-
1 引 言
含能材料是指包括炸药、推进剂和烟火剂等一类蕴含有大量可控释放化学能的物
质[1,2,3,4] ,它在国民经济发展和国防工业中有着不接替代的作用。纵观含能材料的发展历程,可大致分为以下三个重要的阶段:(1)公元9世纪,中国于唐朝时期发明了黑火药,自此,人类进入黑火药时期;(2)1867年,瑞典化学家诺贝尔于发明了现代炸药,至此,人类迈入现代炸药时代;(3)现阶段,含能材料研究者不断优化含能化合物分子结构,以追求含能材料在稳定性和能量两方面都有显著提升[5,6] 。然而,尽管含能材料在国防军事和国民经济领域的应用已有近200余年的历史,但其发展和迭代速度仍旧较慢[7] 。这主要是因为在含能化合物分子内部,存在着能量‑稳定性这一自然对立的矛盾。因此,如何较好的平衡高能量(高爆速、高爆压)和高稳定性(热分解温度高、机械感度低),对于含能材料研究者是一个巨大的挑战[8,9] 。相对于传统含能化合物,富氮杂环含能化合物(唑类、嗪类含能化合物)因其生成热和氮含量较高,爆轰性能优异,以及分解产物主要是对环境无污染的氮气,近20年来受到国内外含能材料研究者的广泛关注和报
道[10,11] 。作为富氮杂环含能化合物的一类——富氮稠环含能化合物,与单环、联环类富氮杂环化合物相比,在结构上,富氮稠环化合物拥有更多数量的N N,N—N,C—N,N—O等化学键和更高的环张力,使得富氮稠环含能化合物相对于单环、联环等杂环化合物,其拥有更高的生成焓,密度和爆轰性能[12,13,14,15,16] 。与此同时,富氮稠环结构的共平面特性,使得π电子更易在此类大平面稠环内离域共振以及更容易在稠环之间产生π‑π堆积,因此,富氮稠环这类含能化合物又表现出较低的机械感度和较高的热稳定性[17] 。富氮稠环含能化合物作为杂环化合物的新兴代表,正成为国内外含能材料研究者关注和研究的重点,过去一段时间以来,大量富氮稠环化合物被设计、合成出来(图1),其中包括一些经典富氮稠环含能化合物,例如,2016年,美国洛斯阿拉莫斯国家实验室Parrish等[18] 报道了4‑氨基‑3,7‑二硝基三唑并‑[5,1‑c][1,2,4]三嗪4‑氧(5),其爆速、爆压分别为8.97 km·s-1 和35.4 GPa,撞击感度和摩擦感度仅分别为10 J和258 N,综合性能优于黑索今(RDX)。2017年,美国爱达荷大学Shreeve课题组[19] 报道了1,2,9,10‑四硝基二并吡唑[1,5‑d:5′,1'‑f][1,2,3,4]四嗪(TNDPT),其爆速和爆压更是分别高达9.63 km·s-1 和44.0 GPa,撞击感度和摩擦感度仅分别为10 J和240 N。在爆轰性能与CL‑20相当的情况下,其机械感度远低于CL‑20(六硝基六氮杂异伍兹烷)。可以看出,富氮稠环含能化合物作为新一代兼具高性能与良好稳定性的含能材料,正展现出巨大的研究价值和应用潜力。本文简要阐述近年来发展的富氮稠环含能化合物的合成、含能性能、稳定性,并对富氮稠环含能化合物作进一步的展望,从而为含能材料研究人员提供参考和借鉴意义。图1 几种经典稠环含能化合物:三氧化呋咱并苯(1); 三硝基三唑并苯(2);呋咱‑1,2,3,4‑四嗪‑1,3‑二氧氮化(3);1,2,9,10‑四硝基二并吡唑[1,5‑d:5′,1'‑f][1,2,3,4]四嗪(4); 4‑氨基‑3,7‑二硝基三唑并‑[5,1‑c][1,2,4]三嗪4‑氧化物(5)
