(PBX)作为炸药晶体和高分子粘结剂组成的高填充复合材[1,2],因其优异的安全性能和良好的综合性能,在国防军事中具有重要的应用价值。PBX各组分物理性能的显著差异和成型工艺的复杂性决定了成型后的PBX内部不可避免存在着大量的界[1]、微裂纹、微孔洞、位错和栾晶等初始微结构(或称为初始损伤),这些微结构一方面会直接影响PBX的感度、爆轰特性、燃烧特性和力学性能等,另一方面在贮存服役等过程中受力热载荷的作用而发生演化,进一步影响其性[2,3,4]。因此,准确表征压制成型过程中这些微结构的演化对于PBX成型工艺参数的改进、性能优化和构效关系的建立都具有重要意[2,4]

    目前,对于PBX材料内部微结构的表征多为一些间接或者破坏性的定性手段。如杨仍才[5]采用正电子湮没表征了不同压制密度PBX中纳米尺度孔隙的差异,表明在50~230 MPa范围内随着成型压力的增大,三氨基三硝基苯(TATB)基PBX内部界面孔隙不断变小而TATB晶体内部孔隙却不断变大。徐来[6]通过测定TATB基PBX内部的超声波衰减特性并结合X射线微层析成像(X‑μCT)观察,表明单向和双向温压成型会使得PBX内部颗粒分布和排列规律明显不同。梁华琼[7]采用溶剂深度腐蚀PBX再用扫描电子显微镜(SEM)观察奥克托今(HMX)晶体的损伤,发现冷压会使得部分颗粒发生显著破碎,而热压则可保持较好形貌。刘佳辉[8]通过采用SEM定性观察了压装PBX中回收HMX的形貌变化,发现相同条件压制下HMX的晶粒尺寸越大,压制后晶粒破碎程度越严重,采用两种粒度的HMX级配可以减少这种压制损伤。戴[9]和张伟斌[10]采用X射线层析成像表征了TATB造型颗粒在压制过程中在上、中、下不同位置孔隙率的变化及颗粒接触数。

    中子或X射线小角散射,作为一种无损探测材料内部纳米结构特征的有效工具,在定量表征含能材料内部多相界面、孔洞分布特征方面具有广泛应用价[11,12]。然而,常规的中子或X射线小角散射只能给出PBX内部的总界面面积或者孔洞分[13,14],无法区分炸药晶体‑粘结剂‑孔洞三者之间的界面。为了探索冷压成型压力对HMX基高聚物粘结炸药内部微结构的影响,本研究基于氘代聚氨酯粘结剂,采用衬度变换中子小角散射(SANS)技术分别测试了64,178 MPa和382 MPa冷压成型HMX基PBX的中子小角散射曲线,利用Porod定理和联合求解线性方程组,实现了对PBX中炸药晶体‑粘结剂‑孔洞三者之间相互界面面积分别随着成型压力变化的区分,并据此推测出压制过程中造型粉、晶体、粘结剂的微结构演化规律。

  • 2 实验部分

  • 2.1 PBX多相界面分类定量表征的原理

    中子小角散射测试所得散射信号来源于样品内部纳米尺度结构的不均匀性,即纳米尺度散射结构与周围环境的中子散射长度密度差。对于PBX体系而言,由于炸药晶体颗粒的粒径一般都在几十微米,炸药内部微孔洞尺寸也一般都在几百纳米级别,其Porod区(QR≥1,Q为散射矢量,R为散射体半径)的中子小角散射信号主要来自于炸药晶体‑粘结剂‑孔洞三者之间的界面散射,当散射界面为光滑界面时,散射强度I(Q)与散射矢量Q之间满足Porod定[12],即

    I(Q)=2πQ4Δρ2S
    (1)

    式中,S为单位质量样品内部总的界面面积,cm2·g-1;Δρ为界面所对应的相邻两相之间的中子散射长度密度差,cm-2Q为散射矢量,nm-1

    PBX体系中包含炸药晶体、粘结剂(Binder)和孔洞(Void)三相,假定任意两相之间的界面和其它界面都在空间上不相[15],则有

    I(Q)=2πQ4IPρB
    (2)
    IP(ρB)=ΔρHB2SHB+ΔρHV2SHV+ΔρBV2SBV
    (3)

    式中,ΔρHB表示炸药晶体和粘结剂之间的中子散射长度密度差,cm-2;ΔρHV表示炸药晶体和孔洞之间的中子散射长度密度差,cm-2;ΔρBV表示粘结剂和孔洞之间的中子散射长度密度差,cm-2SHB表示炸药晶体和粘结剂之间的界面面积,cm2·g-1SHV表示炸药晶体和孔洞之间的界面面积,cm2·g-1SBV表示粘结剂和孔洞之间的界面面积,cm2·g-1

    在式(3)中,孔洞的散射长度密度为零,则炸药晶体与孔洞之间、粘结剂与孔洞之间的中子散射长度密度为恒定值,因此可以通过采用粘结剂氘代或者炸药晶体氘代的方式来调节体系的中子散射长度密度差ΔρHB,ΔρHV和ΔρBV,再通过求解线性方程组,分别获得单位质量样品内部炸药晶体‑粘结剂‑孔洞三者之间的界面面积SHBSHVSBV。本研究采用5种不同比例的全氘代聚氨酯和非氘代聚氨酯共混的方式来调控PBX中粘结剂的平均散射长度密度,从而实现对PBX的衬度变换。

