CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
参考文献 1
KlapötkeT M. Chemistry of high‑energy materials[M]. Walter de Gruyter GmbH & Co KG, 2017: 34-56.
参考文献 2
KettnerM A, KaraghiosoffK, KlapötkeT M, et al. 3, 3′‑bi(1,2,4‑oxadiazoles) featuring the fluorodinitromethyl and trinitromethyl Groups[J]. Chemistry‑A European Journal, 2014, 20(25): 7622-7631.
参考文献 3
MaQ, LuZ, LiaoL, et al. 5, 6‑di(2‑fluoro‑2,2‑dinitroethoxy) furazano [3,4‑b] pyrazine: a high performance melt‑cast energetic material and its polycrystalline properties[J]. RSC Advances, 2017, 7(62): 38844-38852.
参考文献 4
FrankelM B, WituckiE F, RowleyG L, et al. Dinitrofluoroethyl derivatives[J]. Journal of Chemical & Engineering Data, 1971, 16(3): 373-375.
参考文献 5
KlapötkeT M, KrummB, RestS F, et al. (2‑fluoro‑2,2‑dinitroethyl)‑2,2,2‑trinitroethylnitramine: a possible high‐energy dense oxidizer[J]. European Journal of Inorganic Chemistry, 2013, 2013(34): 5871-5878.
参考文献 6
KlapöetkeT M, KrummB, MollR, et al. Asymmetric fluorodinitromethyl derivatives of 2,2,2‑trinitroethyl N‑(2,2,2‑trinitroethyl) carbamate[J]. Journal of Fluorine Chemistry, 2013, 156(6): 253-261.
参考文献 7
DeHopeA, PagoriaP F, ParrishD. New polynitro alkylamino furazans[C]//16th International Seminar New Trends in Research of Energetic Materials (NTREM). April. 2013: 10-12.
参考文献 8
毕福强, 樊学忠, 许诚, 等.不敏感四唑非金属含能离子化合物的研究进展[J]. 含能材料, 2013, 20(6): 805-811.
BIFu‑qiang, FANXue‑zhong, XUCheng, et al. Review on insensitive non‑metallic energetic ionic compounds of tetrazolate anions[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012, 20(6):805-811.
参考文献 9
KlapötkeT M, SabatéC M. Bistetrazoles: nitrogen‑rich, high‑performing, insensitive energetic compounds[J]. Chemistry of Materials, 2008, 20(11): 3629-3637.
参考文献 10
JooY H, ShreeveJ M. High‑density energetic mono‑or bis (oxy)‑5‑nitroiminotetrazoles[J]. Angewandte Chemie, 2010, 122(40): 7478-7481.
参考文献 11
ZhangQ, ZhangJ, ParrishD A, et al. Energetic N‑trinitroethyl‑substituted mono‑, di‑, and triaminotetrazoles[J]. Chemistry‑A European Journal, 2013, 19(33): 11000-11006.
参考文献 12
TangY, YangH, ShenJ, et al. 4‑(1‑amino‑5‑aminotetrazolyl) methyleneimino‑3‑methylfuroxan and its derivatives: synthesis, characterization, and energetic properties[J]. European Journal of Inorganic Chemistry, 2014, 2014(7): 1231-1238.
参考文献 13
WangW, ChengG, XiongH, et al. Functionalization of fluorodinitroethylamino derivatives based on azole: a new family of insensitive energetic materials[J]. New Journal of Chemistry, 2018, 42(4): 2994-3000.
参考文献 14
LiJ, ZhangG, ZhangZ, et al. Synthesis and characterization of N‑(2‑fluoro‑2,2‑dinitroethyl)‑N‑methyl‑1H‑tetrazole‑5‑amine and its nitramide based on functionalized amino group in 5‑amino‑1H‑tetrazole[J]. Chemistry Select, 2018, 3(24): 6902-6906.
参考文献 15
Gálvez‑RuizJ C, HollG, KaraghiosoffK, et al. Derivatives of 1,5‑diamino‑1H‑tetrazole: a new family of energetic heterocyclic‑based salts[J]. Inorganic Chemistry, 2005, 44(12): 4237-4253.
参考文献 16
KlapötkeT M, KrummB, MollR. Polynitroethyl‑ and fluorodinitroethyl substituted boron esters[J]. Chemistry A European Journal, 2013, 19(36): 12113-12123.
参考文献 17
SpackmanM A, McKinnonJ J. Fingerprinting intermolecular interactions in molecular crystals[J]. Cryst Eng Comm, 2002, 66(4):378-392.
参考文献 18
SpackmanM A, JayatilakaD. Hirshfeld surface analysis[J]. Cryst Eng Comm, 2009, 11(1): 19-32.
参考文献 19
KissingerH E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 1957, 29(12): 1702-1706.
参考文献 20
OzawaT. A new method of analyzing thermogravimetric data [J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881-1886.