Fig.1 Fused‑ring nitrogen‑rich energetic compounds: trinitrotris(triazolo)benzene(1), furazano‑1,2,3,4‑tetrazine‑1,3‑dioxide(2), 3,6‑dinitropyrazolo[4,3‑c]‑pyrazole(3), 1,2,9,10‑tetranitrodipyrazolo[1,5‑d:5′,1'‑f][1,2,3,4]tetrazine(4), 4‑amino‑3,7‑dinitrotriazolo‑[5,1‑c][1,2,4]triazine 4‑oxide(5)
-
2 含N—O键类富氮稠环化合物
含能化合物的能量来源主要是通过在含能化合物骨架上引入含能基团来实现,常见的含能基团为N
O2 ,N3 ,N—O,NHNO2 等,其中,N—O键的引入是提高含能化合物能量、密度及氧平衡最直接的方法[20,21] 。随着富氮稠环含能化合物受到的关注和报道不断增多,在富氮稠环含能化合物上引入N—O键也受到越来越多的研究。2014年,美国爱达荷大学Shreeve课题
组[22] 以3,5‑二氨基呋咱为原料,经过多步反应得到氮氧化前体5,6‑二氨基呋咱‑[3,4‑b]并吡嗪,比较有意思的是,该化合物在三氟乙酸酐和硝酸的作用下,只需一步反应就可完成稠环关环和氮氧化,得到产物为1,2,3‑三唑(4,5‑e)呋咱(3,4‑b)吡嗪‑6‑氮氧化(TFPO)(Scheme 1),由于N—O键与稠环共轭形成大π体系,使得该化合物感度较低(撞击感度:32 J),而热分解温度高达281 ℃,爆速和爆压分别为8.5 km·s-1 和32.4 GPa。较低的感度和较高的热分解温度,使得该化合物具有较大的应用潜力。2015年,美国爱达荷大学shreeve 课题
组[23] 采用3‑氨基‑6‑叠氮‑1,2,4,5‑四嗪的同分异构体6‑氨基‑四唑并[1,5‑b]‑1,2,4,5‑四嗪,与三氟乙酸酐、双氧水在0 ℃条件下得到其氮氧化产物6‑氨基‑四唑并[1,5‑b]‑1,2,4,5‑四嗪‑7‑氮氧(ATTN)(Scheme 2),该化合物的氮含量高达72.7%,分解温度为185 ℃,其生成热高达631.4 kJ·mol-1 ,其密度1.87 g·cm-3 相对于氮氧化前体1.68 g·cm-3 有显著提升,与此同时,该化合物的爆轰性能(爆速为9.3 km·s-1 ,爆压为36.4 GPa)优于RDX,与奥克托今(HMX)相当,撞击感度与摩擦感度与RDX相当。简单的合成步骤,优异的爆轰性能,使得该化合物在替代RDX方面,表现出了可期待的前景。2016年,美国洛斯阿拉莫斯国家实验室Parrish
等[18] 利用3‑氨基‑5‑硝基‑1,2,4‑三唑与亚硝酸钠、硝基乙腈先后经过重氮化、缩合和环化反应,最终得到3,7‑二硝基‑[1,2,4]三唑[5,1‑c] [1,2,4]三嗪‑4‑胺(DPX‑26),该化合物的密度为1.86 g·cm-3 ,生成热高达387 kJ·mol-1 ,爆速和爆压分别为8.7 km·s-1 和32 GPa,与RDX爆轰性能相当,然而其IS仅为29 J,FS大于360 N,属于钝感含能材料,其安全性能远远高于具有同等爆轰性能的RDX。将DPX‑26进一步与次氟酸反应,得到氮氧化产物4‑氨基‑1,7‑二硝基三唑‑[5,1‑c][1,2,4]三嗪‑4‑氧化物(DPX‑27)(Scheme 3),N—O键的引入尽管使得DPX‑27的生成热(378 kJ·mol-1 )相对DPX‑26略微降低,由于引入的氮氧键能显著增加化合物的密度,使得DPX‑27的密度达到1.904 g·cm-3 ,明显高于DPX‑26的1.860 g·cm-3 。密度的提升,使得DPX‑27的爆速和爆压更是高达8.97 km·s-1 和35.4 GPa,高于RDX,与HMX接近,撞击和摩擦感度分别为10 J和258 N,明显高于HMX。理想的机械感度,优异的爆轰性能,使得DPX‑26和DPX‑27均展现出巨大的应用前景。在众多含N—O键含能基团的富氮稠环化合物中,作为一种经典的N—O键修饰的富氮稠环含能化合物,[1,2,3,4]‑四并嗪[5,6‑e]‑[1,2,3,4]四嗪‑1,3,6,8‑四氮氧(TTTO)(Scheme 4)因其对称的结构、优异的理论密度(1.98 g·c
