CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
GushanovA R, VolodinaN A, BelovG V, et al. Numerical simulation of experiments on the low‑velocity impact on HMX‑based HE using explosive transformation initiation kinetics[J]. Journal of Energetic Materials, 2010, 28: 50-65.
参考文献 2
孙宝平, 段卓平, 张海英, 等.破片撞击装药点火实验和数值模拟[J]. Explosion and shock waves, 2013, 33(5): 456-462.
SUNBao‑ping, DUANZhuo‑ping, ZHANGHai‑ying, et al. Experiment and numerical simulation on ignition of charge by fragment impact[J]. Explosion and Shock Waves, 2013, 33(5): 456-462.
参考文献 3
孙宝平, 段卓平, 张震宇, 等.冲击波和破片复合作用下炸药起爆数值模拟[J]. 爆炸与冲击, 2013, 33(增刊): 40-46.
SUNBao‑ping, DUANZhuo‑ping, ZHANGZhen‑yu, et al. Numerical simulation on initiation of charge under combined action of shock wave and fragment impact[J]. Explosion and Shock Waves, 2013, 33(supply): 40-46.
参考文献 4
王树山, 李朝军, 马晓飞, 等. 钨合金破片对屏蔽装药撞击起爆的实验研究[J]. 兵工学报,2001, 22(2): 189-191.
WangShu‑shan, LIChao‑jun, MAXiao‑fei, et al. An experimental study on the initiation of covered charge impacted by tungsten alloy fragments[J]. Acta Armamentarii, 2001, 22(2): 189-191.
参考文献 5
欧阳昌明, 段卓平, 孙宝平, 等.冲击波和破片复合作用下装药起爆实验研究[J]. 爆炸与冲击, 2013, 33(增刊): 63-66.
OU YANG Chang‑ming, DUANZhuo‑ping, SUNBao‑ping, et al. Experimental study on initiation of charge under combined shock wave and fragment impact[J]. Explosion and Shock Waves, 2013, 33(supply): 63-66.
参考文献 6
孙宝平, 段卓平, 马兆芳, 等. 侵彻过程中装药摩擦点火数值模拟[J]. 北京理工大学学报, 2012, 32(8): 771-775.
SUNBao‑ping, DUANZhuo‑ping, MAZhao‑fang, et al. Numerical simulation on frictional ignition of charge during projectile penetration [J]. Transactions of Beijing Institute of Technology, 2012, 32(8): 771-775.
参考文献 7
周风华, 王礼立, 胡时胜. 有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J]. 爆炸与冲击, 1992, 12(4): 333-342.
ZhouFeng‑hua, WangLi‑li, HuShi‑sheng. A damage‑modified nonlinear visco‑elastic constitutive relation and failure criterion of PMMA at high strain‑rates [J]. Explosion and Shock Waves, 1992, 12(4): 333-342.
参考文献 8
MenikoffR. Constitutive model of polymethyl methacrylate at high pressure[J]. Journal of Applied Physics, 2004, 96(12): 7696-7704.
参考文献 9
ChristiansenA W, BaerE, RadcliffeS V. The mechanical behaviour of polymers under high pressure[J]. Philosophical Magazine, 1971, 24(188): 451-467.
参考文献 10
ResnyanskyA D, BourneN K, MillettJ C F, et al. Constitutive modeling of shock response of polytetrafluoroethylene[J]. Journal of Applied Physics, 2011, 110(3): 033530-1-15.
参考文献 11
KhishchenkoK V, Charakhch YanA A, FortovV E, et al. Shock compression of some porous media in conical targets: numerical study[J]. Journal of Applied Physics, 2011, 110(5): 053501-1-11.
参考文献 12
CasemD T. Mechanical response of an Al‑PTFE composite to uniaxial compression over a range of strain rates and temperatures[R]. M D: U.S. Aberdeen Proving Ground ARL‑TR‑4560, 2008.
参考文献 13
JohnsonG R, CookW H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics.Hague,Netherlands:
参考文献 14
孙宝平, 段卓平, 皮爱国, 等. 炸药剪切点火数值模拟[J]. 兵工学报, 2011, 32(增刊1): 310-315.
SUNBao‑ping, DUANZhuo‑ping, PIAi‑guo, et al. Numerical simulation of shear ignition of explosives[J]. Acta Armamentarii, 2011, 32(suppl.1): 310-315.
目录 contents

    摘要

    为了研究冲击波和破片撞击复合作用下装药点火机理,采用先冲击波损伤装药、后破片撞击已损伤装药的实验方法,获得受冲击装药点火对应的破片临界撞击速度为446.9~449.4 m·s-1。采用LS‑DYNA程序,基于节点约束‑分离方法对装药进行冲击波损伤数值模拟,而后采用完全重启动方法对冲击损伤装药在破片撞击下的点火反应过程进行二次模拟,通过“升‑降”法得到了受冲击损伤装药点火对应的破片临界撞击速度为452~453 m·s-1,实验和数值模拟结果吻合较好。结果表明,可采用节点约束‑分离方法和完全重启动数值模拟技术进行冲击波和破片复合作用下装药点火数值模拟;受冲击波损伤装药的破片撞击点火临界速度明显要低于未损伤装药,装药受损伤状态对破片撞击感度起到了敏化作用,从而降低了破片撞击点火的临界速度。