    摘要

    以1,5‑二氨基四唑‑1H、氟偕二硝基乙醇为原料,在常温下通过曼尼希反应一步合成了N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H。采用X‑射线单晶衍射分析表征了其单晶结构,表明其属于斜方晶系,空间群Pca21,173 K下的晶体密度为1.77 g·cm-3;采用Hirshfeld表面对晶体中各种作用进行了分析,晶体内占主导地位的分子间相互作用及其分布为(R为比例缩写):RO···H / H···O=27.0%,RN···H/H···N=21.5%,RF···O/O···F/ F···H/H···F/N···F/F···N=15.9%,主要为氢键及卤键作用;采用热重及差示扫描量热分析(TG‑DSC)研究了其热稳定性,5 ℃·min-1升温速率下,只有一个尖锐的分解峰温177.32 ℃,质量损失为92.53%,化合物分解较完全;用Kissinger法与Ozawa法分别计算了其活化能EK=213.228 kJ·mol-1EO=209.984 kJ·mol-1。采用场发射‑扫描电镜(FE‑SEM)观察了产物的微观形貌,其具有类似空间网状的多孔结构。

    Abstract

    N‑(2‑fluoro‑2,2‑dinitroethyl)‑1,5‑diaminotetrazole‑1H was synthesized by a one‑step Mannich reaction under mild conditions using 1,5‑diaminotetrazole‑1H and 2,2‑fluorodinitroethanol as starting materials. Its molecular structure was determined by X‑ray single crystal diffraction analysis. It crystallizes in orthorhombic system, space group Pca21, with a crystal density of 1.77 g·cm-3 at 173 K . The different interactions in crystal were analyzed by Hirshfeld surface. In the analysis, the dominant intermolecular interactions in the crystal and their distributions were (R is a proportional abbreviation): RO···H/H···O=27.0%, RN···H/H···N=21.5%, RF···O/O···F/ F···H/H···F/N···F/F···N=15.9%, mainly hydrogen bonding and halogen bonding interactions. The thermal stability was studied by thermogravimetry and differential scanning calorimetry (TG‑DSC). At a heating rate of 5 ℃·min-1, there was only one sharp decomposition peak with the temperature at 177.32 ℃, and the mass loss was 92.53% demonstrating a nearly complete decomposition at such temperature. Its activation energy were calculated by using Kissinger method and Ozawa method as 213.228 kJ·mol-1, 209.984 kJ·mol-1 respectively, which were shown. A spatial reticulated porous structure were observed according to the field emission‑scanning electron microscopy (FE‑SEM) analyses.

  • 1 引言

    1

    近年来,氟偕二硝基乙基作为含能材料颇受欢迎的修饰基团越来越多的引入到许多新型含能化合物的研究中,相比于三硝基乙基它能够明显提高含能材料的热稳定性并降低其机械感[1,2]。同时,官能团中两个硝基致爆基团的存在保障了其具有较高的爆轰性能。

    在引入氟偕二硝基乙基的多种方法[3],使用氟偕二硝基乙醇与带氨基的底物进行曼尼希取代反应是最为简便的方法,且得到的氟偕二硝基乙基胺化合物,还可以对N—H位进行硝化,进一步提高含能化合物的能量。早在1971年,Frankel B Milton[4]就曾使用甲胺、乙二胺和三氟乙胺作为底物与氟偕二硝基乙醇反应得到一取代、二取代的氟二硝基乙基胺类链状含能化合物,但作者并未对其含能性质进行报道。2013年,Klapötke[5]对氟偕二硝基乙醇氨化得到氟偕二硝基乙胺,再与三硝基乙醇反应制得(氟偕二硝基乙基)‑2,2,2‑三硝基乙基胺,其理论爆速达到8719 m·s-1,但由于硝仿基的存在使得化合物的分解温度仅为121 ℃。随后,Klapötke[6]又报道了化合物2,2,2‑三硝基乙基‑N‑(氟偕二硝基乙基)‑氨基甲酸酯,其理论爆速至8552 m·s-1,分解温度明显提高,达到191 ℃;但通过比较发现,三硝基乙胺的稳定性相对较差。同年,Dehope[7]合成了N,N′‑二(氟偕二硝基乙基)‑3,4‑二氨基呋咱(LLM‑208),其爆速达到8320 m·s-1,撞击感度11.9 J,密度为1.848 g·cm-3;相比于链状化合物,呋咱环由于环张力的存在,结构更加稳定,机械感度得以显著降低。

    氮杂环化合物中含有大量的N—N和C—N键,以及较大的环张力,具有非常高的正生成焓,能量普遍高于链状含能化合物,且芳香环特有的大π键结构在提高分子密度的同时,也大大加强了环的稳定性,被认为是一类最具潜力的化合[8,9,10],其中四唑环具有较高的氮含量和热稳定性,是最具潜力的含能骨架之[11,12]

    2018年南京理工大学王伟霞[13]报道合成了一系列氟偕二硝基乙基胺取代的三唑、四唑化合物,其中化合物N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H爆轰性能最好,其密度为1.78 g·cm-3、爆速8656 m·s-1和爆压33.1 GPa[7,13]。2018年本课题[14]合成出了5‑(氟偕二硝基乙基)‑1‑甲基‑1H‑四唑‑5‑胺,与N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H相比将化合物中的N—NH2替换成N—CH3后,其密度为1.65 g·cm-3、爆速7876 m·s-1和爆压25.2 GPa,明显低于化合物N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H