m-3 )以及优异的计算爆轰性能(爆速和爆压分别高达9.71 km·s-1 和43.2 GPa),从1999年俄罗斯科学家[24,25,26] 提出其结构式后,关于它的合成一直备受关注。最终,该化合物于2016年被俄罗斯科学家成功合成出来。研究人员从2,2‑联(叔丁基‑NNO‑氧化偶氮)乙腈出发,通过在生成的偶氮氧离子和叔丁基‑NNO偶氮氧化基团分子内偶联的基础上连续关环,经过长达10步的反应,最终得到目标化合物。TTTO实测的机械感度适中,分解温度为186 ℃,通过共晶能够解决其容易吸湿的问题,有望得以应用。 -
3 富氮稠环含能离子盐和稠环共晶化合物
不同于单一组分的中性含能分子,含能离子盐和共晶化合物属于双组分化合物,此种组分化合物不仅拥有他们各自单体的性质,同时,又因为新组分(平衡离子和另一共晶组分)的引入,使得含能离子盐和共晶化合物拥有新的特性。新组分的引入,往往使得离子盐和共晶结构中产生新的诸如平面堆积、共轭效应等堆积排列方式和相互作用,从而导致新特性的产生。
对于稠环含能离子盐,由于稠环离子一般为多环共平面结构,且其环面积较单环和联环面积大,因此,更易产生平面π‑π堆积和共轭等效应,从而导致稠环含能离子盐的稳定性往往优于其对应的中性化合物分子。2015年,北京理工大学周智明课题
组[27] 以3‑硝基‑1‑(2氢‑四唑)‑1氢‑1,2,4‑三唑‑5‑氨基为原料,在发烟硫酸和发烟硝酸混酸的条件下,一步反应得到氮氧化稠环化合物7‑硝基‑4‑氧‑4,8‑二羟基(1,2,4)三唑(5,1‑d)(1,2,3,5)四嗪‑2‑氮氧化(HBCM)(Scheme 5),尽管中性HBCM化合物具有吸湿性,然而,以它为阴离子的含能离子盐在解决吸湿性问题的同时展现出了较为优异的爆轰性能和稳定性,其所构成的多数含能离子盐热分解温度均在230 ℃以上,对撞击,摩擦和静电均钝感,密度为1.77~1.97 g·cm-3 。尤其是羟铵盐的撞击感度大于40 J,属于钝感含能材料,爆速和爆压分别达9.07 km·s-1 和39.5 GPa,达到了高能量密度化合物的标准。2015年,德国慕尼黑大学Klaöptke课题
组[28,29] 以碳酸胍为原料,经2步合成,得到多氨基稠环化合物3,6,7‑三氨基‑7H‑[1,2,4]三唑[4,3‑b][1,2,4]三唑(TATOT),该化合物爆速高达8.5 km·s-1 ,撞击和摩擦均分别大于40 J 和360 N,属于钝感含能材料。该化合物阳离子与硝酸根离子成盐(图2),其分解温度高达280 ℃,尽管其爆速高达9.0 km·s-1 ,但其撞击感度和摩擦感度分别为40 J和360 N,属于钝感含能材料,是少数具有高爆轰性能的硝酸根含能材料。根据化合物费氏弧菌毒性测试标准(Vibrio fischeri NRRL‑B‑11177),该稠环阳离子对应的中性化合物的最大半有效浓度高达4.83 g·L-1 ,其硝酸盐最大半有效浓度(EC50)值是3.36 g·L-1 ,二者均远远高于RDX的0.22 g·L-1 。(当化合物最大半有效浓度高于1.0 g·L-1 ,则认为该化合物无毒)。此外,该阳离子与其他高能量密度、敏感型含能阴离子成多数含能离子盐,在拥有高爆轰性能的同时,均具有相对较低的感度。鉴于TATOT自身优势,以及所成多数盐具有的优异的爆轰性能。2017年美国shreeve课题
