CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
尤政,张高飞.基于MEMS的微推进系统的研究现状与展望[J]. 微细加工技术, 2004, 2004(1): 1-8.
YOUZheng, ZHANGGao‑fei. Research status and prospect of micro propulsion system based on MEMS[J]. Microfabrication Technology, 2004(1): 1-8.
参考文献 2
刘建忠,梁导伦,汪洋,等.基于MEMS的固体燃料微推进技术研究进展[J]. 纳米技术与精密工程, 2016, 14(1): 48-54.
LIUJian‑zhong, LIANGDao‑lun, WANGYang, et al. Review on MEMS‑based solid propellant micro‑propulsion[J]. Nanotechnology and Precision Engineering, 2016, 14(1): 48-54.
参考文献 3
郝海霞,姚二岗,王宝兴,等.含纳米金属粉AP/HTPB复合固体推进剂的激光点火特性[J]. 含能材料, 2015, 23(9): 908-914.
HAOHai‑xia, YAOEr‑gang, WANGBao‑xing, et al. Laser ignition characteristics of AP/HTPB composite solid ropellants containing metal nanopowders[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(9): 908-914.
参考文献 4
ChaalaneA, ChemamR, HouabesM, et al. A MEMS‑based solid propellant microthruster array for space and military applications[J]. Journal of Physics: Conference Series, 2015, 660(1): 012137.
参考文献 5
LevchenkoI, BazakaK, DingY, et al. Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers[J]. Applied Physics Reviews, 2018, 5(1): 011104.
参考文献 6
刘向阳,范宁军,李科杰.微型推进器推力测试的现状及发展趋势[J]. 测控技术, 2004, 23(5): 18-20.
LIUXiang‑yang, FANNing‑jun, LIKe‑jie. The present situation and development trend of micro thruster thrust test[J]. Measurement & Control Technology, 2004, 23(5): 18-20.
参考文献 7
XiongJ, ZhouZ, YeX, et al. A colloid micro‑thruster system [J]. Microelectronic Engineering, 2002, 61‑62: 1031-1037.
参考文献 8
TummalaA, DuttaA. An overview of cube‑satellite propulsion technologies and trends[J]. Aerospace, 2017, 4(4): 58.
参考文献 9
陈玉华.小型化学能推进器的研究[D]. 南京: 南京理工大学, 2006.
CHENYu‑hua. A study on small chemical energy propeller [D]. Nanjing: Nanjing University of Science and Technology, 2006.
参考文献 10
郝海霞,南宝江,安亭,等. 含CL‑20改性双基推进剂激光点火特性[J]. 中国激光, 2011, 38(5): 0502009‑1‑7.
HAOHai‑xia, Bao‑jiangNAN, ANTing, et al. Laser ignition characteristics of CL‑20 composite modified double‑base propellant[J]. Chinese Journal of Lasers, 2011, 38(5): 0502009‑1‑7.
参考文献 11
赖华锦,陈雄,周长省,等.负压环境下铝镁贫氧推进剂激光点火及燃烧特性[J]. 含能材料, 2017, 25(10): 817-821.
LAIHua‑jin, CHENXiong, ZHOUChang‑sheng, et al. Laser ignition and combustion characteristics of Al/Mg fuel‑rich propellant at subatmospheric pressures[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2017, 25(10): 817-821.
参考文献 12
ChenJ, HeS, HuangB, et al. Enhanced thermal decomposition properties of CL‑20 through space‑confining in three‑dimensional hierarchically ordered porous carbon[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10684-10691.
参考文献 13
王江宁,郑伟,舒安民,等.含CL‑20改性双基推进剂的燃烧性能 [J]. 火炸药学报, 2013, 36(1): 61-63.
WANGJiang‑ning, ZHENGWei, SHUAn‑min. Combustion properties of CMDB propellant containing hexaazaisowurtzitane(CL‑20)[J]. Chinese Journal of Explosives and Propellants, 2013, 36(1): 61-63.
参考文献 14
StyborskiJ A, ScorzaM J, SmithM N, et al. Iron Nanoparticle dditives as burning rate enhancers in AP/HTPB composite propellants[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 253-259.
参考文献 15
SinghG, KapoorI P S, DubeyR, et al. Preparation, characterization and catalytic behavior of CdFe2O4 and Cd nanocrystals on AP, HTPB and composite solid propellants, Part: 79 [J]. Thermochimica Acta, 2010, 511(1): 112-118.
参考文献 16
周晓杨,石俊涛,庞爱民,等.含 CL‑20固体推进剂研究现状[J]. 固体火箭技术, 2017, 40(4): 443-447.
ZHOUXiao‑yang, SHIJun‑tao, PANGAi‑min, et al. Research status of solid propellant containing CL‑20[J]. Journal of Solid Rocket Technology, 2017, 40(4): 443-447.
参考文献 17
欧育湘, 刘进全.高能量密度化合物[M]. 北京: 国防工业出版社, 2005: 10.
Yu‑xiangOU, LIUJin‑quan.High energy density compound[M]. Beijing: Nationa Defense Industry Press, 2005: 10.
参考文献 18
LiuJ, ZhaoN, ZhaoF, et al. Preparation of sea urchin‑shaped nano‑MnO2 and its effect on thermal decomposition performance of CL‑20[J]. Chinese Journal of Explosives and Propellants, 2015, 38(2): 19-24.
参考文献 19
SabourinJ L, DabbsD M, YetterR A, et al. Functionalized graphene sheet colloids for enhanced fuel/propellant combustion[J]. ACS Nano, 2009, 3(12): 3945-3954.
参考文献 20
KimF, LuoJ, Cruz‑SilvaR, et al.Self‑propagating domino‑like reactions in oxidized graphite[J]. Advanced Functional Materials, 2010, 20(17): 2867-2873.
参考文献 21
KrishnanD, KimF, LuoJ, et al. Energetic graphene oxide: Challenges and opportunities[J]. Nano Today, 2012, 7(2): 137-152.
参考文献 22
DongZ, JiangC, ChengH, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24(14): 1856-1861.
参考文献 23
ChengH, DongZ, HuC, et al. Textile electrodes woven by carbon nanotube‑graphene hybrid fibers for flexible electrochemical capacitors[J]. Nanoscale, 2013, 5(8): 3428-3434.
参考文献 24
QuG, ChengJ, LiX, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode[J]. Advanced Materials, 2016, 28(19): 3646-3652.
参考文献 25
胡荣祖,高胜利,赵凤起,等.热分析动力学[M]. 北京:科学出版社,2008: 79-80.
HURong‑zu, GAOSheng‑li, ZHAOFeng‑qi, et al. Thermal Analysis Kinetics[M]. Beijing: Science Press, 2008: 79-80.
参考文献 26
PlantierK B, PantoyaM L, GashA E. Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique[J]. Combustion and Flame, 2005, 140(4): 299-309.
目录 contents

