-
1 引 言
当前,国际安全形势的综合性、复杂性和多边性更加明显。虽然世界趋于和平,但有些地方依旧存在战争等不安定因素。生化武器作为两种常见的大规模杀伤性武器(Weapons of mass destruction,WMD),由于其具有制备成本低,杀伤能力强,持续时间长等特点一直受到恐怖分子的青睐。化学武器具有化学战剂活性随时间减弱,危害也随着时间推移逐步减小的特点;而生物武器由于生物战剂具有可发生突变,可繁殖和大范围扩散传播等特点,其危害随着时间的推移可发生数倍增
长[1] 。生物战剂主要包括:炭疽杆菌、鼠疫杆菌、天花病毒、出血热病毒、和兔热病杆菌(又称土伦热)及肉毒杆菌毒素
等[2] 。细菌结构包括核芯(core),内膜(inner membrane),细菌细胞壁(germ cell wall),皮层(cortex),外膜(outer membrane),衣壳(coats)和外壁(exosporium)。杀菌的主要方式归纳起来主要有以下三类:(1)紫外或γ射线照射灭杀;(2)热杀灭;(3)化学杀灭[3] 。紫外或γ射线照射的杀菌机理主要是破坏核芯内的DNA来杀死细菌,热杀灭机理为破坏细菌中的蛋白质或DNA,而化学杀灭机理是通过破坏内膜和DNA等方式来杀灭细菌。要实现对生物武器的彻底摧毁,不仅需要摧毁武器结构本身,还需要消灭其所携带的生物战剂。利用传统梯恩梯(TNT)、黑索今(RDX)、奥克托今(HMX)等炸药装药的战斗部应对生物武器,炸药爆炸产生能量可以有效破坏生物武器结构,但是其爆炸产生的瞬间热效应对生物战剂的杀灭能力有限,相反,爆炸产生的冲击波还会加速生物战剂在空气中的扩散,造成更加严重的后果,因而无法满足彻底摧毁大规模杀伤性武器的需求。针对这一新的诉求,迫切需要开发一类新型的含能功能材料——含能反生物战剂,其需要实现以下功能:(1)新型含能功能材料需要具有一定的能量,在爆炸后可以有效破坏生物武器结构,同时释放出生物武器所携带的生物战剂;(2)含能反生物战剂的爆炸产物中能够释放出有效的杀菌剂,用于中和或杀灭生物武器所携带生物战剂,从而满足彻底摧毁生物武器的需求。
含卤杀菌剂由于其高效广谱的特性受到了国内外研究者的广泛关注。早期研究的反生物战剂主要选用氯化氢作为杀菌剂,2002年洛克希德马丁公司在其研制的反生化武器战斗部装置中对其推进剂组分中添加含氯化合物,通过燃烧产物中生成的氯化氢和水形成具有强反应性的热盐酸来杀死生物战
剂[4] ,但其杀菌能力相对较弱。相对而言,氢氟酸具有更加高效的杀菌能力[5,6] ,浓度为200 μg·g-1 的氟化氢可以有效杀死炭疽杆菌等大多数生物战剂。2008年,美国Chapman[7] 对含有‑NF2 基团的含能化合物3,3,7,7‑四(二氟氨基)‑八氢化‑1,5‑二硝基‑1,5‑二氮杂辛烷(HNFX)作为反生物战剂进行了合成、表征及性能测试,该化合物在爆炸后可以释放出高浓度的HF气体,在5s内可以杀死大部分的炭疽菌。然而,HNFX存在感度高,制备成本高等不足,大大限制了其应用。与氯化氢和氟化氢相比,碘具有更加高效的杀菌能力,单质碘在室温条件下十分钟内便可杀死99.999%的阿米巴囊(amoebic cysts),所需的浓度仅为3.5 μg·
g-1 。其杀菌机理可能是碘具有良好的膜渗透能力,与细菌的核酸或蛋白质发生氧化或碘化反应,使细菌缺少必需的蛋白质、细胞膜遭到破坏细胞内液外流导致菌体死亡,从而实现杀灭生物武器的细菌、寄生虫及孢子等。碘单质由于存在易升华,化学稳定性差等不足而限制了其直接用于反生物战剂中。通过将碘以含碘基团的形式引入到化合物中,进而获得具有热稳定性和化学稳定性良好的含能多碘化合物。化合物中的含碘基团在爆炸或分解后可以有效转化为具有高效杀菌能力的单质碘,碘化氢等杀菌剂。此外,多碘含能化合物具有相对于传统炸药更低的爆压爆速,在确保可以有效破坏生物武器结构的前体下,可以有效降低生物毒剂的扩散。因此,含能多碘化合物被认为是当前最有应用前景的一类含能反生物战剂化合物。