组[30] 将该稠环阳离子与二硝基(3‑(硝仿基)‑1H‑1,2,4‑三唑所成盐(图3),所得离子盐密度高达1.90 g·cm-3 ,该含能离子盐的爆速和爆压分别为9.0 km·s-1 ,36.6 GPa,撞击和摩擦感度分别为20 J和240 N,其感度相对于阴离子所对应中性化合物有显著的提升。对此,作者采用分子间相互作用模拟软件NCI进行解释,理论计算表明,这种带氨基基团的稠环阳离子能够使得晶体以面对面的方式堆积,使得在面面之间能够产生很大区域的π‑π堆积效应,使得阴阳离子相互作用更加紧密,从而提高化合物的堆积密度,热分解温度并显著降低其机械感度。图3 由二硝基(3‑(硝仿基)‑1H‑1,2,4‑三唑硝基组成的笼型结构(a);二硝基(3‑(硝仿基)‑1H‑1,2,4‑三唑与阳离子面对面排列堆积(b);TATOT离子盐的面对面π‑π堆积NCI模拟示意图(c
)[30] Fig.3 View of the nitro cage comprised of two trinitromethyl groups and two anions (a); view of face‑to‑face π‑π arrangement unit (b); NCI plot of TATOT for the face‑to‑face π‑π arrangement unit (c
)[30] 2017年,美国爱达荷大学Shreeve课题组研究人
员[31] 以盐酸胍为原料,经4步反应得到3,7‑二氨基‑7H‑(1,2,4)三唑(4,3‑b)(1,2,4)三唑(DATT)(Scheme 6),该化合物作为氨基稠环阳离子,可以与众多高能量密度硝铵呋咱阴离子成盐。新生成的富氮稠环离子盐在感度和热稳定性上相对于硝铵呋咱中性化合物,都有明显的提升。比如,3,4‑二(硝铵)呋咱的分解温度小于100 ℃,其撞击感度也仅为1 J,与DATT稠环阳离子成盐后,其分解温度提高到167 ℃,撞击感度值也提高到8J[32] 。由以上可知,稠环共平面结构和紧密堆积,是导致该类化合物均具有较为优异的稳定性的主要原因,这种规律对于1,3,5‑三嗪稠环衍生物同样适用。2017年,哈尔滨工业大学(深圳)张嘉恒教授同美国爱达荷大学shreeve教授合作,共同报道了2,3,5,6‑四硝基‑4H,9H‑并吡唑[1,5‑a:5′,1′‑d][1,3,5]三嗪(TNDPTA)及其含能离子
盐[33] ,其中该中性化合物及其羟铵盐作为典型的高能量低感度含能材料,它们的密度分别达到1.9 g·cm-3 和1.86 g·cm-3 ,分解温度分别为261 ℃和221 ℃,其他阳离子复配含能盐分解温度均大于207 ℃,机械感度处于可接受的范围。该中性化合物及其羟铵盐爆速分别为8.97 km·s-1 和8.89 km·s-1 ,撞击和摩擦感度分别为15 J,240 N和35 J,360 N。可以看出,此二者含能材料无论是爆轰性能还是机械感度均优于RDX。此外,借助ICSS模拟软件发现,离域的电子云覆盖了整个三环体系(图4),从而使得该系列化合物在拥有优异爆轰性能的同时,保持较高的分解温度和较低的机械感度。在富氮稠环含能化合物骨架上引入含能基团,以及利用富氮稠环结构与其他离子成盐反应,是目前研究富氮稠环含能材料两个最常规的方法。而采用共晶的方法研究富氮稠环含能化合物的报道相对较少。2015年,美国爱达荷大学shreeve课题