  • 2.2 试剂与仪器

    试剂:HMX晶体粉末,粒径50~100 μm,中国工程物理研究院化工材料研究所;1,2‑二氯乙烷,化学纯,国药集团化学试剂有限公司;全氘代和非氘代聚氨酯,加拿大Polymer Source公司。其中,全氘代聚氨酯的结构如图1所示,重均分子量Mw为7×104Mw/Mn为1.5;非氘代聚氨酯的重均分子量Mw为5.1×104Mw/Mn为2.6。

    图1
                            全氘代聚氨酯的化学结构

    图1 全氘代聚氨酯的化学结构

    Fig.1 The chemical structure of perdeuterated polyurethane

    仪器:德国卡尔蔡司公司的Axio Lab.A1 Pol型偏光显微镜;中国绵阳研究堆的狻猊(Suanni)中子小角散射谱仪。

  • 2.3 高聚物粘结炸药的制备过程

    PBX样品中HMX炸药晶体和粘结剂之间的质量比为95∶5,采用表1中所示的5种配比的粘结剂来实现对HMX炸药晶体和聚氨酯粘结剂之间衬度差的调控,分别命名为HP1、HP2、HP3、HP4和HP5,其中HP1为非氘代,HP5为全氘代,选用1,2‑二氯乙烷作为聚氨酯的溶剂和60 ℃的水悬浮方法造粒得到造型粉。

    表1 HMX基PBX的组分设计和中子散射长度密度

    Table 1 The component design and neutron scattering length density(SLD) of HMX‑based PBX

    itemmass fraction/%average scattering length density of binder / cm-2the difference of SLD between HMX and binder / cm-2
    perdeuterated polyurethanenormal polyurethaneHMX crystal
    HP10%5%95%1.26×1010-3.32×1010
    HP21.25%3.75%95%2.57×1010-2.01×1010
    HP32.5%2.5%95%3.88×1010-0.7×1010
    HP43.75%1.25%95%5.19×10100.61×1010
    HP55%0%95%6.50×10101.92×1010

    NOTE: The difference of SLD means the difference of neutron scattering length density between HMX (4.58×1010 cm-2)and binder.

    室温下,将干燥后的5种造型粉分别在64,178 MPa和382 MPa模压成型,共得到15个成型样品,在此过程中,除设计的对比参数外,其它工艺参数完全相同。成型后,每个样品片的直径为10 mm,厚度约为2 mm。造型粉的制备和模压成型均由中国工程物理研究院化工材料研究所完成。

  • 2.4 中子小角散射实验过程

    对15个成型样品、空气、水标准样品等开展中子小角散射实验。SANS实验在中国绵阳研究堆的狻猊(Suanni)中子小角散射谱仪上开[15],入射中子波长0.53 nm,波长分辨率∆λ/λ~0.10。样品到探测器距离为5.2 m,所对应的散射矢量Q的范围为0.1~0.7 nm-1。采用BerSANS软[16]进行数据还原,将所有样品的原始数据扣除空气散射、Cd背底散射,并对样品厚度、透过率进行了归一。选用水作为标准[17],对所有样品的中子小角散射曲线进行绝对强度修正,获得每个样品的绝对强度散射曲线。

    以0.1~0.7 nm-1为PBX样品的Porod拟合区,采用Porod定理拟合所有样品的绝对强度散射曲线,并求解线性方程组,得到不同成型压力下PBX样品内三种界面面积数值随成型压力变化的曲线。

  • 3 结果与讨论

  • 3.1 成型压力对PBX密度的影响

    表2为5种配方造型粉分别在64、178 MPa和382 MPa冷压成型后所得PBX药片的平均厚度和密度。从表2中可以看出,随着成型压力的增大,样品的压实密度逐渐增大。当成型压力由64 MPa增加到382 MPa时,PBX的实际密度由1.55 g·cm-3增加至1.79 g·cm-3,压实比也由83.6%增加至96.5%。通过对比本实验中PBX样品和Mang[11]采用PBX9501配方所热压压制成型样品的实际密度,可以发现,相近成型压力下,本研究中所得样品的实际密度远小于文献中的值(文献[11]中,成型压力由69 MPa增加至200 MPa时,PBX9501的密度从1.80 g·cm-3增加至1.83 g·cm-3),并且本实验中PBX的压实比随着成型压力变化很大,而PBX9501的变化则很小,这是由于文献[11]中PBX9501的HMX晶体采用了粗细两种不同粒径分布的级配和90 ℃的热压成型。粗细颗粒的级配使得炸药晶体的空隙填充率更高,热压条件使得粘结剂流动更加充分,因此在相同成型压力下PBX9501可以达到更高的密度和压实比。本研究中样品在无级配的冷压条件下只有在压力高达382 MPa时才能达到与PBX9501相近的密度。

    表2 冷压成型HMX基PBX药片的平均厚度和密度

    Table 2 The average thickness and density of cool‑pressed HMX‑based PBX tablets

    applied pressure / MPa

    thickness

    / mm

    mass

    / g

    density

    / g·cm-3

    ratio of compaction / %
    642.310.2811.5583.6
    1782.060.2781.7292.7
    3822.010.2821.7996.5

    NOTE: Ratio of compaction is the ratio of the pressed density to the theoretical maximum density (TMD). The TMD is 1.855 g·cm-3, and composed of 95% mass fraction HMX (1.89 g·cm-3) and 5% mass fraction polyurethane binder (1.19 g·cm-3).