    Abstract

    To study the ignition mechanism of charge under the combined action of shock wave and fragment impact, the critical impact velocity of fragment corresponding to the ignition of impacted charge obtained by the experimental method of first compacting charge by shock wave and then impacting damaged charge by fragment was 446.9-449.4 m·s-1. LS‑DYNA program was used to numerically simulate the shock wave damage of charge based on the nodal constraint‑separation method. Then, secondary simulation to the ignition reaction process of impact damaged charge under fragment impact was performed by full restart method. The critical impact velocity of fragment corresponding to the ignition of impact damaged charge obtained by “up‑down” method is from 452 m·s-1 to 453 m·s-1, the experimental and numerical results are in good agreement. Results show that the nodal constraint‑separation method and the full restart numerical simulation technology can be used to simulate the ignition of charge under the combined action of shock wave and fragments, the critical velocity of fragments impact ignition of charge damaged by shock wave is lower than that of non‑damaged charge, and the damaged state of charge sensitizes the impact sensitivity of fragments. This reduces the critical velocity of fragment impact ignition.

    Graphic Abstract

    图文摘要

    html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image012.png

    The charge was first damaged by shock waves, and then impacted by fragment. The critical velocities of fragments were obtained. The method of node tie‑breaking and the themo‑elastic‑plastic model with chemical kinematics equation, describing the ignition of energetic materials, were used in the simulations. They are verified to be feasible.

  • 1 引 言

    1

    装药在战场环境极易受到冲击波和破片的共同(复合)作用,其响应状态是装药安全性研究中的重点,国内外学者对其进行了广泛研究。A. R. Gushanov [1]进行了破片撞击炸药实验,提出了撞击起爆模型,并嵌入到自主研发的LEGAK‑3D程序中进行数值模拟。段卓平[2,3]开展了破片撞击装药点火、起爆等实验和数值模拟。王树山[4]进行了钨合金撞击仿真战斗部实验,得出破片撞击炸药起爆的原因可分为冲击起爆和机械刺激起爆两种。以上研究主要集中在破撞击完整装药的起爆机理方面,实际上,装药在战场环境中常受到冲击波损伤和破片撞击共同作用,其点火特性与单一的破片撞击点火机理并不相同。受冲击波损伤后的装药,其内部损伤会影响撞击感度,与完整装药的撞击感度有一定区[4]。由于装药的冲击损伤需要采用流固耦合方法,建模网格数量大,装药损伤不易描述,冲击波和破片复合作用下装药点火方面的数值模拟研究较少,因此,开展冲击波和破片复合作用下装药点火数值模拟研究具有重要的理论意义。

    为此,本研究首先对装药进行冲击损伤,再进行破片撞击,获取受冲击损伤装药点火对应的临界撞击速度;采用节点约束‑分离方法及带化学反应的热‑弹塑性模型描述装药损伤和点火,使用完全重启动方法得到受冲击损伤装药点火对应的临界撞击速度,对实验结果予以验证。

  • 2 实验部分

    2

    冲击波和破片复合作用下装药起爆实验可采用分步方法实现。步骤如图1所示:首先进行预冲击波加载使装药产生损伤,再对损伤装药进行破片撞击,得到破片撞击受冲击损伤装药的点火临界速度范围。

    被发装药为JO‑8炸药,主要成份为HMX95%、高聚物粘结剂3.7%和蜡钝感剂1.3%。被发装药尺寸为Φ80 mm×80 mm,质量约为735 g。主发药柱为8701(JH‑2),铝板厚60 mm,有机玻璃厚12 mm,聚四氟乙烯厚6 mm,三者厚度之和为78 mm。经8次平行实验测定,冲击波至装药表面的峰值压力平均值为2.37 GPa,典型冲击波压力曲线如图2所示。

    图1
                            冲击波和破片撞击复合作用下装药点火实验示意图

    图1 冲击波和破片撞击复合作用下装药点火实验示意图

    Fig.1 Schematic diagram of charge ignition experiment under combined effects of shock wave and fragment impact