    为了进一步研究N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H中结构与性能的关系,本研究采用较温和的实验条件,合成出含能化合物N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H,并在无水甲醇中和10~15 ℃温度条件下采用溶剂缓慢挥发法获得其单晶,研究了其结构与晶体内分子间相互作用分析了热分解动力学。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    试剂:碳酸钾,分析纯,天津科密欧试剂有限公司;乙酸乙酯、无水乙醇、丙酮、无水甲醇、乙腈,分析纯,成都科龙试剂有限公司;1,5‑二氨基四唑‑1H参考文献[15]制备;氟偕二硝基乙醇(HPLC分析纯度大于99.5%)参考文献[16]制备。

    仪器:XRD单晶衍射采用Bruker SMART APEX ⅡCCD面探X射线单晶衍射仪;德国Bruker 400 MHz核磁共振仪,甲基硅烷(TMS)作为内标,溶剂为氘代二甲基亚砜(DMSO‑d6);瑞士METTLER TOLEO公司差示扫描量热‑热重联用仪(TGA/DSC2, STARe),Al2O3坩埚,N2气氛,流速20 mL·min-1,升温速率5,10, 15, 20 ℃·min-1

  • 2.2 实验过程

    2.2
  • 2.2.1 合成路线

    2.2.1

    目标化合物N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的合成见Scheme 1。

    Scheme 1 Synthetic route of N‑(2‑fluoro‑2,2‑dinitroethyl)‑1,5‑diaminotetrazole‑1H (3)

  • 2.2.2 N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H(3)的合成

    2.2.2

    室温下,取1,5‑二氨基四唑‑1H(1)(0.5 g,5 mmol)溶于10 mL去离子水中,称取2,2‑氟二硝基乙醇(FDNE2)(1.694 g,11 mmol),搅拌5 min后向体系中加入无水碳酸钾(1.518 g,11 mmol),室温下继续搅拌10 min后反应液变为棕红色澄清溶液,30 min后析出沉淀,室温下继续反应4 h后,过滤,水洗,干燥得到淡黄色固体目标化合物3(0.88 g, 74.5%)。 1H NMR (400 MHz, DMSO‑d6)δ: 7.91 (t, 1H, NH), 6.69 (s, 2H, NH2), 4.76(dd, 3J (H, H)=6.0 Hz, 3J(H, F)=16.5 Hz, 2H, CH2); 13C NMR (101 MHz, DMSO‑d6)δ:154.43, 123.60, 120.71, 51.44, 51.27。

  • 2.3 晶体结构测定

    2.3

    取少量化合物3的淡黄色固体溶于无水甲醇,在10~15 ℃下通过缓慢挥发获得无色块状晶体。选取尺寸为0.19 mm × 0.15 mm × 0.11 mm的单晶,将其置于Bruker SMART APEX Ⅱ CCD面探X射线单晶衍射仪上扫描得到的晶体结构数据和结构精修的结果见表1

    表 1 化合物3的部分晶体结构数据和结构精修参数

    Table 1 Crystal data and structure refinement details for compound 3

    parameterN‑(2‑fluoro‑2,2‑dinitroethyl)‑ 1,5‑diaminotetrazole‑1H
    formulaC3H5FN8O4
    molecular mass / g·mol-1236.15
    T / K173
    crystal size / mm30.19×0.15×0.11
    crystal systemOrthorhombic
    space groupPca21
    a / Å11.597(3)
    b / Å14.454(4)
    c / Å10.571(3)
    V / Å31771.9(8)
    Z8
    λ / Å0.71073
    Dc / g·cm-31.770
    μ / mm-10.170
    F (000)960
    θ /(°)2.818‑50.994
    reflections collected5085 / 2949
    index ranges‑11≤h≤14, ‑17≤k≤15, ‑12≤l≤11
    Rint0.0639
    data / restraints / parameters2949 / 427 / 290
    final R index [I > 2σ(I)]R1=0.0586, wR2=0.1437
    final R index [all data]R1=0.0964, wR2=0.1636

    GOF on F2

    CCDC

    0.981

    1824489

    Dc is the crystal density of N‑(2‑fluoro‑2,2‑dinitroethyl)‑1,5‑diaminotetrazole‑1H at 173 K.

  • 3 结果与讨论

    3
  • 3.1 N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的晶体结构

    3.1

    1a为化合物3的单分子晶体结构示意图,晶胞堆积图如图1b所示。由图1a可知,单晶中四唑环及四唑环上直接相连的两个氮原子在同一个平面上,且由于C—NH2的存在强烈的氢键作用使得分子更加稳定。从图1b中的晶胞堆积图中可以看出其分子堆积主要依靠分子间氢键和分子间卤键作用。其中,分子间氢键作用为亚甲基上的氢原子与四唑环上的氮原子、氟偕二硝基上的氟原子形成的C—H…N和C—H…F氢键。另外,分子间卤键作用主要是氟偕二硝基上F原子与硝基上的O原子之间的所形成的C—F…O卤键。

    html/hncl/CJEM2018189/media/2f4675f9-fba3-4f64-a3ca-df838588806f-image002.png

    a. crystal structure

    html/hncl/CJEM2018189/media/2f4675f9-fba3-4f64-a3ca-df838588806f-image003.png

    b. 3D crystal packing

    图1 N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的晶体结构及3D晶胞堆积图

    Fig.1 Crystal structure and 3D crystal packing of N‑(2‑fluoro‑2,2‑dinitroethyl)‑1,5‑diaminotetrazole‑1H