  • 3.2 成型压力对PBX形貌的影响

    图2为HP1(5%非氘代聚氨酯)和HP5(5%全氘代聚氨酯)造型粉分别在64,178 MPa和382 MPa冷压成型后所得样品的偏光显微照片。从图2a~图2f的变化可以看出,随着成型压力的增大,PBX整体被压得越来越密实(亮的区域为炸药晶体,暗的区域为粘结剂和孔洞,其中红色圈标出的地方存在孔洞),这与压力增大过程中的密度变化趋势一致。其中,64 MPa压力下成型的PBX样品表面可以直接看到大量几微米以上的孔洞(图2a和图2d),178 MPa压力下成型的样品表面有少量几微米尺度的孔洞,而382 MPa压力下成型的样品表面几微米尺度的孔洞则较少。此外,成型压力由64 MPa增加至382 MPa的过程中,并未观察到HMX颗粒发生显著的破碎,而382 MPa成型的PBX中出现了少部分HMX的孪晶带(蓝色圈标出的区域),这与梁华[7]通过腐蚀PBX粘结剂后用扫描电镜观察到的趋势一致。

    图2
                            不同配比HMX基PBX在64、178 MPa和382 MPa冷压成型后的偏光显微镜照片(红色圈内存在孔洞,蓝色圈内存在孪晶区)

    图2 不同配比HMX基PBX在64、178 MPa和382 MPa冷压成型后的偏光显微镜照片(红色圈内存在孔洞,蓝色圈内存在孪晶区)

    Fig.2 The polarization microscopic photographs of HMX‑based PBX with different formulation ratios after cool‑pressing at 64, 178 MPa and 382 MPa(Voids are showed in the red circle and twin crystal region is showed in the blue circle)

  • 3.3 PBX内部多相界面的SANS测试结果

    图3为HP1配方的HMX基PBX在不同压力下成型样品的中子小角散射二维图像,所对应的散射矢量Q的范围为0.08~0.8 nm-1。由图3可以看出,所有二维图像都是均匀的环状,表明样品内部不存在几十纳米尺度的明显取向结构,实验测试的统计性较好。图4为所有样品的中子小角散射绝对强度散射曲线,从图4可以看出,在实验测试的Q值范围(0.1~0.7 nm-1)内,样品的散射曲线都满足Porod定理(散射强度与散射矢量之间为Q-4的衰减关系),表明PBX内部的炸药晶体、粘结剂和孔洞三相之间均为光滑界[18],不存在界面分形结构。此外,从图4b、图4d和图4f可以看出,随着粘结剂配比的变化,样品的散射强度也会发生显著的变化,表明氘代粘结剂成功实现了对PBX衬度的调控。

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image003.png

    a. 64 MPa

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image004.png

    b. 178 MPa

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image005.png

    c. 382 MPa

    图3 HP1配方在不同压力下成型HMX基PBX样品的典型SANS二维图像

    Fig.3 The typical 2D SANS images of the HP1 formulation HMX‑based PBX forming sample under different forming pressures

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image006.png

    a. 64 MPa

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image007.png

    b. local enlarged images at 64 MPa

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image008.png

    c. 178 MPa

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image009.png

    d. local enlarged images at 178 MPa

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image010.png

    e. 382 MPa

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image011.png

    f. local enlarged images at 382 MPa

    图4 不同配方HMX基PBX在64, 178, 382 MPa冷压成型后的SANS绝对强度散射曲线及对应的局部放大图

    Fig.4 The SANS strength curves and corresponding local enlarged images of HMX‑based PBX with different formulation ratios after cold‑pressing at 64, 178 MPa and 382 MPa

    联立式(2)和式(3),拟合相同压力成型的五个衬度匹配样品的绝对强度散射曲线,再利用最小二乘法解方程组获得冷压成型PBX中不同类型界面的面积数值,如表3所示。单个造型粉颗粒中通常都包含有大量的炸药晶粒,并且这些晶粒之间会有大量孔[19],在PBX中,HMX炸药晶体的界面面积主要由HMX与粘结剂之间的界面面积SHB和HMX晶体与微孔洞(或微裂纹)之间的界面面积SHV两部分组成,因此可以根据SHB所占比例来计算PBX中粘结剂与HMX炸药晶体表面的界面结合率。由表3可以看出,在三种成型压力条件下,PBX样品的最大界面结合率只有42.3%,远低于热压成型PBX9501样品的界面结合率(根据文献[12]中的界面面积数值采用本研究相同的方法进行计算,获得其界面结合率最低为79.2%,最高可达90.9%)。这可能来自于三方面的原因:一是PBX9501采用90 ℃的热压成[11],聚氨酯粘结剂在高温下由于良好的流动性能对炸药晶体充分浸润和接触;二是PBX9501的配方中炸药晶体是由粗细粒径颗粒级配优化[20],粗细颗粒的级配在增加炸药晶体空隙利用率的同时可以提高了炸药晶体与粘结剂表面的接触率,本研究只选用了一种粒径分布的HMX炸药晶体;三是PBX9501作为成熟产品,采用了最优化的造型工艺,造型工艺参数则会显著地影响粘结剂的包覆质[21]