    图2
                            实验测得的典型冲击波压力曲线

    图2 实验测得的典型冲击波压力曲线

    Fig.2 Typical shock wave pressure curve measured by experiment

    钨破片尺寸为Φ6 mm,质量约为2.18 g,通过破片撞击受冲击损伤装药实验,获得破片对冲击损伤装药撞击点火的临界速度为446.9~449.4 m·s-1

  • 3 冲击波和破片复合作用下装药点火数值模拟

    3
  • 3.1 数值模拟方法

    3.1

    节点约束‑分离方法是指相邻单元坐标相同的节点相互独立,彼此约束相对自由度,通过定义的断裂准则控制节点分离,当单元力学状态满足断裂准则时,节点之间的约束失效,相邻单元坐标相同的节点相互分离。一般以塑性应变作为断裂准则,当塑性应变大于预设的失效应变时,节点相互分[2]。图3给出了节点约束‑分离的示意图,在t0时刻,拉格朗日网格在某位置重叠4个节点N1N2N3N4(分属4个单元),4个节点整体组成一个节点族,节点之间相互约束,自由度一致,节点的力学参量相同;在tx时刻,当塑性应变大于预设的失效应变时,节点族内的N1N2N3N4节点相互分离,节点族“解散”。当节点开始分离时,材料开始断裂,当若干个节点族以同样方法执行节点分离时,裂纹开始扩展,因此,该方法可以描述材料裂纹的生成、扩展等现象和特性。

    图3
                            节点约束‑分离示意图

    图3 节点约束‑分离示意图

    Fig.3 Schematic diagram of nodal constraint‑separation

    破片撞击受冲击损伤装药数值模拟需要分两步进行。首先对冲击波损伤装药过程进行数值模拟,而后采用完全重启动方法对冲击损伤后的装药在破片撞击下的破坏和点火反应过程进行数值模拟。LS‑DYNA 程序中的完全重启动(full restart)方法是对计算模型的K文件大量修改时进行的一种分[6],如增加新PART、删除PART 等。完全重启动方法是基于前序数值模拟结果的全新的计算分析,这种分析继承了前序分析中相关PART 的变形和应力情况,并将其作为完全重启动分析时的初始条件,计算时间域从上一次模拟结束时间开始。应力和变形的传递通过关键字*STRESS_INITIALIZATION实现,可以对原K文件中的所有PART或者部分PART进行初始化。

  • 3.2 冲击波损伤装药数值模拟

    3.2
  • 3.2.1 计算模型和参数

    3.2.1

    冲击波损伤装药的物理模型呈轴对称性,因此建立轴对称模型的1/2计算模型。模型由主发药柱、有机玻璃(PMMA)、铝板、聚四氟乙烯垫板、被发装药和钢锭组成,如图4所示。通过在主发药柱上表面中心处设置起爆点来代替实验中的雷管起爆主发药柱,模型全部采用拉格朗日算法。为方便进行第二阶段的破片撞击受冲击而损伤的装药的点火过程的模拟,被发药柱使用节点约束‑分离方法进行建模,JO‑8炸药失效应变为0.66%。

    主发药柱采用高能炸药爆轰模型和JWL爆轰产物状态方[8],参数如表1所示。有机玻璃、聚四氟乙烯和铝板采用Mie‑Grüneisen状态方[8],有机玻璃(PMMA)和聚四氟乙烯(PTFE)垫板均采用流体弹塑性材料模[11,12],参数如表2所示;铝板采用Johnson‑Cook材料模型,参数如表3所示。

    图4
                            显示相应位置和约束的1/2模拟模型的布局

    图4 显示相应位置和约束的1/2模拟模型的布局

    Fig. 4 Layout of simulated half model showing the corresponding positions and constrains

    钢筒、钢锭为45钢,材料模型均采用塑性随动硬化模[2],材料模型参数见表4。被发装药采用带化学反应的热‑弹塑性本构方程描[2],化学反应采用Arrhenius反应速率方[2],力学本构采用的是热‑弹塑性本[2],参数如表5所示。

    表1 8701炸药参[2]

    Table 1 Parameters of 8701 explosive[2]

    donor chargeρ / g·cm-3D / m·s-1pCJ / GPa
    8701 explosive1.72842529.66
    表1
                    8701炸药参数[2]

    NOTE: ρ is density. D is detonation velocity. pCJ is Chapman‑Jouget pressure.

    表2 有机玻璃、聚四氟乙烯垫板和铝板Mie‑Grüneisen状态方程参[8‑11]

    Table 2 Mie‑Grüneisen EOS parameters of PMMA, PTFE and Aluminum plate[8‑11]

    materialρ / g·cm-3G / GPaσy / GPaC / m·s-1S1S2S3γ0aE0 / GJ·m-3
    PMMA1.1852.320.1522402.09-1.1200.8500
    PTFE2.160.700.0513401.9300.850.8500
    AL plate2.7527.10.26553501.34001.971.00

    NOTE: G is shear modulus.ν is Poisson′s ratio. σyis yield stress. C is the intercept of the curve. S1, S2, S3 are the coefficients of the slope of the curve. γ0 is Gruneisen gamma.a is the first order volume correction to γ0. E0 is initial internal energy..

    表3 铝板Johnson‑Cook材料模型参[11‑12]

    Table 3 Parameters of Johnson‑Cook material model for aluminum plate[11‑12]

    E /GPaνA /GPaB/GPan
    720.330.2650.4260.34
    CmTmelt/KTroom/K ε ˙ 0 / s‑1
    0.0151.09333031.0

    NOTE: E is Young′s modulus. ν is Poisson’s ratio. A and B are material constants. n, m and C are material constants. Tmelt is melt temperature.Troom is room temperature. ε ˙ 0 is quasi‑static threshold strain rate.