组[34] 首次将富氮稠含能环化合物引入到共晶化合物中,分别得到DDNP与3‑氨基‑1,2,4‑三唑、4‑氨基‑1,2,4‑三唑共晶化合物(Scheme 7)。尽管3‑氨基‑1,2,4‑三唑和4‑氨基‑1,2,4‑三唑显示弱碱性。由于共晶的作用,DNPP的酸性中和氨基三唑部分碱性,正如我们期待的那样,该系列共晶分子内部排列方式为面对面π‑π堆积排布,使得该系列共晶化合物撞击感度和摩擦感度均大于40 J和360 N,属于钝感含能材料。于此同时,其爆轰性能均与TATB(三氨基三硝基苯)相当,简单的合成步骤,钝感特性,使得该系列稠环共晶化合物在替代TATB方面表现出较好的前景。 -
4 稠环四嗪类含能化合物
富氮稠环四嗪类含能化合物作为富氮稠环化合物的一种,由于其氮含量高于其他稠环含能化合物,使得其生成热,能量密度显著高于上述三种常规稠环含能化合物,而且,得益于π电子的离域,这类含能化合物的机械感度和热稳定性仍处于一个理想的水平。2015年美国洛斯阿拉莫斯国家实验室Parrish课题
组[35] 以5,5‑二硝基‑2H,2H′‑[3,3′‑联(1,2,4‑三唑)为原料,采用二氨基偶氮的方法,经过3步反应得到富氮稠环四嗪类含能化合物1,2,3,4‑四嗪,‑2,9‑二硝基联(1,2,4)三唑[1,5‑d:5′,1′‑f][1,2,3,4]四嗪(NBTT)(Scheme 8),该化合物密度高达1.90 g·cm-3 ,生成热为787 kJ·mol-1 ,爆速和爆压分别为9.4 km·s-1 ,38 GPa,爆轰性能超过HMX的同时,撞击感度和摩擦感度分别为5.3 J和92 N,仅与RDX感度值相当,由此可见,富氮稠环四嗪类含能材料的出现,将能够很好的解决含能材料能量与稳定性之间的矛盾,同时该化合物展现出了极大的研究价值和应用潜力。随后在2017年,美国爱达荷大学Shreeve教授课题
组[19] ,以草酰氯为原料,得到4,4′,5,5′‑四硝基‑2H,2H′‑3,3′‑联吡唑,接着经过氨化和偶氮化,得到1,2,9,10‑四硝基联吡唑[1,5‑d:5′,1′‑f][1,2,3,4]四嗪(TNDPT)(Scheme 9),相比于NBTT的138 ℃的分解温度,该化合物的分解温度达到了233 ℃,密度更高达1.96 g·cm-3 ,爆速和爆压分别高达9.63 km·s-1 和44.0 GPa,与CL‑20相当。得益于稠环π电子的离域共振,使得该化合物的撞击和摩擦感度分别为10 J和240 N,机械感度远低于CL‑20。鉴于该化合物优异的爆轰性能和可接受的机械感度值,该化合物将具有非常大的工业生产和应用价值[36] 。 -
5 总结与展望
综上所述,与传统含能材料相比,富氮稠环化合物因具有较高的生成热和较大的环张力,使得该类化合物具有较为优异的爆轰性能,同时,由于稠环所拥有独特平面结构和π电子的离域共振,以及更易产生共轭堆积效应,使得该类化合物在拥有高能量密度的同时,其机械感度和热稳定性均处于较为理想的水平。这就使得富氮稠环含能化合物在平衡含能材料能量与稳定性方面,展现巨大的优势和应用前景。同时,富氮稠环含能化合物的发展,很好的补充和拓展高能量密度含能材料的研究思路和研究范围。
随着富氮稠环含能材料的合成路线不断优化,稠环化合物的构效关系逐步确立。相信在不久的将来,大量具有高爆轰性能、优异稳定性以及巨大应用前景的富氮稠环含能化合物被含能材料研究人员探索合成出来,以服务于我国国防工业。
-
参考文献
-
1
Gao H, Shreeve J M. Azole‑based energetic salts[J]. Chem Rev, 2011, 111(11):7377-7436.