    表3 冷压成型PBX药片的各类界面面积和HMX与粘结剂的界面结合率

    Table 3 The various types of interfacial surface area of cold‑pressed PBX tablets and interfacial binding rate of HMX with binder

    applied pressure

    / MPa

    SHB

    / cm2·g-1

    SHV

    / cm2·g-1

    SBV

    / cm2·g-1

    Stotal

    / cm2·g-1

    interfacial binding rate of HMX with binder(SHB/ (SHB+SHV) / %)
    64663.7±19.92133.9±64.0739.2±22.23536.8±106.123.7
    178764.9±22.92096.3±62.9458.3±13.73319.5±99.626.7
    3821140.2±34.21556.1±46.7249.8±7.52946.1±88.442.3

    NOTE: The interfacial binding rate of HMX with binder is calculated from the interfacial surface area determined from SANS (SHB/ (SHB +SHV))。

    图5为不同压力成型PBX中各类界面面积随着成型压力的变化曲线。由图5a可以看出:(1)当成型压力由64 MPa增加至178 MPa时,单位质量PBX内部HMX与粘结剂之间的界面面积SHB增加了15.2%,HMX与孔洞之间的界面面积SHV略微减小1.8%(测量误差3%,可认为基本不变),粘结剂与孔洞之间的界面面积SBV则显著下降38.0%,PBX内部总界面面积Stotal减小6.1%,表明该过程中造型粉和粘结剂被逐渐压实,有少量粘结剂流动至HMX的表面;(2)成型压力由178 MPa增加至382 MPa时,SHB增加49.0%,SHV减少25.8%,SBV下降45.5%,Stotal减小11.2%,表明这个过程中除了造型粉和粘结剂被压实外,还有大量的粘结剂被挤压流动至HMX表面。由图5b可以看出,在整个压力增加的过程中HMX炸药晶体总的界面面积变化都非常小(在测量误差范围内),表明本研究的冷压成型过程中只有少量HMX晶体发生了开裂破碎,这与用偏光显微镜观察到的现象一致,这与文献[12]中PBX9501由69 MPa增加至200 MPa的热压过程中有大量的HMX晶体发生穿晶开裂的现象不同。由图5c可以看出,在整个压力增加过程中粘结剂的总界面面积先减小后增大,这一方面是因为粘结剂内部孔洞一直因压实使SBV减少,另一方面在压力增加至178 MPa后大量粘结剂被挤压流动至HMX晶体表面使SHB增加,其总界面面积随之增加。由图5d可以看出,在整个压力增加的过程中孔洞总的界面面积在一直减小,这与样品密度增加、孔洞总体积含量降低的宏观趋势是一致的。

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image012.png

    a. the total interfacial surface area

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image013.png

    b. interfacial surface area related with HMX crystal

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image014.png

    c. interfacial surface area related with binder

    html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image015.png

    d. interfacial surface area related with voids

    图5 晶体‑粘结剂‑孔洞三者之间的界面面积随成型压力的变化(Stotal为总界面面积,SHB+SHV为HMX晶体颗粒的总界面面积,SHB+SBV为粘结剂的总界面面积,SHV+SBV为孔洞的总界面面积)

    Fig.5 The change of interfacial surface area between explosive crystal, binder and void in the cool‑pressed PBX with the forming pressure (Stotal is the total interfacial surface area, SHB+SHV is the interfacial surface area of HMX crystal particles, SHB+SBV is the interfacial surface area of binder, SHV+SBV is the interfacial surface area of voids)

  • 4 结 论

    使用不同比例氘代聚氨酯和非氘代聚氨酯共混作为粘结剂,实现了对HMX基PBX体系中子散射衬度的调控,并利用中子小角散射测试结合光学显微观察,获得了PBX的表观形貌、密度、炸药晶体‑粘结剂‑孔洞三者之间界面面积、PBX中HMX与粘结剂的界面结合率等随着冷压成型压力的演化数据,解析发现:

    (1)冷压压力由64 MPa增加至382 MPa过程中,PBX的压实率由83.6%增加到96.5%,单位质量PBX内部的炸药晶体的界面面积(SHBSHV之和)并未发生显著变化,说明该过程主要为压装PBX的颗粒重排过程,颗粒的损伤破碎并不严重。

    (2)粘结剂被挤压流动至HMX炸药晶体的表面主要发生在178 MPa以后,HMX炸药晶体表面与粘结剂的最高界面结合率42.3%,远小于文献[12]中热压PBX9501(最高90.9%),这表明热压、级配、造型等优化工艺对于改善PBX中炸药晶体与粘结剂之间界面状态都至关重要。

    本研究实现了PBX内部多相界面分类定量表征,结合其它表征手段,可用于研究造型工艺和热压工艺参数优化、温压时效处理等热力加载过程对PBX微结构演化的影响、PBX微结构特征对冲击波感度、爆轰性能和力学性能影响等。

    (责编:高 毅)

  • 参考文献

    • 1

      何冠松,林聪妹,刘佳辉,等. TATB基PBX界面粘结改善研究进展[J]. 含能材料,2016,24(3): 306-314.

      HE Guan‑song, LIN Cong‑mei, LIU Jia‑hui, et al. Review on interfacial bonding improving of TATB‑based PBX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(3): 306-314.

    • 2

      Asay B W. Shock wave science and technology reference library, Vol. 5: Non‑shock initiation of explosives[M]. Springer‑Verlag Berlin Heidelberg: Springer, 2010: 3-5.

    • 3

      董海山,周芬芬. 高能炸药及相关物性能[M]. 北京:科学出版社,1989: 2-4.