    表4 45钢板材料参[2]

    Table 4 Parameters for 45 steel[2]

    steel plate

    ρ

    /g·cm-3

    E

    /GPa

    ν

    σy

    /MPa

    k

    /W·m-1·K-1

    c

    /J·kg-1·K-1

    45 steel7.852100.3235548.1468.2

    NOTE: ρ is density. E is Young′s modulus. ν is Poisson′s ratio. σy is yield stress. k is thermal conductivity. c is heat capacity.

  • 3.2.2 计算结果

    3.2.2

    表5 JO‑8炸药材料参[2]

    Table 5 Parameters for JO‑8 explosive[2]

    ρ

    / g·cm-3

    E

    / GPa

    ν

    α

    / K-1

    σy

    / MPa

    Ep

    / MPa

    1.8301.380.404.9×10-510116

    k

    / W·m-1·K-1

    cv

    / J·kg-1·K-1

    A

    / s-1

    Ea

    / J·mol-1

    Q

    / J·kg-1

    0.3610105.9×10141.68×1062.284×106

    NOTE: ρ is density. E is Young′s modulus.ν is Poisson′s ratio. α is the coefficient of thermal expansion. Ep is hardening modulus. A is frequency factor. Ea is activation energy. Q is reaction heat.

    对冲击波损伤装药进行数值模拟,得到了主发药柱起爆后的冲击波压力云图,如图5所示,其中图5c和图5d隐去了变形过大的炸药。

    从图5a可以看出,主发药柱起爆发生了较大变形,并且向外膨胀,冲击波向有机玻璃和铝板中传播。图5b中,冲击波在铝板中传播,主发药柱变形继续扩大,为了更清楚地观看被发药柱及隔板的变形情况,图5c和5d中不再显示主发药柱的网格变形。从图5c中可以看出,球形冲击波透射过聚四氟乙烯垫板进入被发药柱,药柱中心点首先受到冲击,而后装药整体受到冲击压力损伤,但装药边缘处受到的冲击压力要小于装药中心处。图5d中,由于钢锭设置为非反射边界条件,不考虑冲击波到达钢锭后的反射问题,冲击压力严重衰减,装药内部的波动逐渐趋于平衡。

    6给出了装药表面中心点的压力历史。13 μs时刻,冲击波进入被发药柱。15.6 μs时刻,冲击波压力达到峰值2.20 GPa,冲击波上升沿2.4 μs,而后冲击波压力下降,药柱中心点进入振荡期,交替受到拉伸、压缩作用,而后渐进平衡。数值模拟得到的压力峰值与实验测得的冲击压力峰值2.37 GPa(平均值)吻合较好。

    图6
                            被发药柱表面中心点的压力历史

    图6 被发药柱表面中心点的压力历史

    Fig.6 Pressure history of the center point on the surface of the dispatched grain

    html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image005.png

    a. t=7.98 μs b. t=10.98 μs

    html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image006.png

    c. t=22.00 μs d. t=41.00 μs

    图5 冲击波压力云图

    Fig.5 Contours of shock wave pressure

    为了对比计算和实验中装药损伤情形,对受冲击波损伤装药进行CT扫描,图7给出了节点约束‑分离方法计算得到的被发药柱损伤数值模拟图和实验CT图。图7a的左上图为距离装药中心轴0~1.2 mm的轴向损伤,图7a右上图为距离装药中心轴27.8~29.0 mm的轴向损伤。装药中心轴附近受到的冲击压缩明显要强于装药边缘处,图7a左上图网格实际上也发生了断裂。这与损伤装药CT图(图7b)的结论是一致的,中心轴附近的装药密度由于冲击压缩而变大,边缘四周的密度变化不大。

    图7
                            被发药柱损伤及局部放大图

    a. damage state b. image of CT of passive explosive of damaged charge

    图7 被发药柱损伤及局部放大图

    Fig.7 Damage and local enlargement of dispensed grain

  • 3.3 破片撞击受冲击波损伤装药数值模拟

    3.3

    基于3.2节装药受冲击损伤情况的数值模拟结果,采用完全重启动方法进行破片撞击损伤装药的点火过程的数值模拟。

  • 3.3.1 计算模型及参数

    3.3.1

    8给出了破片撞击受损伤装药的1/2计算模型,该模型来自于3.2节的计算结果,删除冲击波损伤装药计算结果中的主发药柱、有机玻璃、铝板、聚四氟乙烯垫板等,增加钨珠模型,建立破片撞击受冲击损伤装药计算模型。

    图8
                            破片撞击受损伤装药1/2计算模型的布局

    图8 破片撞击受损伤装药1/2计算模型的布局

    Fig.8 Layout of simulated half model of pre‑damaged charge under fragment impact

    破片、钢筒、钢锭、JO‑8装药材料模型和参数与3.2节相同。钨珠破片采用塑性随动硬化本构模[2]描述,参数如表6所示。

    表6 钨材料参[2]

    Table 6 Parameters for tungsten[2]

    material

    ρ

    /g·cm-3

    E

    /GPa

    v

    σy

    /GPa

    k

    /W·m-1·K-1

    c

    /J·kg-1·K-1

    tungsten19.303600.2215.6168.4133.8
    表6
                    钨材料参数[2]

    NOTE: ρ is density. E is Young′s modulus. ν is Poisson′s ratio. σy is yield stress. k is thermal conductivity. c is heat capacity.