    化合物3晶体的部分键长和键角数据分别列于表2和表3。由表2可看出,化合物3中四唑环上C—NH2的C—N键长(1.315 Å)比N—NH2的N—N键长(1.381 Å)较短,因此C—NH2较稳定,不易与氟二硝基乙醇发生曼尼希取代反应。氟二硝基乙基中C—F键的平均键长(1.329 Å)明显比C—NO2的平均键长(1.521 Å)要短,即C—F键更稳定且F的引入使晶体密度增加,使得目标化合物的感度降低。此外,从表3可以看出,氟二硝基基团中键角N(7)—C(3)—F00(2)(107.7°)、N(7)—C(3)—N(8)(105.8°)和N(8)—C(3)—F F00(2)(106.2°)很接近,而且键角N(7)—C(3)—C(2)(111.5°)、C(2)—C(3)—F00(2)(112.8°)和 C(2)—C(3)—N(8)(112.5°)也很接近,因此可以将此基团看作以C(3)为中心的四面体骨架,同时又存在亚甲基上的H与F原子、O原子形成分子内氢键,氟二硝基基团的稳定性很高,进一步降低化合物3的感度。

    表 2 化合物3的键长

    Table 2 Bond length for compound 3

    bondlength /Åbondlength /Å
    F00(1)—C(4)1.320(7)N(9)—C(4)1.548(7)
    F00(2)—C(3)1.329(6)N(10)—C(4)1.532(8)
    N(12)—N(11)1.395(6)N(7)—C(3)1.522(8)
    N(5)—N(6)1.381(6)N(8)—C(3)1.521(7)
    N(5)—C(1)1.356(7)C(4)—C(5)1.501(8)
    N(16)—C(6)1.339(7)C(2)—C(3)1.516(8)
    表 2
                    化合物3的键长

    表 3 化合物3的键角

    Table 3 Bond angles for compound 3

    bondangle/(°)bondangle/(°)
    N(13)—N(12)—N(11)124.5(4)C(5)—C(4)—N(9)109.9(4)
    C(6)—N(12)—N(11)126.7(4)C(5)—C(4)—N(10)113.0(5)
    C(6)—N(12)—N(13)108.8(4)N(1)—C(1)—N(5)123.2(5)
    N(4)—N(5)—N(6)124.3(4)F(002)—C(3)—N(7)107.7(4)
    C(1)—N(5)—N(6)127.1(4)F(002)—C(3)—N(8)106.2(4)
    C(1)—N(5)—N(4)108.5(4)F(002)—C(3)—C(2)112.8(5)
    F(001)—C(4)—N(9)107.9(5)N(8)—C(3)—N(7)105.8(4)
    F(001)—C(4)—N(10)106.2(4)C(2)—C(3)—N(7)111.5(5)
    F(001)—C(4)—C(5)114.7(5)C(2)—C(3)—N(8)112.5(5)
    N(10)—C(4)—N(9)104.4(4)N(15)—C(6)—N(16)128.4(5)
    表 3
                    化合物3的键角
  • 3.2 晶体分子内相互作用分析

    3.2

    为进一步确定晶体内相互作用的类型,采用Hirshfeld表[17,18]对晶体中各种作用的相对贡献进行了分析,如图2所示,化合物3晶体中主要分子间相互作用类型和比例分别为:O…H和H…O作用最强,占27.0%,其次是N…H和N…H作用为21.5%,O…N和N…O作用为16.4%,H…H作用为6.7%,F…O和O…F作用为6.1%,O…O作用为5.8%,N…F和F…N作用为5.6%,F…H和H…F作用为4.2%,N…N作用为2.8%等。而占主导地位的分子间相互作用及其分布为(R为比例缩写):RO···H / H···O=27.0%,RN···H/H···N=21.5%,RF···O/O···F/ F···H/H···F/N···F/F···N=15.9%,说明分子间强氢键作用以及卤键的存在可能是化合物3机械感度较低的原因之一。

    html/hncl/CJEM2018189/media/2f4675f9-fba3-4f64-a3ca-df838588806f-image004.png

    a. fingerprint plot of selected contact in the Hirshfeld surface analysis

    html/hncl/CJEM2018189/media/2f4675f9-fba3-4f64-a3ca-df838588806f-image005.png

    b. full distribution of the referenced molecular crystal

    图2 Hirshfeld表面分析

    Fig.2 Hirshfeld surface analysis

  • 3.3 N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的热稳定性

    3.3

    采用TG‑DSC研究了N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的热稳定性(N2气氛,样品量约为2.45 mg,升温速率5 ℃·min-1),其TG和DSC曲线如图3所示。由图3中TG曲线可知,化合物3在150~180 ℃有一个明显的快速质量损失阶段,质量损失为92.53%,化合物分解较完全;图3中DSC曲线显示,在对应于质量损失阶段相应地出现了一个尖锐的分解放热峰(177.32 ℃),初始分解温度为147.96 ℃。峰形窄而尖,说明在该分解范围内发生了剧烈的热分解反应。