      DONG Hai‑shan, ZHOU Fen‑fen. Performance of high energetic explosive and related compounds[M]. Beijing: Science Press,1989: 2-4.

    • 4

      陈鹏万,黄风雷. 含能材料损伤理论及应用[M]. 北京:北京理工大学出版社,2006: 2-11.

      CHEN Peng‑wan, HUANG Feng‑lei. Damage theory of energetic materials and its applications[M]. Beijing: Beijing Institute of Technology Press, 2006: 2-11.

    • 5

      杨仍才,田勇,张伟斌,等. TATB基PBX纳米孔隙的正电子湮没寿命谱[J]. 含能材料,2011,19(2): 200-203.

      YANG Reng‑cai, TIAN Yong, ZHANG Wei‑bin, et al. Study on positron lifetime of nano‑void of TATB‑based PBX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2011, 19(2): 200-203.

    • 6

      徐来,张伟斌,杨占锋,等. TATB造型颗粒单/双向温压成形PBX声学特性[Z]. 2014’(第六届)含能材料与钝感弹药技术学术研讨会论文集,中国 四川 成都:2014.

    • 7

      梁华琼, 雍炼, 唐常良, 等. 压制过程中PBX炸药颗粒的破碎及损伤[J]. 火炸药学报, 2010, 33(1): 27-30.

      LIANG Hua‑qiong, YONG Lian, TANG Chang‑liang, et al. Crack and damage of PBX during pressing[J]. Chinese Journal of Explosives & Propellants, 2010, 33(1): 27-30.

    • 8

      刘佳辉, 刘世俊, 黄明, 等. 钢模压制下高品质HMX晶体的损伤规律[J]. 火炸药学报, 2012, 35(3): 42-46.

      LIU Jia‑hui, LIU Shi‑jun, HUANG Ming, et al. Crack and damage in insensitive HMX crystal during pressing[J]. Chinese Journal of Explosives & Propellants, 2012, 35(3): 42-46.

    • 9

      戴斌, 田勇, 张伟斌, 等. TATB造型颗粒模压结构演变的X射线层析成像[J]. 含能材料,2015, 23(10): 982-988.

      DAI Bin, TIAN Yong, ZHANG Wei‑bin, et al. X‑ray tomography of structural evolution of TATB granules during compaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(10): 982-988.

    • 10

      张伟斌,田勇,雍炼,等. TATB造型颗粒温等静压软模成型X射线微层析成像[J]. 含能材料, DOI:10.11943/CJEM2017371.

      ZHANG Wei‑bin, TIAN Yong, YONG Lian, et al. X‑ray microtomography of TATB granules under isostatic warm soft compaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), DOI:10.11943/CJEM2017371.

    • 11

      Mang J T, Hjelm R P, Francois E G. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra‑small‑angle neutron scattering with contrast variation[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(1):7-14.

    • 12

      Mang J T, Hjelm R P. Small‑angle neutron scattering and contrast variation measurement of the interfacial surface area in PBX 9501 as a function of pressing intensity[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5): 439-445.

    • 13

      Willey T M, van Buuren T, Lee J R I, et al. Changes in pore size distribution upon thermal cycling of TATB‑based explosives measured by ultra‑small angle X‑ray scattering[J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 466-471.

    • 14

      Willey T M, Hoffman D M, van Buuren T, et al. The Microstructure of TATB‑based explosive formulations during temperature cycling using ultra‑small‑angle X‑ray scattering[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(5): 406-414.

    • 15

      Peng M, Sun L, Chen L, et al. A new small‑angle neutron scattering spectrometer at China Mianyang research reactor[J]. Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2016,810: 63-67.

    • 16

      Keiderling U. The new 'BerSANS‑PC' software for reduction and treatment of small angle neutron scattering data[J]. Applied Physics A: Materials Science & Processing, 2002,74(Suppl 1): s1455-s1457.

    • 17

      Tian Q, Yan G Y, Bai L F, et al. Calibration of the Suanni small‑angle neutron scattering instrument at the China Mianyang Research Reactor[J]. Journal of Applied Crystallography, 2018, 51(6): 1662-1670.

    • 18

      Mang J T, Hjelm R P. Fractal networks of inter‐granular voids in pressed TATB[J]. Propellants, Explosives, Pyrotechnics. 2013, 38(6): 831-840.

    • 19

      张伟斌, 戴斌, 杨雪海, 等. TATB造型颗粒内部微结构特征[J]. 含能材料, 2013, 21(2): 279-280.

      ZHANG Wei‑bin, DAI Bin, YANG Xue‑hai, et al. Internal micro‑structure characterization of TATB granules[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013,21(2): 279-280.

    • 20

      Skidmore C B, Phillips D S, Son S F, et al. Characterization of HMX particles in PBX 9501[R]. AIP Conference Proceedings: Shock Compression of Condensed Matter‑1997, 1998, 429(1): 579-582.

    • 21

      马婷婷,苟瑞君. PBX的制备及包覆工艺研究[J]. 山西化工,2010, 30(4): 13-16.

      MA Ting‑ting, GOU Rui‑jun. Preparation and coating technology of pressed PBX[J].Chinese Shanxi Chemical Industry,2010, 30(4): 13-16.