  • 3.3.2 计算结果

    3.3.2

    运行3.2节计算结果得到的重启文件d3dump 01和图8计算模型,进行完全重启动计算。采用“升‑降”法,获得受冲击波损伤后的装药在破片撞击下发生点火对应的临界速度范围。图9给出了受损伤装药在破片撞击下的温升云图。图9a中61.1 us时刻装药最高温度为498 K,9b中,71.1 us时刻装药T→∞,装药发生点火。

    html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image009.png

    a. t=61.1 us

    html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image010.png

    b. t=71.1 us

    图9 受损伤装药在破片撞击下的温升云图

    Fig.9 Contours of temperature rise of pre‑damaged charge under fragment impact

    采用升‑降法获得受损伤装药被破片撞击点火对应的临界速度,为453~452 m·s-1。图10给出了破片撞击速度分别为458,453,452 m·s-1时损伤装药中最高温度单元的曲线对比。为了与破片撞击未损伤装药点火进行对比,图中的时间是从破片撞击开始,而并不是从装药起爆冲击炸药开始。由图10可知,当破片撞击速度为458 m·s-1时,装药发生点火反应,点火时间为71.1 μs,点火温度为696 K。当破片撞击速度为453 m·s-1时,装药发生点火反应,点火时间79.5 μs,点火温度为674 K。当破片撞击速度为452 m·s-1时,装药最高温度为667 K,而后温度下降,损伤装药未能达到点火温度,损伤装药未发生点火反应,因此,受损伤装药点火对应的破片撞击临界速度为452~453 m·s-1。这与破片撞击装药实验得到的临界撞击速度446.9 ~449.4 m·s-1吻合较好。这与文献[2]中破片撞击未损伤装药点火的结果存在一定差异,这是由于装药在受到冲击损伤后,部分网格节点已经分离,破片挤入损伤装药内部后的运动时间、距离均变长,与装药相互作用的时间也在增长,所需的撞击点火速度低于未损伤装药。实验和数值模拟均表明,装药损伤对破片撞击点火起到了敏化作用,降低了破片撞击点火的临界速度。由于冲击损伤装药后,装药内部产生微裂纹、颗粒脱落等细观损伤,当损伤装药再次受到破片撞击后,内部裂纹有可能在挤压作用下成为闭合裂纹,闭合裂纹摩擦生热,为装药温升和点火贡献了部分热量,数值模拟并未考虑这些影响因素,导致了数值模拟得到的装药点火临界撞击速度值高于实验值。

    图10
                            三种速度撞击损伤装药最高温度曲线对比

    图10 三种速度撞击损伤装药最高温度曲线对比

    Fig.10 Comparison between maximum temperature curves of damaged charge under the impacts of three kinds of velocities

  • 4 结 论

    4

    (1)采用节点约束‑分离方法和完全重启动数值模拟技术进行冲击波和破片复合作用下装药点火数值模拟,受损伤装药点火对应的破片撞击临界速度为452~453 m·s-1,与实验得到的临界速度446.9~449.4 m·s-1吻合较好,从而验证了此方法的可行性。

    (2)受冲击波损伤装药的破片撞击点火临界速度明显要低于未损伤装药,装药受损伤状态对破片撞击感度起到了敏化作用,从而降低了破片撞击点火的临界速度。

    (3)受冲击损伤装药的内部产生微裂纹、颗粒脱落等,内部裂纹有可能在挤压作用下成为闭合裂纹,闭合裂纹摩擦生热,为装药温升和点火贡献了部分热量,数值模拟并未考虑这些影响因素,也是以后要关注和解决的问题。

  • 参考文献

    • 1

      Gushanov A R, Volodina N A, Belov G V, et al. Numerical simulation of experiments on the low‑velocity impact on HMX‑based HE using explosive transformation initiation kinetics[J]. Journal of Energetic Materials, 2010, 28: 50-65.

    • 2

      孙宝平, 段卓平, 张海英, 等.破片撞击装药点火实验和数值模拟[J]. Explosion and shock waves, 2013, 33(5): 456-462.

      SUN Bao‑ping, DUAN Zhuo‑ping, ZHANG Hai‑ying, et al. Experiment and numerical simulation on ignition of charge by fragment impact[J]. Explosion and Shock Waves, 2013, 33(5): 456-462.