-
2
Yin P, Zhang Q, Shreeve J M. Dancing with energetic nitrogen atoms: versatile N‑functionalization strategies for N‑heterocyclic frameworks in high energy density materials[J]. Acc Chem Res, 2016, 49(1):4-16.
-
3
黄辉,王泽山,黄亨建,等.新型含能材料的研究进展[J]. 火炸药学报,2005, 28(4): 9‑13.
HUANG Hui, WANG Ze‑shan, HUANG Heng‑jian, et al. Researches and progresses of novel energetic materials[J]. Chinese Journal of Explosives and Propellants, 2005, 28(4): 9-13.
-
4
阳世清,徐松林,黄亨建,等.高氮化合物及其含能材料[J]. 化学进展,2008, 20 (4): 526-537.
YANG Shi‑qing, XU Song‑lin, HUANG Heng‑jian, et al. High nitrogen compounds and their energy material[J]. Progress in Chemistry, 2008, 20(4): 526-537.
-
5
Zhang J, Zhang Q, Vo T T, et al. Energetic salts with π‑stacking and hydrogen‑bonding interactions lead the way to future energetic materials[J]. J Am Chem Soc, 2015, 137(4): 1697-1704.
-
6
Agrawal J P, Hodgson R D.Organic Chemistry of Explosives[M]. New York: John Wiley & Sons, 2007.
-
7
Zhang J, Shreeve J M. 3D Nitrogen‑rich metal‑organic frameworks: opportunities for safer energetics[J]. Dalton Trans, 2016, 45(6): 2363-2368.
-
8
Zhang J, Mitchell L A, Parrish D A, et al. Enforced layer‑by‑layer stacking of energetic salts towards high‑performance insensitive energetic materials[J]. J Am Chem Soc, 2015, 137(33): 10532-10535.
-
9
张朝阳.含能材料能量‑安全性间矛盾及其低感高能材料发展策略[J]. 含能材料. 2018, 26(1): 2-10.
ZHANG Chao‑yang. On the energy and safety contradiction of energetic materials and the strategy for developing low‑sensitive high‑energetic materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(1): 2-10.
-
10
Yin P, Shreeve J M. Advances in Heterocyclic Chemistry[M]. Amsterdam: Academic Press, 2017.
-
11
Huynh M H V, Hiskey M A, Hartline E L, et al. Polyazido high‑nitrogen compounds: hydrazoand azo‑1,3,5‑triazine[J]. Angew Chem Int Ed, 2004, 43(37): 4924-4928.
-
12
Chavez D E. Energetic Heterocyclic N‑Oxides[M]. Berlin: Springer, Cham, 2017.
-
13
Zhang J, Shreeve J M. 3,3′‑Dinitroamino‑4,4′‑azoxyfurazan and its derivatives: an assembly of diverse N‑O building blocks for high‑performance energetic materials[J]. J Am Chem Soc, 2014, 136(11): 4437-444.