白亮飞

机 构:中国工程物理研究院核物理与化学研究所 中物院中子物理重点实验室, 四川 绵阳 621999

Affiliation:Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621999, China

邮 箱:bailiangfei@163.com

作者简介:白亮飞(1985-),男,副研究员,主要从事中子散射在含能材料中的应用研究。e‑mail:bailiangfei@163.com

田强

机 构:中国工程物理研究院核物理与化学研究所 中物院中子物理重点实验室, 四川 绵阳 621999

Affiliation:Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621999, China

屠小青

机 构:中国工程物理研究院核物理与化学研究所 中物院中子物理重点实验室, 四川 绵阳 621999

Affiliation:Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621999, China

闫冠云

机 构:中国工程物理研究院核物理与化学研究所 中物院中子物理重点实验室, 四川 绵阳 621999

Affiliation:Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621999, China

孙光爱

机 构:中国工程物理研究院核物理与化学研究所 中物院中子物理重点实验室, 四川 绵阳 621999

Affiliation:Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621999, China

龚建

机 构:中国工程物理研究院核物理与化学研究所 中物院中子物理重点实验室, 四川 绵阳 621999

Affiliation:Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621999, China

何冠松

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

陈良

机 构:中国工程物理研究院核物理与化学研究所 中物院中子物理重点实验室, 四川 绵阳 621999

Affiliation:Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621999, China

黄石亮

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

李新喜

机 构:中国工程物理研究院核物理与化学研究所 中物院中子物理重点实验室, 四川 绵阳 621999

Affiliation:Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621999, China

刘渝

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

角 色:通讯作者

Role:Corresponding author

邮 箱:liuyu307@caep.cn

作者简介:刘渝(1976-),男,研究员,主要从事含能材料高效表征与分析技术研究。e‑mail:liuyu307@caep.cn

html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image002.png
itemmass fraction/%average scattering length density of binder / cm-2the difference of SLD between HMX and binder / cm-2
perdeuterated polyurethanenormal polyurethaneHMX crystal
HP10%5%95%1.26×1010-3.32×1010
HP21.25%3.75%95%2.57×1010-2.01×1010
HP32.5%2.5%95%3.88×1010-0.7×1010
HP43.75%1.25%95%5.19×10100.61×1010
HP55%0%95%6.50×10101.92×1010
applied pressure / MPa

thickness

/ mm

mass

/ g

density

/ g·cm-3

ratio of compaction / %
642.310.2811.5583.6
1782.060.2781.7292.7
3822.010.2821.7996.5
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image001.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image003.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image004.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image005.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image006.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image007.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image008.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image009.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image010.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image011.png

applied pressure

/ MPa

SHB

/ cm2·g-1

SHV

/ cm2·g-1

SBV

/ cm2·g-1

Stotal

/ cm2·g-1

interfacial binding rate of HMX with binder(SHB/ (SHB+SHV) / %)
64663.7±19.92133.9±64.0739.2±22.23536.8±106.123.7
178764.9±22.92096.3±62.9458.3±13.73319.5±99.626.7
3821140.2±34.21556.1±46.7249.8±7.52946.1±88.442.3
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image012.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image013.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image014.png
html/hncl/CJEM2018256/media/7d5fef7c-c196-4bc8-80fc-39e1a7064358-image015.png

图1 全氘代聚氨酯的化学结构

Fig.1 The chemical structure of perdeuterated polyurethane

表1 HMX基PBX的组分设计和中子散射长度密度

Table 1 The component design and neutron scattering length density(SLD) of HMX‑based PBX

表2 冷压成型HMX基PBX药片的平均厚度和密度

Table 2 The average thickness and density of cool‑pressed HMX‑based PBX tablets

图2 不同配比HMX基PBX在64、178 MPa和382 MPa冷压成型后的偏光显微镜照片(红色圈内存在孔洞,蓝色圈内存在孪晶区)

Fig.2 The polarization microscopic photographs of HMX‑based PBX with different formulation ratios after cool‑pressing at 64, 178 MPa and 382 MPa(Voids are showed in the red circle and twin crystal region is showed in the blue circle)

图3 HP1配方在不同压力下成型HMX基PBX样品的典型SANS二维图像 -- a. 64 MPa

Fig.3 The typical 2D SANS images of the HP1 formulation HMX‑based PBX forming sample under different forming pressures -- a. 64 MPa

图3 HP1配方在不同压力下成型HMX基PBX样品的典型SANS二维图像 -- b. 178 MPa

Fig.3 The typical 2D SANS images of the HP1 formulation HMX‑based PBX forming sample under different forming pressures -- b. 178 MPa

图3 HP1配方在不同压力下成型HMX基PBX样品的典型SANS二维图像 -- c. 382 MPa

Fig.3 The typical 2D SANS images of the HP1 formulation HMX‑based PBX forming sample under different forming pressures -- c. 382 MPa

图4 不同配方HMX基PBX在64, 178, 382 MPa冷压成型后的SANS绝对强度散射曲线及对应的局部放大图 -- a. 64 MPa

Fig.4 The SANS strength curves and corresponding local enlarged images of HMX‑based PBX with different formulation ratios after cold‑pressing at 64, 178 MPa and 382 MPa -- a. 64 MPa

图4 不同配方HMX基PBX在64, 178, 382 MPa冷压成型后的SANS绝对强度散射曲线及对应的局部放大图 -- b. local enlarged images at 64 MPa

Fig.4 The SANS strength curves and corresponding local enlarged images of HMX‑based PBX with different formulation ratios after cold‑pressing at 64, 178 MPa and 382 MPa -- b. local enlarged images at 64 MPa