    • 3

      孙宝平, 段卓平, 张震宇, 等.冲击波和破片复合作用下炸药起爆数值模拟[J]. 爆炸与冲击, 2013, 33(增刊): 40-46.

      SUN Bao‑ping, DUAN Zhuo‑ping, ZHANG Zhen‑yu, et al. Numerical simulation on initiation of charge under combined action of shock wave and fragment impact[J]. Explosion and Shock Waves, 2013, 33(supply): 40-46.

    • 4

      王树山, 李朝军, 马晓飞, 等. 钨合金破片对屏蔽装药撞击起爆的实验研究[J]. 兵工学报,2001, 22(2): 189-191.

      Wang Shu‑shan, LI Chao‑jun, MA Xiao‑fei, et al. An experimental study on the initiation of covered charge impacted by tungsten alloy fragments[J]. Acta Armamentarii, 2001, 22(2): 189-191.

    • 5

      欧阳昌明, 段卓平, 孙宝平, 等.冲击波和破片复合作用下装药起爆实验研究[J]. 爆炸与冲击, 2013, 33(增刊): 63-66.

      OU YANG Chang‑ming, DUAN Zhuo‑ping, SUN Bao‑ping, et al. Experimental study on initiation of charge under combined shock wave and fragment impact[J]. Explosion and Shock Waves, 2013, 33(supply): 63-66.

    • 6

      孙宝平, 段卓平, 马兆芳, 等. 侵彻过程中装药摩擦点火数值模拟[J]. 北京理工大学学报, 2012, 32(8): 771-775.

      SUN Bao‑ping, DUAN Zhuo‑ping, MA Zhao‑fang, et al. Numerical simulation on frictional ignition of charge during projectile penetration [J]. Transactions of Beijing Institute of Technology, 2012, 32(8): 771-775.

    • 7

      周风华, 王礼立, 胡时胜. 有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J]. 爆炸与冲击, 1992, 12(4): 333-342.

      Zhou Feng‑hua, Wang Li‑li, Hu Shi‑sheng. A damage‑modified nonlinear visco‑elastic constitutive relation and failure criterion of PMMA at high strain‑rates [J]. Explosion and Shock Waves, 1992, 12(4): 333-342.

    • 8

      Menikoff R. Constitutive model of polymethyl methacrylate at high pressure[J]. Journal of Applied Physics, 2004, 96(12): 7696-7704.

    • 9

      Christiansen A W, Baer E, Radcliffe S V. The mechanical behaviour of polymers under high pressure[J]. Philosophical Magazine, 1971, 24(188): 451-467.

    • 10

      Resnyansky A D, Bourne N K, Millett J C F, et al. Constitutive modeling of shock response of polytetrafluoroethylene[J]. Journal of Applied Physics, 2011, 110(3): 033530-1-15.

    • 11

      Khishchenko K V, Charakhch Yan A A, Fortov V E, et al. Shock compression of some porous media in conical targets: numerical study[J]. Journal of Applied Physics, 2011, 110(5): 053501-1-11.

    • 12

      Casem D T. Mechanical response of an Al‑PTFE composite to uniaxial compression over a range of strain rates and temperatures[R]. M D: U.S. Aberdeen Proving Ground ARL‑TR‑4560, 2008.

    • 13

      Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics.Hague,Netherlands:

      s. n.], 1983: 541-547.

    • 14

      孙宝平, 段卓平, 皮爱国, 等. 炸药剪切点火数值模拟[J]. 兵工学报, 2011, 32(增刊1): 310-315.

      SUN Bao‑ping, DUAN Zhuo‑ping, PI Ai‑guo, et al. Numerical simulation of shear ignition of explosives[J]. Acta Armamentarii, 2011, 32(suppl.1): 310-315.

孙宝平

机 构:

1. 首都经济贸易大学安全与环境工程学学院, 北京 100070

2. 城市群系统演化与可持续发展的决策模拟研究北京市重点实验室, 北京 100070

Affiliation:

1. School of Safety and Environmental Engineering, Capital University of Economics and Business, Beijing 100070, China

2. Beijing Key Laboratory of Megaregions Sustainable Development Modeling, Capital University of Economics and Business, Beijing 100070, China

邮 箱:sunbaoping@cueb.edu.cn

作者简介:孙宝平(1976-),男,博士,讲师,主要从事爆炸力学、炸药安全方面的研究。e‑mail:sunbaoping@cueb.edu.cn

段卓平

机 构:北京理工大学爆炸科学与技术国家重点实验室, 北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

角 色:通讯作者

Role:Corresponding author

邮 箱:duanzp@bit.edu.cn

作者简介:段卓平(1965-),男,教授,博士生导师,主要从事工程力学,爆炸与冲击动力学,爆轰与安全研究。e‑mail:duanzp@bit.edu.cn

刘彦

机 构:北京理工大学爆炸科学与技术国家重点实验室, 北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

皮爱国

机 构:北京理工大学爆炸科学与技术国家重点实验室, 北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

黄风雷

机 构:北京理工大学爆炸科学与技术国家重点实验室, 北京 100081

Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image001.png
html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image002.png
html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image003.png
html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image013.png
donor chargeρ / g·cm-3D / m·s-1pCJ / GPa
8701 explosive1.72842529.66
materialρ / g·cm-3G / GPaσy / GPaC / m·s-1S1S2S3γ0aE0 / GJ·m-3
PMMA1.1852.320.1522402.09-1.1200.8500
PTFE2.160.700.0513401.9300.850.8500
AL plate2.7527.10.26553501.34001.971.00
E /GPaνA /GPaB/GPan
720.330.2650.4260.34
CmTmelt/KTroom/K ε ˙ 0 / s‑1
0.0151.09333031.0
steel plate