含能反生物战剂是为应对当前反恐新形势而拓展出的含能材料新方向,国际国内在反生物战剂材料设计和制备方面均处于起步阶段。为此,本文对多碘含能共价型,离子型和共晶型反生物战剂化合物的合成方法和研究进展进行简要总结,希望为未来设计并合成能量和杀菌效率更为优异的新型含能反生物战剂化合物提供借鉴。
-
2 共价型反生物战剂
杀菌效率和能量水平是衡量反生物战剂的两个关键因素,增加含碘量可以有效提升爆炸产物中有效杀菌成分的比例,但同时也会降低其能量;而含能基团数量的增加可以提升反生物战剂的能量水平却也会同时增加反生物战剂的感度导致其安全性的降低。当前研究的共价型多碘反生物战剂中,大多数化合物均选用吡唑、咪唑、三唑等含能骨架,这些骨架也是含能材料合成的热门骨架,其在具有较高能量的同时,具有较多的可修饰位点,用于反生物战剂的合成,可避免在前体上发生碘代反应时,碘原子之间因位阻过大而导致取代不完全。根据取代基中是否具有含氧基团,可将共价型多碘反生物战剂分成富碘型和富氧型。
-
2.1 富碘反生物战剂
2013年,He
等[8] 首次将含碘唑类分子引入反生物战剂概念中,利用多种碘代反应[9,10,11] ,合成12种含碘化合物,其中有9种富碘型化合物(1~9,图1),又利用含N—CH3 的含碘分子与2,4,6‑三氯‑1,3,5‑三嗪在单过硫酸钾存在下反应,合成化合物10~12(Scheme 1)。上述12种含碘化合物碘含量在65%~89%之间,但由于化合物分子结构上缺少含能基团,分子能量水平低,需要持续加热到分解温度以上才能完全分解。Scheme 1 Synthesis of iodine‑rich compounds 10-1
2[8] 2015年,Chand
等[12] 优化了碘取代的方法,利用1,2‑二氯乙烷为溶剂,在加入碘和底物后,加入过硫酸钾、硫酸和三氟乙酸,一锅法合成多碘化合物[13] 。研究选用吡唑类前体合成化合物13~14(Scheme 2),扩展了含碘反生物战剂的合成路径。在后续研究中,Chand改变反应底物,合成了化合物15~21(图2),验证了此方法的普适性[14] 。2016年,Chand[15] 利用1,2,3‑三唑为前体,改变合成路径得到碘代三唑22~28(Scheme 3),含碘量保持较高的同时,能量水平较碘代吡唑和咪唑有所提升,如化合物23理论爆速4090 m·s-1 ,爆压11.41 GPa。另外,一锅法合成含碘化合物的方法由于直接使用碘单质,而碘单质在多种有机溶剂中溶解度大,存在难以除去的问题。研究采用将粗产物加水生成悬浮液,加入过量硫代硫酸钠等后过滤除去碘单质,残留的少量碘则利用鼓风的方式使碘升华除去。Scheme 2 Method for efficiently synthesizing iodine‑rich compound 13-1
4[12] Scheme 3 Iodine‑rich compound 22-28 and synthesis of compound 22-2
4[15] 碘代唑类化合物的含碘量甚至可达约90%,但是由于自身能量低,需要外加氧化剂或燃烧剂等促进分解反应。2017年,Zhao
等[16] 合成出亚甲基桥联的三碘吡唑和三碘咪唑,化合物29~30(Scheme 4),拓宽了唑类含碘共价化合物的合成途径。在后续研究中,Zhao等[17] 为了提高含碘化合物能量、分解效率,利用含能基团和含碘基团桥联的方法合成了化合物31~32(Scheme 4),相较无含能基团的化合物能量有所提升,如化合物32理论爆速达到4798 m·s-1 ,爆压13.92 GPa。总体而言,大多数富碘反生物战剂分子含碘量可达到70%以上,但是分子能量水平较低,当前所得的化合物理论爆速多介于3000~5000 m·
s-1 ,理论爆压多介于4~12 GPa。这类材料在应用过程中需要通过添加氧化剂和含能组分来进一步提高其氧平衡和能量水平。 -