    摘要

    用高能猛炸药(如六硝基六氮杂异伍兹烷(CL‑20))代替传统固体推进剂是实现小体积大比冲微型推进剂的重要途径。为了实现CL‑20的自持燃烧,设计了CL‑20镶嵌rGO三维网络结构的复合推进剂体系。首先采用溶剂‑非溶剂法制备了超细CL‑20球形颗粒(直径300 nm~2 μm),然后利用维度限域水热技术制备了自支撑rGO/CL‑20纤维推进剂。在热分析动力学和燃烧特性分析的基础上,探讨了rGO/CL‑20纤维推进剂的燃烧传播机制,认为该复合体系两种物质放热的正反馈机制是实现其燃烧传播的关键因素。由于rGO三维网络的构建,既提高了纤维的热导率,同时rGO在KOH作用下的放热可作为rGO三维网络和CL‑20颗粒燃烧的起始能量,而具有更高能量密度的CL‑20的燃烧放热叠加于rGO的放热,形成放热的正反馈机制。所制备的自支撑rGO/CL‑20纤维推进剂的燃烧传播速度为20.66 mm·s-1,其纤维状结构为微型推进器的模块化快速装药提供了方便。

    Abstract

    Replacing traditional solid propellants with high‑energy explosives (such as hexanitrohexaazaisowurtzitane (CL‑20)) is an important way to achieve microthrusters with small size and large specific impulse. In order to realize the self‑sustaining combustion of CL‑20, a composite propellant system with CL‑20 nano‑microparticles hosted in the rGO three‑dimensional network is designed. Ultrafine CL‑20 spherical particles (diameter 300 nm-2 μm) have been prepared by a solvent‑nonsolvent method firstly, then self‑supporting rGO/CL‑20 fiber propellant was prepared by a dimensionally confined hydrothermal strategy. Based on the analysis of thermal analysis kinetics and combustion characteristics, it is concluded that the positive feedback mechanism of the combustion heat release of rGO/CL‑20 fiber propellant plays a key role in its combustion propagation. Due to the construction of rGO three‑dimensional network, the thermal conductivity of the fiber propellant is improved, and the exothermic effect of rGO/KOH can serve as the initial ignition energy for rGO itself and CL‑20 microparticles. Once ignited, the combustion of high‑energy CL‑20 releases more heat energy than rGO, thereby forming the positive feedback mechanism. The combustion propagation speed of the prepared self‑supporting rGO/CL‑20 fiber propellant is 20.66 mm·s-1, moreover, the fibrous structure facilitates the rapid modular charge of the microthrusters.

  • 1 引 言

    1

    随着航天技术的飞速发展和越来越高的应用需求牵引,微型航空器的发展成为必然趋[1,2,3,4,5]。如微型卫星具有节约燃料、耗能低的优点,同时也可以胜任大卫星无法完成的任务,如编队飞行,高分辨率合成孔径对地遥感、组成分布式星载载波雷达[1,6,7]。这些特殊任务对微型航天器的轨道和姿态的调控提出更高的要求。而推进器作为航天器的动力源,在航天器变轨、姿态调控等任务中发挥不可替代的作用。因此,研究与微型航天器的质量(<20 kg)相匹配的微型推进器(推力毫牛量级)成为航天技术发展的关键问[8]

    以固体燃料为动力源的化学能推进器具有结构简单可靠、耗电少、适于微型化和集成设计,是微型推进器研究和应用的最佳选择之[9,10,11]。推进器微型化对固体燃料推进剂提出了更高的要求,主要包括:(1)体积小(一般尺寸在毫米或亚毫米级)且比冲大;(2)推力小且可大范围精确调控。当前,减小推进剂体积同时提高比冲是固体化学能推进剂研究所面临的关键难题。目前已经发展了多种固体推进剂,包括硼基推进剂(B/KNO3、B/高氯酸铵(AP))、双基推进剂、火药基固体推进剂[2]。同时采用多种方法提高固体推进剂的燃烧性能,如AP或双基推进剂的催化分解、加入铝粉改善燃烧性能、加入高能猛炸药(黑索今(RDX)、奥克托今(HMX)、六硝基六氮杂异伍兹烷(CL‑20)等)提高燃烧速率和能量密度[12,13,14,15]。其中猛炸药具有密度高、能量密度大、释能速率大等优点,有希望显著提高固体推进剂的比冲和推力等性能,同时减小推进剂的体积。然而,目前猛炸药在固体推进剂中作为添加剂出[16],对推进剂的性能提升有限。因此,探索如何实现猛炸药基固体推进剂是目前研究的关键难题。