ρ

/g·cm-3

E

/GPa

ν

σy

/MPa

k

/W·m-1·K-1

c

/J·kg-1·K-1

45 steel7.852100.3235548.1468.2

ρ

/ g·cm-3

E

/ GPa

ν

α

/ K-1

σy

/ MPa

Ep

/ MPa

1.8301.380.404.9×10-510116

k

/ W·m-1·K-1

cv

/ J·kg-1·K-1

A

/ s-1

Ea

/ J·mol-1

Q

/ J·kg-1

0.3610105.9×10141.68×1062.284×106
html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image004.png
html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image005.png
html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image006.png
html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image007.png
html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image008.png
material

ρ

/g·cm-3

E

/GPa

v

σy

/GPa

k

/W·m-1·K-1

c

/J·kg-1·K-1

tungsten19.303600.2215.6168.4133.8
html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image009.png
html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image010.png
html/hncl/CJEM2018198/media/6044b70f-6279-4ab9-a44b-ddfbc6719d93-image011.png

图1 冲击波和破片撞击复合作用下装药点火实验示意图

Fig.1 Schematic diagram of charge ignition experiment under combined effects of shock wave and fragment impact

图2 实验测得的典型冲击波压力曲线

Fig.2 Typical shock wave pressure curve measured by experiment

图3 节点约束‑分离示意图

Fig.3 Schematic diagram of nodal constraint‑separation

图4 显示相应位置和约束的1/2模拟模型的布局

Fig. 4 Layout of simulated half model showing the corresponding positions and constrains

表1 8701炸药参[2]

Table 1 Parameters of 8701 explosive[2]

表2 有机玻璃、聚四氟乙烯垫板和铝板Mie‑Grüneisen状态方程参[8‑11]

Table 2 Mie‑Grüneisen EOS parameters of PMMA, PTFE and Aluminum plate[8‑11]

表3 铝板Johnson‑Cook材料模型参[11‑12]

Table 3 Parameters of Johnson‑Cook material model for aluminum plate[11‑12]

表4 45钢板材料参[2]

Table 4 Parameters for 45 steel[2]

表5 JO‑8炸药材料参[2]

Table 5 Parameters for JO‑8 explosive[2]

图6 被发药柱表面中心点的压力历史

Fig.6 Pressure history of the center point on the surface of the dispatched grain

图5 冲击波压力云图 -- a. t=7.98 μs b. t=10.98 μs

Fig.5 Contours of shock wave pressure -- a. t=7.98 μs b. t=10.98 μs

图5 冲击波压力云图 -- c. t=22.00 μs d. t=41.00 μs

Fig.5 Contours of shock wave pressure -- c. t=22.00 μs d. t=41.00 μs

图7 被发药柱损伤及局部放大图

Fig.7 Damage and local enlargement of dispensed grain a. damage state b. image of CT of passive explosive of damaged charge

图8 破片撞击受损伤装药1/2计算模型的布局

Fig.8 Layout of simulated half model of pre‑damaged charge under fragment impact

表6 钨材料参[2]

Table 6 Parameters for tungsten[2]

图9 受损伤装药在破片撞击下的温升云图 -- a. t=61.1 us

Fig.9 Contours of temperature rise of pre‑damaged charge under fragment impact -- a. t=61.1 us

图9 受损伤装药在破片撞击下的温升云图 -- b. t=71.1 us

Fig.9 Contours of temperature rise of pre‑damaged charge under fragment impact -- b. t=71.1 us

图10 三种速度撞击损伤装药最高温度曲线对比

Fig.10 Comparison between maximum temperature curves of damaged charge under the impacts of three kinds of velocities

image /

无注解

无注解

无注解

无注解

ρ is density. D is detonation velocity. pCJ is Chapman‑Jouget pressure.

G is shear modulus.ν is Poisson′s ratio. σyis yield stress. C is the intercept of the curve. S1, S2, S3 are the coefficients of the slope of the curve. γ0 is Gruneisen gamma.a is the first order volume correction to γ0. E0 is initial internal energy..

E is Young′s modulus. ν is Poisson’s ratio. A and B are material constants. n, m and C are material constants. Tmelt is melt temperature.Troom is room temperature. ε ˙ 0 is quasi‑static threshold strain rate.