2.2 富氧反生物战剂
将含氧基团引入到多碘化合物中可以有效改善化合物的氧平衡,当多碘反生物战剂化合物的氧平衡趋近于零时,该化合物有望作为单一组分直接用于反生物武器(Agent Defeat Weapons, ADWs)装药;而当其氧平衡为正时,可作为氧化剂,通过与其他富碘反生物战剂的配方优化获得可用于ADWs装药的新配方。
含氧型多碘化合物中,最简单的一类分子是含碘和氧的共价化合物,碘氧化物(如
I2 O5 [18]等)和含碘酸类(如HI3 O8 等)。有别于生成C—I键来固定碘元素,这类化合物可作为氧化剂使用。2013年,Feng等[19] 利用I2 O5 和氧化铁通过喷雾生成气溶胶的方式,用氧化铁包裹I2 O5 生成纳米颗粒,防止其I2 O5 吸湿分解,提高I2 O5 纳米颗粒的燃烧性能,从而得到性能良好的含碘杀菌剂。2017年,Wu等[20] 同样利用气溶胶法,开发出一种制备碘氧化物和含碘酸的新方法,利用HIO3 加热得到氧化性更强的I2 O5 和HI3 O8 。除碘氧化物和含碘酸外,根据键的不同可将含氧型反生物战剂分成C—O型、N—O型和I—O型。He
等[8] 合成了C—O型多碘化合物33~35(Scheme 5)和I—O型化合物36~41(Scheme 5),其中化合物41具有最高的能量水平,理论爆速达到6166 m·s-1 ,爆压23.11 GPa。Scheme 5 Oxygen contained biocidal compound 33-41 and synthesis of compound 36-4
1[8] Chand等利用硝化反应先后得到42~4
3[12] ,44~47[15] 和48~51[14] (Scheme 6),都为N—O型富氧反生物战剂。虽然硝基的引入提升能量的同时取代了一个碘的位置,使得碘含量下降,但是该方法为合成高能高碘的反生物战剂提供了一种可利用的途径。He
等[21] 为了解决引入含氧基团后含碘量下降的问题,改变了引入含氧基团的位置,利用含N—NO2 的脂肪链桥联含碘基团,从而在分子内引入硝基,得到产物52-59(Scheme 7)。所得化合物能量较桥联前的三碘唑类有提高,如化合物59爆速达到4841 m·s-1 ,爆压18.5 GPa,并保持了较高的碘含量67%~78%。Scheme 7 Synthesis of oxygen contained biocidal compound 52-5
9[21] Chinnam
等[22] 首次合成出含碘反生物战剂类聚合物60(Scheme 8),相较于小分子,聚合物热稳定性、感度等较好。该化合物在分解时产生单质碘和ZnO,两者皆具有良好的杀菌效果,并且该聚合物的分解产物能结合生成碘包覆的氧化锌纳米颗粒,有一定的协同杀菌效果。Scheme 8 Synthesis of oxygen contained biocidal compound 6
0[22] Zhao
等[17] 利用硝化反应得到了化合物61(图3),因为分子上连有5‑硝氨基四唑和硝基,其具有较高的能量,理论爆速5555 m·s-1 ,爆压15.2 GPa,但碘含量仅为48%。同时,研究中利用金黄色葡萄球菌,沙门氏菌等的混合菌群做了杀菌效果的实验。利用化合物31、32(Scheme 4)、61和三碘吡唑(化合物3)作为碘源,15天内培养皿无菌落生长,实验证明碘具有良好的杀菌效果。在另一项研究中,Zhao
等[16] 利用硝化反应得到了化合物62(图3),其发生闭环反应得到稠环化合物63和64(图3)。其中,化合物64热分解温度为323 ℃,理论爆速5834 m·s-1 ,爆压21.48 GPa,碘含量50.46%,是当前性能最均衡的含碘反生物战剂。为了验证64的杀菌效果,文章分别选用大肠杆菌、金黄色葡萄球菌、皮肤和空气中的混合菌三种菌群作为实验用菌,证明微量产物便能灭杀上述几种细菌,并且能保持培养皿内13天以上无菌落生长。30天以后,残余碘含量下降到初始含量的1%以下,认为碘含量已处于对人体无害的水平。 -