    六硝基六氮杂异戊兹烷(CL‑20)是一种具有特殊笼型结构的高能量密度多环硝胺类化合物,是目前公认能量最高的单质炸药。CL‑20与RDX、HMX同属硝胺类化合物,其密度高达2. 04 g·cm-3,实测爆速9.38 km·s-1,标准生成焓460 kJ·mol-1[17]。和传统的氧化剂AP相比,其分解产物对环境更为友好,同时由于分子中不含Cl元素,不会出现AP的燃烧产生的二次烟问题,具有更低的特征信号。因此,采用CL‑20来代替AP已成为高能固体推进剂研究领域的热点之[12,13,16,18]。然而,CL‑20自持燃烧性能差,难以直接用于固体推进剂,亟需探索新的材料构筑体系来实现其推进剂应用。

    氧化石墨烯(GO)和还原氧化石墨烯(rGO)具有优异的热学性能,同时含有钾盐的GO和rGO本身具有良好的燃烧性[19,20,21]。因此,GO或rGO和CL‑20复合有望改善CL‑20热传导的同时为CL‑20提供起始燃烧能量,从而实现CL‑20自持燃烧。另外,由于纤维状推进剂具有独特的纤维结构以及自支撑特性,可实现向燃烧室快速装药。另外,当直径固定时,纤维状推进剂的做功大小和其长度成正比,因此可通过改变纤维的长度来准连续改变所需冲量。纤维状推进剂的这些优异特性为微型推进器小型化设计和姿态调控中冲量控制等实际应用提供了方便。鉴于此,设计了CL‑20镶嵌rGO三维网络结构的复合推进剂体系,利用维度限域水热技术实现了自支撑rGO/CL‑20纤维状推进剂的成功制备。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    六硝基六氮杂异戊兹烷(CL‑20)原料由中国工程物理研究院化工材料研究所提供,采用溶剂‑非溶剂法对原料进行了细化。氧化石墨烯(GO)水溶液根据Hummers法制[19],GO平均片径约10 μm,GO水溶液浓度为12 mg·mL-1。抗坏血酸(VC)和KOH分别购买自国药集团化学试剂有限公司和成都市科龙化工试剂厂,纯度均为分析纯。玻璃毛细管内径1.4~1.6 mm,长度10 cm。

    利用场发射扫描电子显微镜(FE‑SEM,Ultra 55, Carl Zeiss, Germany)研究了样品的表面形貌和微观结构。样品的热重分析(TGA)和差示扫描量热(DSC)在梅特勒热分析仪(TGA/DSC 1LF, Mettler‑Toledo, Germany)上完成。

  • 2.2 rGO/CL‑20自支撑纤维的制备

    2.2

    称取0.2 g CL‑20粉末,加入1 mL去离子水中,搅拌10 min后超声分散10 min。向上述分散液中加入1 g GO水凝胶,磁力搅拌1 h后加入和GO等质量的VC即得CL‑20/GO/VC前驱体分散液。

    自支撑纤维状rGO/CL‑20复合推进剂采用维度限制水热法制备,过程如图1所示。首先将上述前驱体分散液灌注到玻璃毛细管中,封口后放入烘箱中水热反应1 h,反应温度为90 ℃。待样品自然冷却后,从玻璃毛细管中取出样品,浸入去离子水中冲洗3次后进行自然干燥成型,得到rGO/CL‑20自支撑复合纤维。最后将rGO/CL‑20纤维浸入浓度为0.05,0.1,0.2 mol·L-1的KOH水溶液中处理1 h,取出后在烘箱中60 ℃度干燥2 h。所得样品分别记为1#2#3#,未用KOH水溶液处理的rGO/CL‑20样品标记为0#

    图1
                            维度限制水热法制备rGO/CL‑20自支撑纤维的过程示意图

    图1 维度限制水热法制备rGO/CL‑20自支撑纤维的过程示意图

    Fig.1 Preparation process of self‑supporting rGO/CL‑20 fiber propellant by a dimensionally confined hydrothermal strategy

  • 3 结果与讨论

    3
  • 3.1 rGO/CL‑20自支撑纤维的表面形貌与微观结构

    3.1

    GO还原为水凝胶之后具有固定的形状,且其外形由反应容器决定。基于该现象发展了维度限制水热法来制备具有优异机械性能的rGO纤[22,23,24]。另外,和粗颗粒的CL‑20原料相比,纳米和微米尺寸的CL‑20在GO水溶液中具有良好的分散性和稳定性,这为利用维度限制水热法制备rGO/CL‑20自支撑纤维推进剂提供了方便。所制备rGO/CL‑20纤维具有圆柱状结构,纤维直径约400 μm,如图2a所示。由图2a中纤维表面的局部放大图可见CL‑20和rGO均具有良好的分散性,CL‑20镶嵌在rGO的网络结构中。采用溶剂非溶剂法细化的CL‑20具有球形结构,直径分布在300 nm~ 2 μm的范围,平均直径1 μm。由图2b可见,rGO/CL‑20纤维具有规则的圆形断面,且断面中心点附近的rGO和CL‑20在分散性、密度和两者相对比例上没有明显的差别,说明CL‑20在整个水热还原过程和纤维干燥过程中都稳定分散于GO网络中。rGO/CL‑20自支撑推进剂的这一分散上的一致性为实现稳定可靠的燃烧提供了基础。

    html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image002.png

    a. urface morphology

    html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image003.png

    b. cross sectional morphology

    图2 单根rGO/CL‑20自支撑纤维的表面和横截面形貌表征

    Fig.2 Surface and cross sectional FESEM images of a single rGO/CL‑20 fiber propellant