图4 不同配方HMX基PBX在64, 178, 382 MPa冷压成型后的SANS绝对强度散射曲线及对应的局部放大图 -- c. 178 MPa

Fig.4 The SANS strength curves and corresponding local enlarged images of HMX‑based PBX with different formulation ratios after cold‑pressing at 64, 178 MPa and 382 MPa -- c. 178 MPa

图4 不同配方HMX基PBX在64, 178, 382 MPa冷压成型后的SANS绝对强度散射曲线及对应的局部放大图 -- d. local enlarged images at 178 MPa

Fig.4 The SANS strength curves and corresponding local enlarged images of HMX‑based PBX with different formulation ratios after cold‑pressing at 64, 178 MPa and 382 MPa -- d. local enlarged images at 178 MPa

图4 不同配方HMX基PBX在64, 178, 382 MPa冷压成型后的SANS绝对强度散射曲线及对应的局部放大图 -- e. 382 MPa

Fig.4 The SANS strength curves and corresponding local enlarged images of HMX‑based PBX with different formulation ratios after cold‑pressing at 64, 178 MPa and 382 MPa -- e. 382 MPa

图4 不同配方HMX基PBX在64, 178, 382 MPa冷压成型后的SANS绝对强度散射曲线及对应的局部放大图 -- f. local enlarged images at 382 MPa

Fig.4 The SANS strength curves and corresponding local enlarged images of HMX‑based PBX with different formulation ratios after cold‑pressing at 64, 178 MPa and 382 MPa -- f. local enlarged images at 382 MPa

表3 冷压成型PBX药片的各类界面面积和HMX与粘结剂的界面结合率

Table 3 The various types of interfacial surface area of cold‑pressed PBX tablets and interfacial binding rate of HMX with binder

图5 晶体‑粘结剂‑孔洞三者之间的界面面积随成型压力的变化(Stotal为总界面面积,SHB+SHV为HMX晶体颗粒的总界面面积,SHB+SBV为粘结剂的总界面面积,SHV+SBV为孔洞的总界面面积) -- a. the total interfacial surface area

Fig.5 The change of interfacial surface area between explosive crystal, binder and void in the cool‑pressed PBX with the forming pressure (Stotal is the total interfacial surface area, SHB+SHV is the interfacial surface area of HMX crystal particles, SHB+SBV is the interfacial surface area of binder, SHV+SBV is the interfacial surface area of voids) -- a. the total interfacial surface area

图5 晶体‑粘结剂‑孔洞三者之间的界面面积随成型压力的变化(Stotal为总界面面积,SHB+SHV为HMX晶体颗粒的总界面面积,SHB+SBV为粘结剂的总界面面积,SHV+SBV为孔洞的总界面面积) -- b. interfacial surface area related with HMX crystal

Fig.5 The change of interfacial surface area between explosive crystal, binder and void in the cool‑pressed PBX with the forming pressure (Stotal is the total interfacial surface area, SHB+SHV is the interfacial surface area of HMX crystal particles, SHB+SBV is the interfacial surface area of binder, SHV+SBV is the interfacial surface area of voids) -- b. interfacial surface area related with HMX crystal

图5 晶体‑粘结剂‑孔洞三者之间的界面面积随成型压力的变化(Stotal为总界面面积,SHB+SHV为HMX晶体颗粒的总界面面积,SHB+SBV为粘结剂的总界面面积,SHV+SBV为孔洞的总界面面积) -- c. interfacial surface area related with binder

Fig.5 The change of interfacial surface area between explosive crystal, binder and void in the cool‑pressed PBX with the forming pressure (Stotal is the total interfacial surface area, SHB+SHV is the interfacial surface area of HMX crystal particles, SHB+SBV is the interfacial surface area of binder, SHV+SBV is the interfacial surface area of voids) -- c. interfacial surface area related with binder

图5 晶体‑粘结剂‑孔洞三者之间的界面面积随成型压力的变化(Stotal为总界面面积,SHB+SHV为HMX晶体颗粒的总界面面积,SHB+SBV为粘结剂的总界面面积,SHV+SBV为孔洞的总界面面积) -- d. interfacial surface area related with voids

Fig.5 The change of interfacial surface area between explosive crystal, binder and void in the cool‑pressed PBX with the forming pressure (Stotal is the total interfacial surface area, SHB+SHV is the interfacial surface area of HMX crystal particles, SHB+SBV is the interfacial surface area of binder, SHV+SBV is the interfacial surface area of voids) -- d. interfacial surface area related with voids

image /

无注解

The difference of SLD means the difference of neutron scattering length density between HMX (4.58×1010 cm-2)and binder.

Ratio of compaction is the ratio of the pressed density to the theoretical maximum density (TMD). The TMD is 1.855 g·cm-3, and composed of 95% mass fraction HMX (1.89 g·cm-3) and 5% mass fraction polyurethane binder (1.19 g·cm-3).

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

The interfacial binding rate of HMX with binder is calculated from the interfacial surface area determined from SANS (SHB/ (SHB +SHV))。

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      何冠松,林聪妹,刘佳辉,等. TATB基PBX界面粘结改善研究进展[J]. 含能材料,2016,24(3): 306-314.

      HE Guan‑song, LIN Cong‑mei, LIU Jia‑hui, et al. Review on interfacial bonding improving of TATB‑based PBX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(3): 306-314.

    • 2

      Asay B W. Shock wave science and technology reference library, Vol. 5: Non‑shock initiation of explosives[M]. Springer‑Verlag Berlin Heidelberg: Springer, 2010: 3-5.