    图3
                            5 ℃·min-1下化合物3的TG‑DSC曲线

    图3 5 ℃·min-1下化合物3的TG‑DSC曲线

    Fig.3 TG‑DSC curves of compound 3 at 5 ℃·min-1

  • 3.4 N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的热分解动力学

    3.4

    为研究化合物3的热分解反应动力学,得到其热分解动力学参数及其活化能,对化合物3进行DSC曲线分析,实验气氛为高纯氮气,样品量约为1.8 mg,升温速率分别为5,10,15,20 ℃·min-1,温度范围为50~400 ℃,见图4

    图4
                            不同升温速率下化合物3的DSC曲线

    图4 不同升温速率下化合物3的DSC曲线

    Fig.4 DSC curves of compound 3 at different heating rates

    由图5可知,随着升温速率的增加化合物3的DSC曲线明显发生右移,分解温度也随之升高。根据表4中不同升温速率所对应的峰值温度Tp,利用不同梯度扫描速率法Kissinger[19]和Ozawa[20]进行拟合计算。

    图5
                            N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的微观形貌

    图5 N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的微观形貌

    Fig.5 The microstructure of N‑(2‑fluoro‑2,2‑dinitroethyl)‑ 1,5‑diaminotetrazole‑1H

    表4 Kissinger法与Ozawa法得到的动力学参数

    Table 4 Kinetic parameters obtained by Kissinger and Ozawa methods

    β

    / K·min-1

    Tp / KKissinger methodOzawa method
    EK / kJ·mol-1ln(A/s-1)rEO / kJ·mol-1r
    5451.50213.2284.3270.95209.9840.95
    10458.30
    15460.76
    20461.82
    表4
                    Kissinger法与Ozawa法得到的动力学参数

    EK is the activation energy obtained by Kissinger methods. EO is the activation energy obtained by Ozawa methods.

    Kissinger方法计算式为:

    ln[β/Tp2]=ln[AR/Ea]‑ln[Ea/RTp] (1)

    式中,β为升温速率,K·min-1Tp为分解峰温,K;Ea为表观活化能,kJ·mol-1A为指前因子,s-1;R为气体常数,8.314 J·K-1·min-1

    Ozawa方法计算式为:

    lnβ=C‑0.4567Ea/RT (2)

    式中,C=lg[AEa/RG(α)]-2.315,G(α)为机理函数的积分式。

    分别对ln(β/TP2)‑1/Tp×103和lgβ‑1/T×103作线性回归,由直线的斜率分别计算出化合物3的活化能Ea,由Kissinger法和截距计算出其指前因子lnA,具体数据见表4。可知,Kissinger法与Ozawa法的计算结果一致。

  • 3.5 N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的微观形貌

    3.5

    在场发射扫描电镜下观察化合物3的粉末微观形貌,意外发现了其具有类似空间网状的多孔结构,如图5所示。(采用石油醚进行分散,喷金40 s×2)在2 μm尺度下均观察到化合物具有多孔网状结构,这种蓬松的结构也从侧面解释了化合物3密度并不高的原因。

  • 4 结 论

    4

    (1)以1,5‑二氨基四唑‑1H、氟二硝基乙醇为原料,在温和的常温条件下通过一步曼尼希反应合成了N‑(氟二硝基乙基)‑1,5‑二氨基四唑‑1‑H。采用X‑射线单晶衍射分析表征了其单晶结构,表明化合物3属于斜方晶系,空间群Pca21,173 K下的晶体密度为1.77 g·cm-3,采用扫描电镜观察到了化合物3粉末的微观形貌为空间网状多孔结构。

    (2)采用Hirshfeld表面对晶体中各种作用进行了分析,晶体内占主导地位的分子间相互作用及其分布为(R为比例缩写):RO···H / H···O=27.0%,RN···H/H···N=21.5%,RF···O/O···F/ F···H/H···F/N···F/F···N=15.9%,主要为氢键及卤键作用。

    (3)采用热重及差示扫描量热分析(TG‑DSC)研究了其热行为,5 ℃·min-1升温速率下,只有一个尖锐的分解峰温177.32 ℃,质量损失为92.53%,化合物分解较完全。

    (4)用Kissinger法与Ozawa法分别计算了化合物3的活化能Ea及其它热分解参数,EK=213.228 kJ·mol‑1EO=209.984 kJ·mol-1,lnA=4.327,r=0.95。

  • 参考文献

    • 1

      Klapötke T M. Chemistry of high‑energy materials[M]. Walter de Gruyter GmbH & Co KG, 2017: 34-56.

    • 2

      Kettner M A, Karaghiosoff K, Klapötke T M, et al. 3, 3′‑bi(1,2,4‑oxadiazoles) featuring the fluorodinitromethyl and trinitromethyl Groups[J]. Chemistry‑A European Journal, 2014, 20(25): 7622-7631.