  • 3.2 rGO/CL‑20自支撑纤维的热分析表征

    3.2

    用DSC和TG分析了所制备的超细CL‑20颗粒和四种纤维推进剂的热分解动力学行为,结果如图3和图4所示。由图3可见,CL‑20超细颗粒在242.62 ℃处有一尖锐的放热峰,四种rGO/CL‑20复合纤维除了在237.6 ℃处出现CL‑20的放热峰(峰值温度为236.67~239.95 ℃)外,在CL‑20放热峰之前观察到一较宽的放热峰,峰值温度随KOH溶液浓度变大而减小。该峰为rGO在加热条件下发生还原反应的放热峰。KOH处理复合纤维后,rGO的放热峰逐渐增高,峰值温度向低温度偏移。四种复合纤维中CL‑20超细颗粒的放热峰高度随KOH浓度的增加逐渐减小,对应的峰值温度 则没有明显变化。图4是对应的TG曲线。CL‑20超细颗粒在200~247 ℃温度范围出现质量损失,而0#~4#样品除了CL‑20颗粒的质量损失(ΔmCL‑20)之外,在130~210 ℃也出现了质量损失,且质量损失分数随KOH的浓度增大而增大。这部分质量损失来源于rGO的热分解(ΔmrGO)。DSC和TG分析说明rGO和CL‑20的热分解均可释放热量,且随着KOH量的增大,rGO释放的热量越多。

    图3
                            CL‑20和四种rGO/CL‑20纤维推进剂的DSC曲线

    图3 CL‑20和四种rGO/CL‑20纤维推进剂的DSC曲线

    Fig.3 DSC curves of CL‑20 raw materials and four types of rGO/CL‑20 based fiber propellants

    图4
                            CL‑20和四种rGO/CL‑20纤维推进剂的TG曲线(ΔmCL‑20和ΔmrGO分别为样品中的CL‑20颗粒和rGO的质量损失)

    图4 CL‑20和四种rGO/CL‑20纤维推进剂的TG曲线(ΔmCL‑20和ΔmrGO分别为样品中的CL‑20颗粒和rGO的质量损失)

    Fig.4 TG curves of CL‑20 raw materials and four types of rGO/CL‑20 based fiber propellants(ΔmCL‑20 and ΔmrGO represent the mass loss ratios of CL‑20 particles and rGO in the samples, respectively)

    应该指出的是0#~3#样品的TG曲线CL‑20颗粒的质量损失随KOH浓度的增大而减小。这是由于CL‑20在碱性溶液中发生分解,KOH浓度越大则分解越多,导致相应样品中CL‑20含量减少而rGO的量相对增加所致。

    为了研究rGO/CL‑20纤维推进剂的热分解动力学参数,包括活化能(Ea)和指前因子(A),采用Kissinger法(公式(1))和Ozawa法(公式(2))对不同升温速率下的数据进行了拟[25]:

    l n ( β T p 2 ) = l n ( A R E a ) - E a R 1 T p
    (1)
    l g β = l g ( A E a R G ( α ) ) - 2.315 - 0.4567 - E a R T
    (2)

    式中,βEaTpARα分别是加热速率(K·min-1)、活化能(kJ·mol-1)、放热峰峰值温度(K)、指前因子(min-1)、理想气体常数(8.314 J·mol-1·K-1)和转化率(%)。对应的数据和拟合结果列在表1和图5中。

    表1 DSC 法获得的CL‑20和rGO/CL‑20纤维推进剂的燃烧动力学参数对比

    Table 1 Comparison of kinetic parameters of raw CL‑20 and four types of rGO/CL‑20 fiber propellants by DSC experiments

    sampleTp / ℃Kissinger methodOzawa methodΔH / J·g-1
    2 K·min-15 K·min-18 K·min-110 K·min-1Ea / kJ·mol-1ln(A/min-1)rEa / kJ·mol-1r
    CL‑20232.18242.62247.92250.64183.731.970.9998182.80.99991790.8
    0#227.32237.60242.05244.30183.032.280.9999179.50.99111803.1
    1#229.63239.95-248.14181.031.550.9999180.00.99991890.7
    2#227.66238.57243.43246.24179.631.390.9981178.80.99831823.2
    3#226.50236.67242.77244.89177.430.990.9984176.80.99851440.4
    表1
                    DSC 法获得的CL‑20和rGO/CL‑20纤维推进剂的燃烧动力学参数对比

    Kissinger法显示, l n ( β T p 2 ) 随1/Tp线性变化。对曲线进行线性拟合,从其斜率和截距可分别计算EaA。由于不同加热速率时峰值温度对应的转化率几乎相等,则G(α)恒定,因此根据Ozawa法对lgβ和1/T进行线性拟合即可计算EaA。计算结果显示,两种方法计算得到的Ea值接近相等,且所有的线性相关系数>0.99,说明所得数据具有很好的可靠性。相对于CL‑20颗粒,rGO/CL‑20纤维的活化能略有减小。

    图5
                            Kissinger法计算样品热分解动力学参数的拟合结果

    图5 Kissinger法计算样品热分解动力学参数的拟合结果

    Fig.5 Fitting results of thermal decomposition kinetic parameters of the samples by Kissinger method

    对放热峰进行积分可得样品的放热量(ΔH),如图6。CL‑20颗粒的放热量为1790.8 J·g-10#样品的总放热量略有增加,为1803.1 J·g-11#样品的总放热量增大至1890.7 J·g-1,进一步增大KOH浓度样品的总放热量则减少。对DSC曲线的放热峰进行高斯分峰拟合可以得到rGO和CL‑20对放热量的贡献对比。由图6可知,rGO的放热量随KOH浓度的增加而线性增加,而CL‑20的放热量则快速减小。由于CL‑20所贡献的放热量减小更加迅速,导致总放热量随KOH浓度的增加而减小。总放热量的减少是由于在KOH处理过程中CL‑20分解导致其含量减少所致。

    图6
                            CL‑20和四种rGO/CL‑20纤维推进剂的放热量对比

    图6 CL‑20和四种rGO/CL‑20纤维推进剂的放热量对比

    Fig.6 Comparison of the total exothermic enthalpies (ΔH) of CL‑20 raw materials and four types of rGO/CL‑20 based fiber propellants