3 离子型反生物战剂
离子化合物具有低蒸气压,热稳定性好,阴阳离子可调等特点,因此可以通过调节含碘阴阳离子的种类来满足不同的能量和杀菌效率的需求。根据分子结构特点,可将离子型反生物战剂分成无机和有机两类,无机类含碘离子有Na
I3 O8 [23]、AgI3 O8 [24]、Bi2 (IO4 )(IO3 )3 [25,26]等,此类化合物由于具有高的碘氧含量可作为氧化剂用于反生物战剂的配方。此外,金属离子的存在可以使化合物的燃烧或爆炸的温度有效提高。然而,由于I3 O8 -阴离子存在易吸湿、易水解等不足,此类化合物难以用于反生物战剂的配方中。有机类含碘离子化合物由有机阳离子和无机阴离子组成,阴阳离子可调节使该类化合物可设计性更强,如:多碘类阴离子(
I3 -,I5 -等)可以使分子的含碘量增加,IO3 -和IO4 -等可以作为氧化组分等。2011年,Fischer等[27] 首次报道含碘离子盐用于反生物战剂,所合成的化合物[NH4 ][IF2 O2 ]和[C(NH2 )3 ][IF2 O2 ]分解时能生成HF和I2 ,两者都是高效的杀菌剂。此类化合物阴离子种类较为固定,而阳离子的种类具有很强的设计性。因此,根据阳离子的类型,可将离子型有机反生物战剂划分成脂肪类和芳香类。 -
3.1 脂肪类
2014年,He
等[28] 合成了多种脂肪类含碘离子盐65~87(图4),此类含碘离子盐的特点是阳离子为季铵盐类,阴离子为I- 、I3 -和I5 -等。另外,利用在阴离子为I- 的盐溶液内加入碘单质可使I- 生成I3 -,I5 -和I8 2-[29]。盐65~87表现出很高的碘含量,盐67含碘量达到90.9%。但是此类化合物阳离子上缺少含能基团和可取代位置,导致整个化合物能量和含碘量不均衡,如:含碘量最高的盐67理论爆速仅为1800 m·s-1 ,爆压2.28 GPa,盐77理论爆速达到4610 m·s-1 ,爆压10.05 GPa,含碘量则下降到62%。 -
3.2 芳香环类
芳香类离子型反生物战剂具有独特的性质,如:阴离子具有多样性(可以为
I- 、IO3 -、IO4 -);阳离子为含氮杂环,自身具有一定能量。其中,IO3 -和IO4 -是良好的氧化剂组分,唑类阳离子可通过取代基调节含碘量和含能基团数量,从而实现调控整个分子的含碘量和能量。2016年,He
等[30] 利用咪唑类衍生物作为阳离子,合成了带有I- 或Br- 的芳香离子盐88~93(Scheme 9),将盐88~93与AgIO3 或AgIO4 发生置换反应,得到芳香盐多碘化合物94~104(图5)。以上化合物具有高密度(2.86 g·cm-3 以上),高碘含量(高于70%),较好的爆轰性能(爆速高于3000 m·s-1 ,爆压高于4.1 GPa)和合适的氧平衡。其中盐99理论爆速达到4558 m·s-1 ,爆压13.8 GPa,含碘量72.4%,爆轰性能和碘含量均衡,是良好的反生物战剂候选材料。Scheme 9 Synthesis of aromaticionic compound 88-9
3[30] -
4 共晶型反生物战剂
含能材料共晶是一种新型的含能材料,一般指两种及以上化合物分子通过氢键或供体‑受体间的π‑π相互作用等分子间相互作用力生成规整排列的晶体,用于改善含能材料的某些性能,如:感度、密度和能量
等[31] 。当前合成的比较成功的共晶有1∶1的CL‑20/TNT共晶[32] 、2∶1的CL‑20/HMX共晶[33] 等,两者都表现出良好的性能。而含碘类共晶的合成原理一般认为是含碘化合物分子上的碘原子和另一配体化合物上强电负性元素产生卤素键合作用,两种化合物分子发生交替规整排列而生成,其为含碘反生物战剂共晶提供了理论基础。2015年,Landenberger