    • 3

      Ma Q, Lu Z, Liao L, et al. 5, 6‑di(2‑fluoro‑2,2‑dinitroethoxy) furazano [3,4‑b] pyrazine: a high performance melt‑cast energetic material and its polycrystalline properties[J]. RSC Advances, 2017, 7(62): 38844-38852.

    • 4

      Frankel M B, Witucki E F, Rowley G L, et al. Dinitrofluoroethyl derivatives[J]. Journal of Chemical & Engineering Data, 1971, 16(3): 373-375.

    • 5

      Klapötke T M, Krumm B, Rest S F, et al. (2‑fluoro‑2,2‑dinitroethyl)‑2,2,2‑trinitroethylnitramine: a possible high‐energy dense oxidizer[J]. European Journal of Inorganic Chemistry, 2013, 2013(34): 5871-5878.

    • 6

      Klapöetke T M, Krumm B, Moll R, et al. Asymmetric fluorodinitromethyl derivatives of 2,2,2‑trinitroethyl N‑(2,2,2‑trinitroethyl) carbamate[J]. Journal of Fluorine Chemistry, 2013, 156(6): 253-261.

    • 7

      DeHope A, Pagoria P F, Parrish D. New polynitro alkylamino furazans[C]//16th International Seminar New Trends in Research of Energetic Materials (NTREM). April. 2013: 10-12.

    • 8

      毕福强, 樊学忠, 许诚, 等.不敏感四唑非金属含能离子化合物的研究进展[J]. 含能材料, 2013, 20(6): 805-811.

      BI Fu‑qiang, FAN Xue‑zhong, XU Cheng, et al. Review on insensitive non‑metallic energetic ionic compounds of tetrazolate anions[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012, 20(6):805-811.

    • 9

      Klapötke T M, Sabaté C M. Bistetrazoles: nitrogen‑rich, high‑performing, insensitive energetic compounds[J]. Chemistry of Materials, 2008, 20(11): 3629-3637.

    • 10

      Joo Y H, Shreeve J M. High‑density energetic mono‑or bis (oxy)‑5‑nitroiminotetrazoles[J]. Angewandte Chemie, 2010, 122(40): 7478-7481.

    • 11

      Zhang Q, Zhang J, Parrish D A, et al. Energetic N‑trinitroethyl‑substituted mono‑, di‑, and triaminotetrazoles[J]. Chemistry‑A European Journal, 2013, 19(33): 11000-11006.

    • 12

      Tang Y, Yang H, Shen J, et al. 4‑(1‑amino‑5‑aminotetrazolyl) methyleneimino‑3‑methylfuroxan and its derivatives: synthesis, characterization, and energetic properties[J]. European Journal of Inorganic Chemistry, 2014, 2014(7): 1231-1238.

    • 13

      Wang W, Cheng G, Xiong H, et al. Functionalization of fluorodinitroethylamino derivatives based on azole: a new family of insensitive energetic materials[J]. New Journal of Chemistry, 2018, 42(4): 2994-3000.

    • 14

      Li J, Zhang G, Zhang Z, et al. Synthesis and characterization of N‑(2‑fluoro‑2,2‑dinitroethyl)‑N‑methyl‑1H‑tetrazole‑5‑amine and its nitramide based on functionalized amino group in 5‑amino‑1H‑tetrazole[J]. Chemistry Select, 2018, 3(24): 6902-6906.

    • 15

      Gálvez‑Ruiz J C, Holl G, Karaghiosoff K, et al. Derivatives of 1,5‑diamino‑1H‑tetrazole: a new family of energetic heterocyclic‑based salts[J]. Inorganic Chemistry, 2005, 44(12): 4237-4253.

    • 16

      Klapötke T M, Krumm B, Moll R. Polynitroethyl‑ and fluorodinitroethyl substituted boron esters[J]. Chemistry A European Journal, 2013, 19(36): 12113-12123.

    • 17

      Spackman M A, McKinnon J J. Fingerprinting intermolecular interactions in molecular crystals[J]. Cryst Eng Comm, 2002, 66(4):378-392.

    • 18

      Spackman M A, Jayatilaka D. Hirshfeld surface analysis[J]. Cryst Eng Comm, 2009, 11(1): 19-32.

    • 19

      Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 1957, 29(12): 1702-1706.

    • 20

      Ozawa T. A new method of analyzing thermogravimetric data [J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881-1886.