    • 3

      董海山,周芬芬. 高能炸药及相关物性能[M]. 北京:科学出版社,1989: 2-4.

      DONG Hai‑shan, ZHOU Fen‑fen. Performance of high energetic explosive and related compounds[M]. Beijing: Science Press,1989: 2-4.

    • 4

      陈鹏万,黄风雷. 含能材料损伤理论及应用[M]. 北京:北京理工大学出版社,2006: 2-11.

      CHEN Peng‑wan, HUANG Feng‑lei. Damage theory of energetic materials and its applications[M]. Beijing: Beijing Institute of Technology Press, 2006: 2-11.

    • 5

      杨仍才,田勇,张伟斌,等. TATB基PBX纳米孔隙的正电子湮没寿命谱[J]. 含能材料,2011,19(2): 200-203.

      YANG Reng‑cai, TIAN Yong, ZHANG Wei‑bin, et al. Study on positron lifetime of nano‑void of TATB‑based PBX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2011, 19(2): 200-203.

    • 6

      徐来,张伟斌,杨占锋,等. TATB造型颗粒单/双向温压成形PBX声学特性[Z]. 2014’(第六届)含能材料与钝感弹药技术学术研讨会论文集,中国 四川 成都:2014.

    • 7

      梁华琼, 雍炼, 唐常良, 等. 压制过程中PBX炸药颗粒的破碎及损伤[J]. 火炸药学报, 2010, 33(1): 27-30.

      LIANG Hua‑qiong, YONG Lian, TANG Chang‑liang, et al. Crack and damage of PBX during pressing[J]. Chinese Journal of Explosives & Propellants, 2010, 33(1): 27-30.

    • 8

      刘佳辉, 刘世俊, 黄明, 等. 钢模压制下高品质HMX晶体的损伤规律[J]. 火炸药学报, 2012, 35(3): 42-46.

      LIU Jia‑hui, LIU Shi‑jun, HUANG Ming, et al. Crack and damage in insensitive HMX crystal during pressing[J]. Chinese Journal of Explosives & Propellants, 2012, 35(3): 42-46.

    • 9

      戴斌, 田勇, 张伟斌, 等. TATB造型颗粒模压结构演变的X射线层析成像[J]. 含能材料,2015, 23(10): 982-988.

      DAI Bin, TIAN Yong, ZHANG Wei‑bin, et al. X‑ray tomography of structural evolution of TATB granules during compaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(10): 982-988.

    • 10

      张伟斌,田勇,雍炼,等. TATB造型颗粒温等静压软模成型X射线微层析成像[J]. 含能材料, DOI:10.11943/CJEM2017371.

      ZHANG Wei‑bin, TIAN Yong, YONG Lian, et al. X‑ray microtomography of TATB granules under isostatic warm soft compaction[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), DOI:10.11943/CJEM2017371.

    • 11

      Mang J T, Hjelm R P, Francois E G. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra‑small‑angle neutron scattering with contrast variation[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(1):7-14.

    • 12

      Mang J T, Hjelm R P. Small‑angle neutron scattering and contrast variation measurement of the interfacial surface area in PBX 9501 as a function of pressing intensity[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5): 439-445.

    • 13

      Willey T M, van Buuren T, Lee J R I, et al. Changes in pore size distribution upon thermal cycling of TATB‑based explosives measured by ultra‑small angle X‑ray scattering[J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 466-471.

    • 14

      Willey T M, Hoffman D M, van Buuren T, et al. The Microstructure of TATB‑based explosive formulations during temperature cycling using ultra‑small‑angle X‑ray scattering[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(5): 406-414.

    • 15

      Peng M, Sun L, Chen L, et al. A new small‑angle neutron scattering spectrometer at China Mianyang research reactor[J]. Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2016,810: 63-67.

    • 16

      Keiderling U. The new 'BerSANS‑PC' software for reduction and treatment of small angle neutron scattering data[J]. Applied Physics A: Materials Science & Processing, 2002,74(Suppl 1): s1455-s1457.

    • 17

      Tian Q, Yan G Y, Bai L F, et al. Calibration of the Suanni small‑angle neutron scattering instrument at the China Mianyang Research Reactor[J]. Journal of Applied Crystallography, 2018, 51(6): 1662-1670.

    • 18

      Mang J T, Hjelm R P. Fractal networks of inter‐granular voids in pressed TATB[J]. Propellants, Explosives, Pyrotechnics. 2013, 38(6): 831-840.

    • 19

      张伟斌, 戴斌, 杨雪海, 等. TATB造型颗粒内部微结构特征[J]. 含能材料, 2013, 21(2): 279-280.

      ZHANG Wei‑bin, DAI Bin, YANG Xue‑hai, et al. Internal micro‑structure characterization of TATB granules[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013,21(2): 279-280.

    • 20

      Skidmore C B, Phillips D S, Son S F, et al. Characterization of HMX particles in PBX 9501[R]. AIP Conference Proceedings: Shock Compression of Condensed Matter‑1997, 1998, 429(1): 579-582.

    • 21

      马婷婷,苟瑞君. PBX的制备及包覆工艺研究[J]. 山西化工,2010, 30(4): 13-16.

      MA Ting‑ting, GOU Rui‑jun. Preparation and coating technology of pressed PBX[J].Chinese Shanxi Chemical Industry,2010, 30(4): 13-16.