  • 3.3 rGO/CL‑20自支撑纤维的自持燃烧性能

    3.3

    为了研究rGO/CL‑20自支撑纤维的燃烧及燃烧传播性能,利用电烙铁(约400 ℃)对0#~3#样品进行引燃,同时用摄影机记录其燃烧过程,部分结果如图7所示。由图7a可见,2#样品在点燃后放出大量白烟,说明样品被成功引燃。同时可观察到其燃烧沿着纤维样品迅速传播,在0.96 s时燃烧结束。作为对比,0#样品在点燃后也放出大量白烟,说明样品可被成功引燃(图7b)。不同的是在引燃后约0.2 s时燃烧停止,燃烧无法传播。重复对该样品进行点燃后其燃烧仍然无法传播(图7c)。

    2#样品的燃烧视频截图(图7a)可见,燃烧后样品和燃烧前相比明显变黑,且仍然保持自支撑纤维结构,说明rGO在整个rGO/CL‑20纤维中形成了三维网络结构。该三维网络结构既有利于纤维内部的热传导,同时rGO在KOH的作用下可释放热量,该热量的部分作为起始能量用于维持rGO三维网络的自持燃烧,部分则作为CL‑20的起始能量引发其分解燃烧并释放大量的热。CL‑20由于具有更高的能量密度,因此形成了放热的正反馈,从而实现了整个纤维的燃烧传播。同时考虑到rGO和KOH均未对CL‑20的活化能等动力学参数产生影响,因此,rGO形成的三维网络结构和KOH作用下rGO的放热量增大是实现rGO/CL‑20纤维推进剂燃烧传播的关键因素。

    另外,研究发现1#样品和0#样品类似,无法自持燃烧。3#样品的燃烧不稳定,燃烧容易中断。这些结果说明KOH的浓度对复合纤维的热分解动力学和燃烧性能具有显著影响。鉴于KOH处理减少了CL‑20在纤维中的含量同时提高了rGO网络的放热量,因此,rGO网络的燃烧放热和CL‑20微纳米颗粒的燃烧放热的协同效应是实现纤维推进剂燃烧的关键。

    html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image008.png

    a. self‑sustaining combustion of 2# fiber propellant

    html/hncl/CJEM2018221/alternativeImage/a7e6f267-ed42-4070-95b3-35ef42297459-F009.jpg

    b. going off of the combustion of 0# fiber propellant without KOH treatment

    html/hncl/CJEM2018221/alternativeImage/a7e6f267-ed42-4070-95b3-35ef42297459-F010.jpg

    c. repeated going off of the combustion of 0# fiber propellant

    图7 含KOH(2#)和不含KOH(0#)的rGO/CL‑20纤维固体推进剂的燃烧录像截图

    Fig.7 The video screenshots of rGO/CL‑20 fiber shaped propellant with (2#) and without KOH(0#) treatment

    燃烧传播速度可通过记录样品的燃烧传播位置随时间的变化来反应。如图8所示,在燃烧的开始阶段经历了一个加速过程,约0.2 s后进入稳定燃烧阶段,这一现象与文献[26]报道相吻合。对燃烧传播位置随时间变化的线性部分进行拟合,由斜率可得燃速ν=20.66 mm·s-1

    图8
                            燃烧白烟的前端位置随时间的变化

    图8 燃烧白烟的前端位置随时间的变化

    Fig.8 Distance traveled by the white smoke front of the combustion of 2# fiber propellant as a function of time

  • 4 结 论

    4

    (1)利用维度限制水热法制备了亚毫米rGO/CL‑20自支撑纤维,rGO经过水热还原形成了三维网络结构,CL‑20纳米/微米颗粒均匀分散在rGO三维网络中。

    (2)DSC分析显示适当浓度的KOH处理可增加rGO/CL‑20自支撑纤维的总放热量。热分析动力学研究显示,rGO/CL‑20纤维推进剂的活化能和CL‑20相比略有降低,说明rGO和KOH不能显著影响CL‑20的分解动力学。

    (3)未经KOH处理的rGO/CL‑20纤维的燃烧不能自持传播,0.1 mol·L-1 KOH处理的rGO/CL‑20纤维可实现燃烧的自持传播,燃速为 20.66 mm·s-1。rGO形成的三维网络结构和KOH作用下rGO的放热量增大是实现rGO/CL‑20纤维推进剂燃烧传播的关键因素。

  • 参考文献

    • 1

      尤政,张高飞.基于MEMS的微推进系统的研究现状与展望[J]. 微细加工技术, 2004, 2004(1): 1-8.

      YOU Zheng, ZHANG Gao‑fei. Research status and prospect of micro propulsion system based on MEMS[J]. Microfabrication Technology, 2004(1): 1-8.

    • 2

      刘建忠,梁导伦,汪洋,等.基于MEMS的固体燃料微推进技术研究进展[J]. 纳米技术与精密工程, 2016, 14(1): 48-54.

      LIU Jian‑zhong, LIANG Dao‑lun, WANG Yang, et al. Review on MEMS‑based solid propellant micro‑propulsion[J]. Nanotechnology and Precision Engineering, 2016, 14(1): 48-54.

    • 3

      郝海霞,姚二岗,王宝兴,等.含纳米金属粉AP/HTPB复合固体推进剂的激光点火特性[J]. 含能材料, 2015, 23(9): 908-914.

      HAO Hai‑xia, YAO Er‑gang, WANG Bao‑xing, et al. Laser ignition characteristics of AP/HTPB composite solid ropellants containing metal nanopowders[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(9): 908-914.

    • 4

      Chaalane A, Chemam R, Houabes M, et al. A MEMS‑based solid propellant microthruster array for space and military applications[J]. Journal of Physics: Conference Series, 2015, 660(1): 012137.

    • 5

      Levchenko I, Bazaka K, Ding Y, et al. Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers[J]. Applied Physics Reviews, 2018, 5(1): 011104.