李杰

机 构:

1. 中国工程物理研究院化工材料研究所, 四川 绵阳 621999

2. 西南石油大学材料科学与工程学院, 四川 成都 610500

Affiliation:

1. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

2. School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China

邮 箱:771018196@qq.com

作者简介:李杰(1993-),男,硕士研究生,主要从事含能材料的合成研究。e‑mail:771018196@qq.com

张国杰

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

马卿

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

唐水花

机 构:西南石油大学材料科学与工程学院, 四川 成都 610500

Affiliation:School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China

角 色:通讯作者

Role: Corresponding author

邮 箱:spraytang@hotmail.com

作者简介:唐水花(1969-),女,教授,主要从事新能源材料与器件/含能材料研究。e‑mail:spraytang@hotmail.com

范桂娟

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

角 色:通讯作者

Role: Corresponding author

邮 箱:fanguijuan@caep.cn

作者简介:范桂娟(1983-),女,副研究员,主要从事含能材料的合成与表征研究。e‑mail:fanguijuan@caep.cn

parameterN‑(2‑fluoro‑2,2‑dinitroethyl)‑ 1,5‑diaminotetrazole‑1H
formulaC3H5FN8O4
molecular mass / g·mol-1236.15
T / K173
crystal size / mm30.19×0.15×0.11
crystal systemOrthorhombic
space groupPca21
a / Å11.597(3)
b / Å14.454(4)
c / Å10.571(3)
V / Å31771.9(8)
Z8
λ / Å0.71073
Dc / g·cm-31.770
μ / mm-10.170
F (000)960
θ /(°)2.818‑50.994
reflections collected5085 / 2949
index ranges‑11≤h≤14, ‑17≤k≤15, ‑12≤l≤11
Rint0.0639
data / restraints / parameters2949 / 427 / 290
final R index [I > 2σ(I)]R1=0.0586, wR2=0.1437
final R index [all data]R1=0.0964, wR2=0.1636

GOF on F2

CCDC

0.981

1824489

html/hncl/CJEM2018189/media/2f4675f9-fba3-4f64-a3ca-df838588806f-image002.png
html/hncl/CJEM2018189/media/2f4675f9-fba3-4f64-a3ca-df838588806f-image003.png
bondlength /Åbondlength /Å
F00(1)—C(4)1.320(7)N(9)—C(4)1.548(7)
F00(2)—C(3)1.329(6)N(10)—C(4)1.532(8)
N(12)—N(11)1.395(6)N(7)—C(3)1.522(8)
N(5)—N(6)1.381(6)N(8)—C(3)1.521(7)
N(5)—C(1)1.356(7)C(4)—C(5)1.501(8)
N(16)—C(6)1.339(7)C(2)—C(3)1.516(8)
bondangle/(°)bondangle/(°)
N(13)—N(12)—N(11)124.5(4)C(5)—C(4)—N(9)109.9(4)
C(6)—N(12)—N(11)126.7(4)C(5)—C(4)—N(10)113.0(5)
C(6)—N(12)—N(13)108.8(4)N(1)—C(1)—N(5)123.2(5)
N(4)—N(5)—N(6)124.3(4)F(002)—C(3)—N(7)107.7(4)
C(1)—N(5)—N(6)127.1(4)F(002)—C(3)—N(8)106.2(4)
C(1)—N(5)—N(4)108.5(4)F(002)—C(3)—C(2)112.8(5)
F(001)—C(4)—N(9)107.9(5)N(8)—C(3)—N(7)105.8(4)
F(001)—C(4)—N(10)106.2(4)C(2)—C(3)—N(7)111.5(5)
F(001)—C(4)—C(5)114.7(5)C(2)—C(3)—N(8)112.5(5)
N(10)—C(4)—N(9)104.4(4)N(15)—C(6)—N(16)128.4(5)
html/hncl/CJEM2018189/media/2f4675f9-fba3-4f64-a3ca-df838588806f-image004.png
html/hncl/CJEM2018189/media/2f4675f9-fba3-4f64-a3ca-df838588806f-image005.png
html/hncl/CJEM2018189/media/2f4675f9-fba3-4f64-a3ca-df838588806f-image006.png
html/hncl/CJEM2018189/media/2f4675f9-fba3-4f64-a3ca-df838588806f-image007.png
html/hncl/CJEM2018189/media/2f4675f9-fba3-4f64-a3ca-df838588806f-image008.png

β

/ K·min-1

Tp / KKissinger methodOzawa method
EK / kJ·mol-1ln(A/s-1)rEO / kJ·mol-1r
5451.50213.2284.3270.95209.9840.95
10458.30
15460.76
20461.82

表 1 化合物3的部分晶体结构数据和结构精修参数

Table 1 Crystal data and structure refinement details for compound 3

图1 N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的晶体结构及3D晶胞堆积图 -- a.

Fig.1 Crystal structure and 3D crystal packing of N‑(2‑fluoro‑2,2‑dinitroethyl)‑1,5‑diaminotetrazole‑1H -- a.

图1 N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的晶体结构及3D晶胞堆积图 -- b.

Fig.1 Crystal structure and 3D crystal packing of N‑(2‑fluoro‑2,2‑dinitroethyl)‑1,5‑diaminotetrazole‑1H -- b.

表 2 化合物3的键长

Table 2 Bond length for compound 3

表 3 化合物3的键角

Table 3 Bond angles for compound 3

图2 Hirshfeld表面分析 -- a.

Fig.2 Hirshfeld surface analysis -- a.

图2 Hirshfeld表面分析 -- b.

Fig.2 Hirshfeld surface analysis -- b.