等[34] 在合成用于起爆药的含卤素共晶时,得到1∶1的二过氧化二丙酮(DADP):1,3,5‑三碘‑2,4,6‑三硝基苯(TITNB)共晶(图6)。在感度测试中,该共晶在感度方面表现出反常的性质,H50为47 cm,感度远低于DADP(13.5 cm)和TITNB(28.8 cm)。DADP/TITNB共晶的性能相对两种原料在密度、感度等得到了改善,并且保持了较高的能量。该共晶具有作为含碘反生物战剂的应用前景。图6 DADP/TITNB与TNB/TITNB共晶的纯组分图和共晶结构
图[34,35] Fig.6 DADP/TITNBcocrystal structure, TNB/TITNB cocrystal structure and chemical structures of the pure components for the both cocrysta
l[34,35] chemical structures of the pure components DADP and TITNB(a), chemical structures of the pure components TNB and TITNB(b), cocrystal structure of 1∶1 DADP/TITNB(c), cocrystal structure of 2∶1 TNB/TITNB(d)
2016年,Bennion
等[35] 设计合成另一种基于TITNB的共晶。选择1,3,5‑三硝基苯(TNB)作为共晶的另一个组分,以2∶1(TNB∶TITNB)的比例合成得到目标共晶(图6)。所合成共晶的感度介于两原料化合物之间,晶体密度为2.263 g·cm-3 ,高于纯组分TNB(1.676 g·cm-3 )。该共晶的合成证明了传统含能材料能通过硝基等与含碘化合物中卤素原子的键合作用生成共晶,为开发新型共晶提供了新的思路。 -
5 物化性能要求
含碘反生物战剂材料作为一种具备杀菌效果的含能材料,主要杀菌剂是分解产生的碘单质和碘化氢,其性能方面要求高能量水平和高含碘量的均衡。能量水平的提高可以破坏生物武器装置,同时有利于灭菌剂的迅速扩散。含碘量的提高可以提高单位体积装药的碘量,在爆炸后可使爆破区域内单位体积内的碘含量更高,产物扩散面积更大,从而达到更好的杀菌效果。
将部分性能比较突出的化合物物化性能进行对比(表1),可以将表中数据分成三类:(1)高含碘量化合物,如化合物3、9、14和67等。其碘含量最高的化合物67可达90.9%,但是能量水平很低,爆速仅1800 m·
s-1 ,爆压2.28 GPa。此类化合物用于反生物战剂需要在配方中加入大量猛炸药,反而使配方碘含量降低。(2)较高能量水平的化合物,如化合物41、42和43等,其能量水平能接近TNT,例如化合物43的理论爆速6443 m·s-1 ,爆压24.02 GPa,但含碘量下降到仅有42.6%。这类化合物碘含量低,被认为不适合作为含碘反生物战剂候选材料。(3)碘含量和能量较均衡的化合物,如化合物38、54、58、61和64等。但是通过化合物54、58和61、62的性能对比可以发现,能量水平和含碘量的不均衡仍存在。在以上化合物中,性能最优的化合物是38和64,化合物38的理论爆速5505 m·s-1 ,爆压19.09 GPa,含碘量56.2%,化合物64的理论爆速5834 m·s-1 ;爆压21.48 GPa,含碘量50.46%,接近于较理想的情况。表1 部分化合物的物理化学性能
Table 1 Physicochemical properties of some compounds
1) Tm is melting point. 2) Td is decomposition temperature. 3) d is density. 4) D is calculated detonation velocity. 5) p is calculated detonation pressure. 6) Ω is content of iodine.