    • 6

      刘向阳,范宁军,李科杰.微型推进器推力测试的现状及发展趋势[J]. 测控技术, 2004, 23(5): 18-20.

      LIU Xiang‑yang, FAN Ning‑jun, LI Ke‑jie. The present situation and development trend of micro thruster thrust test[J]. Measurement & Control Technology, 2004, 23(5): 18-20.

    • 7

      Xiong J, Zhou Z, Ye X, et al. A colloid micro‑thruster system [J]. Microelectronic Engineering, 2002, 61‑62: 1031-1037.

    • 8

      Tummala A, Dutta A. An overview of cube‑satellite propulsion technologies and trends[J]. Aerospace, 2017, 4(4): 58.

    • 9

      陈玉华.小型化学能推进器的研究[D]. 南京: 南京理工大学, 2006.

      CHEN Yu‑hua. A study on small chemical energy propeller [D]. Nanjing: Nanjing University of Science and Technology, 2006.

    • 10

      郝海霞,南宝江,安亭,等. 含CL‑20改性双基推进剂激光点火特性[J]. 中国激光, 2011, 38(5): 0502009‑1‑7.

      HAO Hai‑xia, NAN Bao‑jiang, AN Ting, et al. Laser ignition characteristics of CL‑20 composite modified double‑base propellant[J]. Chinese Journal of Lasers, 2011, 38(5): 0502009‑1‑7.

    • 11

      赖华锦,陈雄,周长省,等.负压环境下铝镁贫氧推进剂激光点火及燃烧特性[J]. 含能材料, 2017, 25(10): 817-821.

      LAI Hua‑jin, CHEN Xiong, ZHOU Chang‑sheng, et al. Laser ignition and combustion characteristics of Al/Mg fuel‑rich propellant at subatmospheric pressures[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2017, 25(10): 817-821.

    • 12

      Chen J, He S, Huang B, et al. Enhanced thermal decomposition properties of CL‑20 through space‑confining in three‑dimensional hierarchically ordered porous carbon[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10684-10691.

    • 13

      王江宁,郑伟,舒安民,等.含CL‑20改性双基推进剂的燃烧性能 [J]. 火炸药学报, 2013, 36(1): 61-63.

      WANG Jiang‑ning, ZHENG Wei, SHU An‑min. Combustion properties of CMDB propellant containing hexaazaisowurtzitane(CL‑20)[J]. Chinese Journal of Explosives and Propellants, 2013, 36(1): 61-63.

    • 14

      Styborski J A, Scorza M J, Smith M N, et al. Iron Nanoparticle dditives as burning rate enhancers in AP/HTPB composite propellants[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 253-259.

    • 15

      Singh G, Kapoor I P S, Dubey R, et al. Preparation, characterization and catalytic behavior of CdFe2O4 and Cd nanocrystals on AP, HTPB and composite solid propellants, Part: 79 [J]. Thermochimica Acta, 2010, 511(1): 112-118.

    • 16

      周晓杨,石俊涛,庞爱民,等.含 CL‑20固体推进剂研究现状[J]. 固体火箭技术, 2017, 40(4): 443-447.

      ZHOU Xiao‑yang, SHI Jun‑tao, PANG Ai‑min, et al. Research status of solid propellant containing CL‑20[J]. Journal of Solid Rocket Technology, 2017, 40(4): 443-447.

    • 17

      欧育湘, 刘进全.高能量密度化合物[M]. 北京: 国防工业出版社, 2005: 10.

      OU Yu‑xiang, LIU Jin‑quan.High energy density compound[M]. Beijing: Nationa Defense Industry Press, 2005: 10.

    • 18

      Liu J, Zhao N, Zhao F, et al. Preparation of sea urchin‑shaped nano‑MnO2 and its effect on thermal decomposition performance of CL‑20[J]. Chinese Journal of Explosives and Propellants, 2015, 38(2): 19-24.

    • 19

      Sabourin J L, Dabbs D M, Yetter R A, et al. Functionalized graphene sheet colloids for enhanced fuel/propellant combustion[J]. ACS Nano, 2009, 3(12): 3945-3954.

    • 20

      Kim F, Luo J, Cruz‑Silva R, et al.Self‑propagating domino‑like reactions in oxidized graphite[J]. Advanced Functional Materials, 2010, 20(17): 2867-2873.

    • 21

      Krishnan D, Kim F, Luo J, et al. Energetic graphene oxide: Challenges and opportunities[J]. Nano Today, 2012, 7(2): 137-152.

    • 22

      Dong Z, Jiang C, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24(14): 1856-1861.

    • 23

      Cheng H, Dong Z, Hu C, et al. Textile electrodes woven by carbon nanotube‑graphene hybrid fibers for flexible electrochemical capacitors[J]. Nanoscale, 2013, 5(8): 3428-3434.

    • 24

      Qu G, Cheng J, Li X, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode[J]. Advanced Materials, 2016, 28(19): 3646-3652.

    • 25

      胡荣祖,高胜利,赵凤起,等.热分析动力学[M]. 北京:科学出版社,2008: 79-80.

      HU Rong‑zu, GAO Sheng‑li, ZHAO Feng‑qi, et al. Thermal Analysis Kinetics[M]. Beijing: Science Press, 2008: 79-80.

    • 26

      Plantier K B, Pantoya M L, Gash A E. Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique[J]. Combustion and Flame, 2005, 140(4): 299-309.