-
14
Kumar D, Imler G H, Parrish D A, et al. A highly stable and insensitive fused triazolo‑triazine explosive(TTX)[J]. Chem Eur J, 2017, 23(8): 1743-1747.
-
15
Yin P, He C, Shreeve J M. Fused heterocycle‑based energetic salts: alliance of pyrazole and 1,2,3‑triazole[J]. J Mater Chem A, 2016, 4(4): 1514-1519.
-
16
霍欢,王伯周,廉鹏,等.三种稠环硝胺化合物的爆炸性能估算及其硝化母体化合物的合成[J]. 火炸药学报, 2014, 37(1): 21‑30.
HUO Huan,WANG Bo‑zhou,LIAN Peng, et al. Estimation of explosive performances for three fused ring nitramine compounds
and synthesis of their nitrification parent ring compounds[J]. Chinese Joumal of Explosives and Propellants, 2014, 37(1): 21-30.
-
17
Zhang J, Parrish D A, Shreeve J M. Thermally stable 3,6‐dinitropyrazolo[4,3‐c] pyrazole‐based energetic materials[J]. Chem Asian J, 2014, 9(10): 2953-2960.
-
18
Piercey D G, Chavez D E, Scott B L, et al. An energetic triazolo‐1,2,4‐triazine and its N‑oxide[J]. Angew Chem Int Ed, 2016, 55(49): 15315-15318.
-
19
Tang Y, Kumar D, Shreeve J M. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4‑tetrazine[J]. J Am Chem Soc, 2017, 139(39): 13684-13687.
-
20
Zhang Y, Parrish D A, Shreeve J M. Synthesis and properties of 3,4,5‑trinitropyrazole‑1‑ol and its energetic salts[J]. J Mater Chem, 2012, 22(25): 12659-12665.
-
21
Gobel M, Karaghiosoff K, Klapötke T M. Nitrotetrazolate‑2N‑oxides and the strategy of N‑Oxide introduction[J]. J Am Chem Soc, 2010, 132(48): 17216-17226.
-
22
Thottempudi V, Yin P, Zhang J, et al. 1,2,3‐Triazolo [4,5,‐e] furazano [3,4,‐b] pyrazine 6‐oxide—a fused heterocycle with a roving hydrogen forms a new class of insensitive energetic materials[J]. Chem Eur J, 2014, 20(2): 542-548.
-
23
Wei H, Zhang J, Shreeve J M. Synthesis, characterization, and energetic properties of 6‐Amino‐tetrazolo [1,5‐b]‐1,2,4,5‐tetrazine‐7‐N‐oxide: A nitrogen‐rich material with high density[J]. Chem Asian J, 2015, 10(5): 1130-1132.
-
24
Rezchikova K I, Churakov A M, Shlyapochnikov V A. A quantum‑chemical study of1,2,3,4,5,6,7,8‑octaazanaphthalene and itsN‑oxides[J]. Russ Chem Bull, 1999, 48(5): 870-872.
-
25
Tan B, Huang M, Huang H, et al. Theoretical investigation of several 1,2,3,4‐tetrazine‐based high‐energy compounds[J]. Propellants Explosive Pyrotech, 2013, 38(3): 372-378.
-
26
Klenov M S, Guskov A A, Anikin O V, et al. Synthesis of tetrazino‐tetrazine 1,3,6,8‐tetraoxide (TTTO)[J]. Angew Chem Int Ed, 2016, 55(38): 11472-11475.
-
27
Bian C, Dong X, Zhang X, et al. The unique synthesis and energetic properties of a novel fused heterocycle: 7‑nitro‑4‑oxo‑4,8‑dihydro‑[1,2,4]triazolo[5,1‑d][1,2,3,5]tetrazine 2‑oxide and its energetic salts[J]. J Mater Chem A, 2015, 3(7): 3594-3601.
-
28
Klapötke T M, Schmid P C, Schnell S, et al. 3, 6, 7‐Triamino‐[1,2,4] triazolo [4,3‐b][1,2,4] triazole: A non‐toxic, high‐performance energetic building block with excellent stability[J]. Chem Eur J, 2015, 21(25): 9219-9228.