通过以上的讨论,可认为在以后的研究中,含碘反生物战剂材料的研究重点仍是提高能量水平和碘含量,并且保持两者的均衡。
-
6 总结与展望
含能反生物战剂的研究是近年来为实现彻底有效摧毁生物武器的目标而提出的一个含能材料研究的新方向。多碘含能反生物战剂由于其热稳定性和化学稳定性好,能量适中,爆炸或分解后可以有效释放出高效的含碘杀菌剂而获得了国内外研究者的广泛关注。通过对共价型、离子型和共晶型多碘含能反生物战剂的合成方法和研究成果进行总结,笔者认为总体来说,当前反生物战剂材料设计和制备的研究工作还处于起步阶段,存在能量水平低,抛洒范围小等不足。
笔者认为,今后应注重以下几个方面的研究:(1)能量和杀菌效率是衡量反生物战剂性能的两个重要参数,可借助量化计算软件设计计算新的反生物战剂分子,建立反生物战剂分子的构效关系,在此基础上设计合成出新的具有应用前景的反生物战剂化合物;(2)重视多学科交叉在制备新型含能反生物战剂方面的协同促进,例如可利用含能MOF作为载体材料,开发出综合性能良好的新型反生物战剂;(3)加强含能反生物战剂的配方研究,反生物战剂材料的配方研究与开发是实现反生物战剂应用的重要手段和研究内容,需要进一步加大反生物战剂配方研究的力度,早日实现反生物战剂在武器装备上的应用。
-
参考文献
-
1
Trevan T. Do not censor science in the name of biosecurity[J].Nature, 2012, 486:7403.
-
2
Roffey P E.Biological agentsin Wiley encyclopedia of forensic science[M]. John Wiley & SonsInc, New York.2014.
-
3
Setlow P. Spores of bacillus subtilis: their resistance to and killing byradiation, heat and chemicals [J]. Journal of Applied Microbiology, 2006, 101(3): 514-525.
-
4
Jones J W. Agent defeat warhead device[P].US 6382105, 2002.
-
5
Garg S,Shreeve J M. Trifluoromethyl‑ or pentafluorosulfanyl‑substituted poly‑1,2,3‑triazole compounds as dense stable energetic materials[J].Journal of Materials Chemistry, 2011, 21(13): 4787-4795.
-
6
Gao H, Ye C, Winter R W, et al. Pentafluorosulfanyl (SF5) containing energetic Salts[J].European Journal of Inorganic Chemistry, 2006, 2006(16): 3221-3226.
-
7
Chapman RD, Hollins RA, Groshens T J, et al. N,N‑dihaloamineexplosives as harmful agent defeat materials[R]. DTRA‑TR‑14‑26.
Defense Threat Reduction Agency, Fort Belvoir, VA, 2014.
-
8
He C, Zhang J, Shreeve J M. Dense iodine‐rich compounds with low detonation pressures asbiocidalagents [J].Chemistry–A European Journal, 2013, 19(23): 7503-7509.
-
9
Katritzky A R, Cundy D J, Chen J. Polyiodoimidazoles and their nitration products [J].Journal of Energetic Materials, 1993, 11(4‑5): 345-352.