李小东

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials,CAEP,Mianyang 621999, China

邮 箱:lixdong2013@caep.cn

作者简介:李小东(1984-),男,副研究员,主要从事纳米含能材料的激光点火及燃烧特性研究。e‑mail:lixdong2013@caep.cn

黄兵

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials,CAEP,Mianyang 621999, China

谯志强

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials,CAEP,Mianyang 621999, China

陈瑾

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials,CAEP,Mianyang 621999, China

杨光成

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials,CAEP,Mianyang 621999, China

角 色:通讯作者

Role:Corresponding author

邮 箱:ygcheng@caep.cn

作者简介:杨光成(1976-),男,研究员,主要从事纳米含能材料与器件的基础探索和应用研究。e‑mail:ygcheng@caep.cn

html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image001.png
html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image002.png
html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image003.png
html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image004.png
html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image005.png
sampleTp / ℃Kissinger methodOzawa methodΔH / J·g-1
2 K·min-15 K·min-18 K·min-110 K·min-1Ea / kJ·mol-1ln(A/min-1)rEa / kJ·mol-1r
CL‑20232.18242.62247.92250.64183.731.970.9998182.80.99991790.8
0#227.32237.60242.05244.30183.032.280.9999179.50.99111803.1
1#229.63239.95-248.14181.031.550.9999180.00.99991890.7
2#227.66238.57243.43246.24179.631.390.9981178.80.99831823.2
3#226.50236.67242.77244.89177.430.990.9984176.80.99851440.4
html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image006.png
html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image007.png
html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image008.png
html/hncl/CJEM2018221/alternativeImage/a7e6f267-ed42-4070-95b3-35ef42297459-F009.jpg
html/hncl/CJEM2018221/alternativeImage/a7e6f267-ed42-4070-95b3-35ef42297459-F010.jpg
html/hncl/CJEM2018221/media/a7e6f267-ed42-4070-95b3-35ef42297459-image011.png

图1 维度限制水热法制备rGO/CL‑20自支撑纤维的过程示意图

Fig.1 Preparation process of self‑supporting rGO/CL‑20 fiber propellant by a dimensionally confined hydrothermal strategy

图2 单根rGO/CL‑20自支撑纤维的表面和横截面形貌表征 -- a. urface morphology

Fig.2 Surface and cross sectional FESEM images of a single rGO/CL‑20 fiber propellant -- a. urface morphology

图2 单根rGO/CL‑20自支撑纤维的表面和横截面形貌表征 -- b. cross sectional morphology

Fig.2 Surface and cross sectional FESEM images of a single rGO/CL‑20 fiber propellant -- b. cross sectional morphology

图3 CL‑20和四种rGO/CL‑20纤维推进剂的DSC曲线

Fig.3 DSC curves of CL‑20 raw materials and four types of rGO/CL‑20 based fiber propellants

图4 CL‑20和四种rGO/CL‑20纤维推进剂的TG曲线(ΔmCL‑20和ΔmrGO分别为样品中的CL‑20颗粒和rGO的质量损失)

Fig.4 TG curves of CL‑20 raw materials and four types of rGO/CL‑20 based fiber propellants(ΔmCL‑20 and ΔmrGO represent the mass loss ratios of CL‑20 particles and rGO in the samples, respectively)

表1 DSC 法获得的CL‑20和rGO/CL‑20纤维推进剂的燃烧动力学参数对比

Table 1 Comparison of kinetic parameters of raw CL‑20 and four types of rGO/CL‑20 fiber propellants by DSC experiments

图5 Kissinger法计算样品热分解动力学参数的拟合结果

Fig.5 Fitting results of thermal decomposition kinetic parameters of the samples by Kissinger method

图6 CL‑20和四种rGO/CL‑20纤维推进剂的放热量对比

Fig.6 Comparison of the total exothermic enthalpies (ΔH) of CL‑20 raw materials and four types of rGO/CL‑20 based fiber propellants

图7 含KOH(2#)和不含KOH(0#)的rGO/CL‑20纤维固体推进剂的燃烧录像截图 -- a. self‑sustaining combustion of 2# fiber propellant

Fig.7 The video screenshots of rGO/CL‑20 fiber shaped propellant with (2#) and without KOH(0#) treatment -- a. self‑sustaining combustion of 2# fiber propellant

图7 含KOH(2#)和不含KOH(0#)的rGO/CL‑20纤维固体推进剂的燃烧录像截图 -- b. going off of the combustion of 0# fiber propellant without KOH treatment

Fig.7 The video screenshots of rGO/CL‑20 fiber shaped propellant with (2#) and without KOH(0#) treatment -- b. going off of the combustion of 0# fiber propellant without KOH treatment

图7 含KOH(2#)和不含KOH(0#)的rGO/CL‑20纤维固体推进剂的燃烧录像截图 -- c. repeated going off of the combustion of 0# fiber propellant

Fig.7 The video screenshots of rGO/CL‑20 fiber shaped propellant with (2#) and without KOH(0#) treatment -- c. repeated going off of the combustion of 0# fiber propellant

图8 燃烧白烟的前端位置随时间的变化

Fig.8 Distance traveled by the white smoke front of the combustion of 2# fiber propellant as a function of time

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      尤政,张高飞.基于MEMS的微推进系统的研究现状与展望[J]. 微细加工技术, 2004, 2004(1): 1-8.

      YOU Zheng, ZHANG Gao‑fei. Research status and prospect of micro propulsion system based on MEMS[J]. Microfabrication Technology, 2004(1): 1-8.

    • 2

      刘建忠,梁导伦,汪洋,等.基于MEMS的固体燃料微推进技术研究进展[J]. 纳米技术与精密工程, 2016, 14(1): 48-54.

      LIU Jian‑zhong, LIANG Dao‑lun, WANG Yang, et al. Review on MEMS‑based solid propellant micro‑propulsion[J]. Nanotechnology and Precision Engineering, 2016, 14(1): 48-54.

    • 3

      郝海霞,姚二岗,王宝兴,等.含纳米金属粉AP/HTPB复合固体推进剂的激光点火特性[J]. 含能材料, 2015, 23(9): 908-914.

      HAO Hai‑xia, YAO Er‑gang, WANG Bao‑xing, et al. Laser ignition characteristics of AP/HTPB composite solid ropellants containing metal nanopowders[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(9): 908-914.