ρ is density. E is Young′s modulus. ν is Poisson′s ratio. σy is yield stress. k is thermal conductivity. c is heat capacity.

ρ is density. E is Young′s modulus.ν is Poisson′s ratio. α is the coefficient of thermal expansion. Ep is hardening modulus. A is frequency factor. Ea is activation energy. Q is reaction heat.

无注解

无注解

无注解

无注解

无注解

ρ is density. E is Young′s modulus. ν is Poisson′s ratio. σy is yield stress. k is thermal conductivity. c is heat capacity.

无注解

无注解

无注解

  • 参考文献

    • 1

      Gushanov A R, Volodina N A, Belov G V, et al. Numerical simulation of experiments on the low‑velocity impact on HMX‑based HE using explosive transformation initiation kinetics[J]. Journal of Energetic Materials, 2010, 28: 50-65.

    • 2

      孙宝平, 段卓平, 张海英, 等.破片撞击装药点火实验和数值模拟[J]. Explosion and shock waves, 2013, 33(5): 456-462.

      SUN Bao‑ping, DUAN Zhuo‑ping, ZHANG Hai‑ying, et al. Experiment and numerical simulation on ignition of charge by fragment impact[J]. Explosion and Shock Waves, 2013, 33(5): 456-462.

    • 3

      孙宝平, 段卓平, 张震宇, 等.冲击波和破片复合作用下炸药起爆数值模拟[J]. 爆炸与冲击, 2013, 33(增刊): 40-46.

      SUN Bao‑ping, DUAN Zhuo‑ping, ZHANG Zhen‑yu, et al. Numerical simulation on initiation of charge under combined action of shock wave and fragment impact[J]. Explosion and Shock Waves, 2013, 33(supply): 40-46.

    • 4

      王树山, 李朝军, 马晓飞, 等. 钨合金破片对屏蔽装药撞击起爆的实验研究[J]. 兵工学报,2001, 22(2): 189-191.

      Wang Shu‑shan, LI Chao‑jun, MA Xiao‑fei, et al. An experimental study on the initiation of covered charge impacted by tungsten alloy fragments[J]. Acta Armamentarii, 2001, 22(2): 189-191.

    • 5

      欧阳昌明, 段卓平, 孙宝平, 等.冲击波和破片复合作用下装药起爆实验研究[J]. 爆炸与冲击, 2013, 33(增刊): 63-66.

      OU YANG Chang‑ming, DUAN Zhuo‑ping, SUN Bao‑ping, et al. Experimental study on initiation of charge under combined shock wave and fragment impact[J]. Explosion and Shock Waves, 2013, 33(supply): 63-66.

    • 6

      孙宝平, 段卓平, 马兆芳, 等. 侵彻过程中装药摩擦点火数值模拟[J]. 北京理工大学学报, 2012, 32(8): 771-775.

      SUN Bao‑ping, DUAN Zhuo‑ping, MA Zhao‑fang, et al. Numerical simulation on frictional ignition of charge during projectile penetration [J]. Transactions of Beijing Institute of Technology, 2012, 32(8): 771-775.

    • 7

      周风华, 王礼立, 胡时胜. 有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J]. 爆炸与冲击, 1992, 12(4): 333-342.

      Zhou Feng‑hua, Wang Li‑li, Hu Shi‑sheng. A damage‑modified nonlinear visco‑elastic constitutive relation and failure criterion of PMMA at high strain‑rates [J]. Explosion and Shock Waves, 1992, 12(4): 333-342.

    • 8

      Menikoff R. Constitutive model of polymethyl methacrylate at high pressure[J]. Journal of Applied Physics, 2004, 96(12): 7696-7704.

    • 9

      Christiansen A W, Baer E, Radcliffe S V. The mechanical behaviour of polymers under high pressure[J]. Philosophical Magazine, 1971, 24(188): 451-467.

    • 10

      Resnyansky A D, Bourne N K, Millett J C F, et al. Constitutive modeling of shock response of polytetrafluoroethylene[J]. Journal of Applied Physics, 2011, 110(3): 033530-1-15.

    • 11

      Khishchenko K V, Charakhch Yan A A, Fortov V E, et al. Shock compression of some porous media in conical targets: numerical study[J]. Journal of Applied Physics, 2011, 110(5): 053501-1-11.

    • 12

      Casem D T. Mechanical response of an Al‑PTFE composite to uniaxial compression over a range of strain rates and temperatures[R]. M D: U.S. Aberdeen Proving Ground ARL‑TR‑4560, 2008.

    • 13

      Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics.Hague,Netherlands:

      s. n.], 1983: 541-547.

    • 14

      孙宝平, 段卓平, 皮爱国, 等. 炸药剪切点火数值模拟[J]. 兵工学报, 2011, 32(增刊1): 310-315.

      SUN Bao‑ping, DUAN Zhuo‑ping, PI Ai‑guo, et al. Numerical simulation of shear ignition of explosives[J]. Acta Armamentarii, 2011, 32(suppl.1): 310-315.