-
29
Yin P, Zhang J, Parrish D A, et al. Energetic fused triazoles‑a promising C—N fused heterocyclic cation[J]. J Mater Chem A, 2015, 3(16): 8606-8612.
-
30
Dharavath S, Zhang J, Imler G H, et al. 5‑(Dinitromethyl)‑3‑(trinitromethyl)‑1, 2, 4‑triazole and its derivatives: a new application of oxidative nitration towards gem‑trinitro‑based energetic materials[J]. J Mater Chem A, 2017, 5(10): 4785-4790.
-
31
Tang Y, He C, Imler G H. High‑performing and thermally stable energetic 3,7‑diamino‑7H‑[1,2,4]triazolo[4,3‑b][1,2,4]triazole derivatives[J]. J Mater Chem A, 2017, 5(13): 6100-6105.
-
32
Tang Y, Zhang J, Mitchell L A, et al. Taming of 3, 4‑di (nitramino) furazan[J]. J Am Chem Soc, 2015, 137(51): 15984-15987.
-
33
Yin P, Zhang J, Imler G H, Parrish D A, et al. Polynitro‐functionalized dipyrazolo‐1,3,5‐triazinanes: energetic polycyclization toward high density and excellent molecular stability[J]. Angew Chem Int Ed, 2017, 56(30): 8834-8838.
-
34
Zhang J, Parrish D A, Shreeve J M. Curious cases of 3, 6‑dinitropyrazolo [4,3‑c] pyrazole‑based energetic cocrystals with high nitrogen content: an alternative to salt formation[J]. Chem Commun, 2015, 51(34): 7337-7340.
-
35
Kaihoh T, Itoh T, Yamaguchi K, et al. First synthesis of a 1,2,3,4‑tetrazine[J]. J Chem Soc Chem Commun, 1988, 0: 1608-1609.
-
36
张弛,陈沫,陈湘,等.稠环类1,2,4,5‑四嗪衍生物结构和性能的理论研究[J]. 含能材料. 2017, 25(4): 273-281.
ZHANG Chi,CHEN Mo,CHEN Xiang, et al. Theoretial study on structure and properties of polycyclic derivatives of 1,2,4,5‑tetrazine based high energy density materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(4): 273-281.
-
1
摘要
富氮稠环含能材料是指在富氮稠环化合物骨架上引入硝基和其他含能基团的含能化合物,由于该类化合物在拥有高爆轰性能的同时,兼具相对较低的机械感度和较高的热分解温度,近年来受到国内外含能材料学者的广泛研究和报道。研究显示,得益于富氮稠环骨架π电子的离域共振,稠环骨架结构的稳定性显著提高,从而使得富氮稠环含能化合物很好的平衡了含能材料能量与稳定性之间这一自然对立的矛盾,如4‑氨基‑3,7‑二硝基三唑并‑[5,1‑c][1,2,4]三嗪4‑氧(DPX‑27),其爆速、爆压分别为8.97 km·
Abstract
Nitrogen‑rich fused‑ring energetic materials are a kind of energetic compounds with incorporating nitro and other energetic functional groups into the nitrogen‑rich fused‑ring heterocycle skeletons. Due to the excellent properties including high detonation properties, low sensitivity and high decomposition temperature, these nitrogen‑rich fused‑ring energetic materials have attracted wide research interest in the domestic and foreign scholars of energetic materials. The studies reveal that the stability of fused‑ring skeleton has been significantly increased owing to the delocalization and resonance of π‑electrons in nitrogen‑rich fused‑ring skeletons. For example, the detonation properties of 4‑amino‑3,7‑dinitrotriazolo‑[5,1‑c][1,2,4]triazine 4‑oxide (DPX‑27) is comparable to RDX with detonation velocity and detonation pressure of 8.97 km·