    • 4

      Chaalane A, Chemam R, Houabes M, et al. A MEMS‑based solid propellant microthruster array for space and military applications[J]. Journal of Physics: Conference Series, 2015, 660(1): 012137.

    • 5

      Levchenko I, Bazaka K, Ding Y, et al. Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers[J]. Applied Physics Reviews, 2018, 5(1): 011104.

    • 6

      刘向阳,范宁军,李科杰.微型推进器推力测试的现状及发展趋势[J]. 测控技术, 2004, 23(5): 18-20.

      LIU Xiang‑yang, FAN Ning‑jun, LI Ke‑jie. The present situation and development trend of micro thruster thrust test[J]. Measurement & Control Technology, 2004, 23(5): 18-20.

    • 7

      Xiong J, Zhou Z, Ye X, et al. A colloid micro‑thruster system [J]. Microelectronic Engineering, 2002, 61‑62: 1031-1037.

    • 8

      Tummala A, Dutta A. An overview of cube‑satellite propulsion technologies and trends[J]. Aerospace, 2017, 4(4): 58.

    • 9

      陈玉华.小型化学能推进器的研究[D]. 南京: 南京理工大学, 2006.

      CHEN Yu‑hua. A study on small chemical energy propeller [D]. Nanjing: Nanjing University of Science and Technology, 2006.

    • 10

      郝海霞,南宝江,安亭,等. 含CL‑20改性双基推进剂激光点火特性[J]. 中国激光, 2011, 38(5): 0502009‑1‑7.

      HAO Hai‑xia, NAN Bao‑jiang, AN Ting, et al. Laser ignition characteristics of CL‑20 composite modified double‑base propellant[J]. Chinese Journal of Lasers, 2011, 38(5): 0502009‑1‑7.

    • 11

      赖华锦,陈雄,周长省,等.负压环境下铝镁贫氧推进剂激光点火及燃烧特性[J]. 含能材料, 2017, 25(10): 817-821.

      LAI Hua‑jin, CHEN Xiong, ZHOU Chang‑sheng, et al. Laser ignition and combustion characteristics of Al/Mg fuel‑rich propellant at subatmospheric pressures[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2017, 25(10): 817-821.

    • 12

      Chen J, He S, Huang B, et al. Enhanced thermal decomposition properties of CL‑20 through space‑confining in three‑dimensional hierarchically ordered porous carbon[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10684-10691.

    • 13

      王江宁,郑伟,舒安民,等.含CL‑20改性双基推进剂的燃烧性能 [J]. 火炸药学报, 2013, 36(1): 61-63.

      WANG Jiang‑ning, ZHENG Wei, SHU An‑min. Combustion properties of CMDB propellant containing hexaazaisowurtzitane(CL‑20)[J]. Chinese Journal of Explosives and Propellants, 2013, 36(1): 61-63.

    • 14

      Styborski J A, Scorza M J, Smith M N, et al. Iron Nanoparticle dditives as burning rate enhancers in AP/HTPB composite propellants[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 253-259.

    • 15

      Singh G, Kapoor I P S, Dubey R, et al. Preparation, characterization and catalytic behavior of CdFe2O4 and Cd nanocrystals on AP, HTPB and composite solid propellants, Part: 79 [J]. Thermochimica Acta, 2010, 511(1): 112-118.

    • 16

      周晓杨,石俊涛,庞爱民,等.含 CL‑20固体推进剂研究现状[J]. 固体火箭技术, 2017, 40(4): 443-447.

      ZHOU Xiao‑yang, SHI Jun‑tao, PANG Ai‑min, et al. Research status of solid propellant containing CL‑20[J]. Journal of Solid Rocket Technology, 2017, 40(4): 443-447.

    • 17

      欧育湘, 刘进全.高能量密度化合物[M]. 北京: 国防工业出版社, 2005: 10.

      OU Yu‑xiang, LIU Jin‑quan.High energy density compound[M]. Beijing: Nationa Defense Industry Press, 2005: 10.

    • 18

      Liu J, Zhao N, Zhao F, et al. Preparation of sea urchin‑shaped nano‑MnO2 and its effect on thermal decomposition performance of CL‑20[J]. Chinese Journal of Explosives and Propellants, 2015, 38(2): 19-24.

    • 19

      Sabourin J L, Dabbs D M, Yetter R A, et al. Functionalized graphene sheet colloids for enhanced fuel/propellant combustion[J]. ACS Nano, 2009, 3(12): 3945-3954.

    • 20

      Kim F, Luo J, Cruz‑Silva R, et al.Self‑propagating domino‑like reactions in oxidized graphite[J]. Advanced Functional Materials, 2010, 20(17): 2867-2873.

    • 21

      Krishnan D, Kim F, Luo J, et al. Energetic graphene oxide: Challenges and opportunities[J]. Nano Today, 2012, 7(2): 137-152.

    • 22

      Dong Z, Jiang C, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24(14): 1856-1861.

    • 23

      Cheng H, Dong Z, Hu C, et al. Textile electrodes woven by carbon nanotube‑graphene hybrid fibers for flexible electrochemical capacitors[J]. Nanoscale, 2013, 5(8): 3428-3434.

    • 24

      Qu G, Cheng J, Li X, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode[J]. Advanced Materials, 2016, 28(19): 3646-3652.

    • 25

      胡荣祖,高胜利,赵凤起,等.热分析动力学[M]. 北京:科学出版社,2008: 79-80.

      HU Rong‑zu, GAO Sheng‑li, ZHAO Feng‑qi, et al. Thermal Analysis Kinetics[M]. Beijing: Science Press, 2008: 79-80.

    • 26

      Plantier K B, Pantoya M L, Gash A E. Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique[J]. Combustion and Flame, 2005, 140(4): 299-309.