-
10
Panosyan F B, Still I W. An efficient route to 5‑iodo‑1‑methylimidazole: synthesis of xestomanzamine A[J].Canadian Journal of Chemistry, 2001, 79(7): 1110-1114.
-
11
Zhang D, Tessier C A, Youngs W J. Synthesis of tris(2,5‑dialkynylthieno)cyclotriynes, Tris(4,5‑dialkoxyphenyl)cyclotriynes, and tetrakis(4,5‑dialkoxyphenyl)cyclotetraynes with long‑chain alkyl substituents, and the nickel and cobalt complexes of tris[4,5‑(didodecyloxy)phenyl]cyclotriyne[J].Chemistry of Materials, 1999, 11(11): 3050-3057.
-
12
Chand D, Shreeve J M. Versatile polyiodopyrazoles: synthesis and biocidal promise[J].Chemical Communications, 2015, 51 (16): 3438-3441.
-
13
Rahman M A, Shito F, Kitamura T. A direct and convenient synthesis of periodoarenes using molecular iodine[J].Synthesis, 2010, 2010(1): 27-29.
-
14
Chand D, He C, Mitchell L A, et al. Electrophilic iodination: a gateway to high iodine compounds and energetic materials [J].Dalton Transactions, 2016, 45(35): 13827-13833.
-
15
Chand D, He C, Hooper J P,et al. Mono‑ and diiodo‑1,2,3‑triazoles and their mono nitro derivatives[J].Dalton Transactions, 2016, 45(23): 9684-9688.
-
16
Zhao G, He C, Zhou W, et al. Control of Biohazards: A high performance energetic polycyclizediodine‑containing biocide [J]. Inorganic Chemistry, 2018, 57(14): 8673-8680.
-
17
Zhao G, Kumar D, He C,et al. New generation agent defeat weapons: energetic N, N´‑ethylene‑bridged polyiodoazoles[J].Chemistry‑A European Journal, 2017, 23(66): 16753-16757.
-
18
Little B K, Emery S B, Nittinger J C,et al. Physiochemical characterization of iodine(V) oxide, part 1: hydration rates[J].Propellants, Explosives, Pyrotechnics, 2015, 40(4): 595-603.
-
19
Feng J, Jian G, Liu Q,et al. Passivatediodine pentoxideoxidizer for potential biocidalnanoenergetic applications[J].ACS Applied Materials & Interfaces, 2013, 5(18): 8875-8880.
-
20
Wu T, SyBing A, Wang X,et al. Aerosol synthesis of phase pure iodine/iodic biocide microparticles [J].Journal of Materials Research, 2017, 32(4): 890-896.
-
21
He C, Zhao G, Hooper J P,et al. Energy and biocides storage compounds: synthesis and characterization of energetic bridged bis(triiodoazoles)[J].Inorganic Chemistry, 2017, 56(21): 13547-13552.
-
22
Chinnam AK, Shlomovich A, Shamis O,et al. Combustion of energetic iodine‑rich coordination polymer‑Engineering of new biocidal materials[J].Chemical Engineering Journal, 2018, 350: 1084-1091.
-
23
Phanon D, Luneau I. Promising material for infrared nonlinear optics: NaI3O8 salt containing an octaoxotriiodate(V) anion formed from condensation of [IO3]− ions[J]. AngewandteChemie International Edition, 2007, 46(44): 8488-8491.
-
24
Xu X, Hu CL, Li BX,et al. α‑AgI3O8 and β‑AgI3O8 with large SHG responses: polymerization of IO3- groups into the I3O8-polyiodateanion[J].Chemistry of Materials, 2014, 26(10): 3219-3230.
-
25
Cao Z, Yue Y, Yao J,et al. Bi2(IO4)(IO3)3: anew potential infrared nonlinear optical material containing [IO4]3- anion[J].Inorganic Chemistry, 2011, 50(24): 12818-12822.
-
26
Hu X,Li J B, Li X,et al. Direct deposit of highly reactive bi(IO3)3- polyvinylidenefluoride biocidalenergetic composite and its reactive properties[J]. Advanced Engineering Materials, 2017, 19(1): 1500532.
-
27
Fischer D, Klapötke T M, Stierstorfer J. Synthesis and characterization of guanidiniumdifluoroiodate, [C(NH2)3]+[IF2O2]– and its evaluation as an ingredient in Agent Defeat Weapons [J]. Zeitschrift Füran Organische and Allgemeine Chemie, 2011, 637(6): 660-665.
-
28
He C,Parrish D A, Shreeve J M. Alkyl ammonium cationstabilized biocidalpolyiodideswith adaptable high density and low pressure[J].Chemistry‑A European Journal, 2014, 20(22): 6699-6706.
-
29
Svensson P H, Kloo L. Synthesis, Structureand bonding in polyiodideand metal iodide‑iodine systems[J].Chemical Reviews, 2003, 103(5): 1649-1684.
-
30
He C, Hooper J P, Shreeve J M. Iodine‑rich imidazoliumiodateand periodatesalts: en route to single‑based biocidalagents [J].Inorganic Chemistry, 2016, 55(24): 12844-12850.
-
31
Landenberger K B, Matzger A J. Cocrystalengineering of a prototype energetic material: supramolecular chemistry of 2,4,6‑trinitrotoluene[J].Crystal Growth & Design, 2010, 10(12): 5341-5347.
-
32
Bolton O, Matzger A J. Improved stability and smart‑material functionality realized in an energetic cocrystal[J].Angewandte Chemie International Edition, 2011, 50(38): 8960-8963.
-
33
Bolton O, Simke L R, Pagoria P F, et al. High power explosive with good sensitivity: a2:1 cocrystal of CL‑20:HMX[J].Crystal Growth & Design, 2012, 12(9): 4311-4314.
-
34
Landenberger K B, Bolton O, Matzger A J. Energetic–energetic cocrystalsof diacetonediperoxide(DADP): dramatic and divergent sensitivity modifications via cocrystallization[J]. Journal of the American Chemical Society,2015, 137(15): 5074-5079.
-
35
Bennion J C, Vogt L, Tuckerman M E,et al. Isostructural cocrystals of 1,3,5‑trinitrobenzene assembled by halogen bonding[J]. Crystal Growth & Design,2016, 16(8): 4688-4693.
-
1
摘要
传统含能化合物在爆炸后产生的瞬间热效应无法有效杀灭生物武器所携带的生物战剂。多碘含能反生物战剂化合物在爆炸后可以同时释放出能量和杀菌剂,因此,其被认为是当前最有应用前景的含能反生物战剂化合物。系统综述了共价型、离子型和共晶型三类多碘含能反生物战剂化合物的合成和性能研究进展,并介绍了部分反生物战剂的杀菌效果。结合含能反生物战剂的构效关系,指出热稳定性好,密度高,碘含量高,杀菌效果好的新型多碘含能反生物战剂化合物是今后的研究重点。此外,在保证杀菌效果良好的前提下,不断提升反生物战剂的能量密度和抛洒范围是当前反生物战剂研究发展的趋势。
Abstract
The instantaneous thermal effect from the explosion of traditional explosives cannot effectively kill biological agents carried by biological weapons. Iodine‑rich compounds can not only release energy, but also efficiently kill biological agents. Therefore, iodine‑rich compounds has been thought as the most promising“energetic biocidal agent” compounds. This paper reviews the synthesis and properties of covalent, ionic and co‑crystal iodine‑rich compounds, and presents bactericidal ability of part “energetic biocidal agent” compounds. Combined with the structure‑function relationship,this review points out that developing new iodine‑richcompounds with good thermostability, high density, high iodine and high bactericidal activity, will be a research focus on “energetic biocidal agent” compounds. Moreover, on the premise of good bactericidal ability, constantly increasing the energy density and spraying range of “energetic biocidal agent” compounds is another development trend of anti‑biological agent research.