图3 5 ℃·min-1下化合物3的TG‑DSC曲线

Fig.3 TG‑DSC curves of compound 3 at 5 ℃·min-1

图4 不同升温速率下化合物3的DSC曲线

Fig.4 DSC curves of compound 3 at different heating rates

图5 N‑(氟偕二硝基乙基)‑1,5‑二氨基四唑‑1H的微观形貌

Fig.5 The microstructure of N‑(2‑fluoro‑2,2‑dinitroethyl)‑ 1,5‑diaminotetrazole‑1H

表4 Kissinger法与Ozawa法得到的动力学参数

Table 4 Kinetic parameters obtained by Kissinger and Ozawa methods

image /

Dc is the crystal density of N‑(2‑fluoro‑2,2‑dinitroethyl)‑1,5‑diaminotetrazole‑1H at 173 K.

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

EK is the activation energy obtained by Kissinger methods. EO is the activation energy obtained by Ozawa methods.

  • 参考文献

    • 1

      Klapötke T M. Chemistry of high‑energy materials[M]. Walter de Gruyter GmbH & Co KG, 2017: 34-56.

    • 2

      Kettner M A, Karaghiosoff K, Klapötke T M, et al. 3, 3′‑bi(1,2,4‑oxadiazoles) featuring the fluorodinitromethyl and trinitromethyl Groups[J]. Chemistry‑A European Journal, 2014, 20(25): 7622-7631.

    • 3

      Ma Q, Lu Z, Liao L, et al. 5, 6‑di(2‑fluoro‑2,2‑dinitroethoxy) furazano [3,4‑b] pyrazine: a high performance melt‑cast energetic material and its polycrystalline properties[J]. RSC Advances, 2017, 7(62): 38844-38852.

    • 4

      Frankel M B, Witucki E F, Rowley G L, et al. Dinitrofluoroethyl derivatives[J]. Journal of Chemical & Engineering Data, 1971, 16(3): 373-375.

    • 5

      Klapötke T M, Krumm B, Rest S F, et al. (2‑fluoro‑2,2‑dinitroethyl)‑2,2,2‑trinitroethylnitramine: a possible high‐energy dense oxidizer[J]. European Journal of Inorganic Chemistry, 2013, 2013(34): 5871-5878.

    • 6

      Klapöetke T M, Krumm B, Moll R, et al. Asymmetric fluorodinitromethyl derivatives of 2,2,2‑trinitroethyl N‑(2,2,2‑trinitroethyl) carbamate[J]. Journal of Fluorine Chemistry, 2013, 156(6): 253-261.

    • 7

      DeHope A, Pagoria P F, Parrish D. New polynitro alkylamino furazans[C]//16th International Seminar New Trends in Research of Energetic Materials (NTREM). April. 2013: 10-12.

    • 8

      毕福强, 樊学忠, 许诚, 等.不敏感四唑非金属含能离子化合物的研究进展[J]. 含能材料, 2013, 20(6): 805-811.

      BI Fu‑qiang, FAN Xue‑zhong, XU Cheng, et al. Review on insensitive non‑metallic energetic ionic compounds of tetrazolate anions[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012, 20(6):805-811.

    • 9

      Klapötke T M, Sabaté C M. Bistetrazoles: nitrogen‑rich, high‑performing, insensitive energetic compounds[J]. Chemistry of Materials, 2008, 20(11): 3629-3637.

    • 10

      Joo Y H, Shreeve J M. High‑density energetic mono‑or bis (oxy)‑5‑nitroiminotetrazoles[J]. Angewandte Chemie, 2010, 122(40): 7478-7481.

    • 11

      Zhang Q, Zhang J, Parrish D A, et al. Energetic N‑trinitroethyl‑substituted mono‑, di‑, and triaminotetrazoles[J]. Chemistry‑A European Journal, 2013, 19(33): 11000-11006.

    • 12

      Tang Y, Yang H, Shen J, et al. 4‑(1‑amino‑5‑aminotetrazolyl) methyleneimino‑3‑methylfuroxan and its derivatives: synthesis, characterization, and energetic properties[J]. European Journal of Inorganic Chemistry, 2014, 2014(7): 1231-1238.

    • 13

      Wang W, Cheng G, Xiong H, et al. Functionalization of fluorodinitroethylamino derivatives based on azole: a new family of insensitive energetic materials[J]. New Journal of Chemistry, 2018, 42(4): 2994-3000.

    • 14

      Li J, Zhang G, Zhang Z, et al. Synthesis and characterization of N‑(2‑fluoro‑2,2‑dinitroethyl)‑N‑methyl‑1H‑tetrazole‑5‑amine and its nitramide based on functionalized amino group in 5‑amino‑1H‑tetrazole[J]. Chemistry Select, 2018, 3(24): 6902-6906.

    • 15

      Gálvez‑Ruiz J C, Holl G, Karaghiosoff K, et al. Derivatives of 1,5‑diamino‑1H‑tetrazole: a new family of energetic heterocyclic‑based salts[J]. Inorganic Chemistry, 2005, 44(12): 4237-4253.

    • 16

      Klapötke T M, Krumm B, Moll R. Polynitroethyl‑ and fluorodinitroethyl substituted boron esters[J]. Chemistry A European Journal, 2013, 19(36): 12113-12123.

    • 17

      Spackman M A, McKinnon J J. Fingerprinting intermolecular interactions in molecular crystals[J]. Cryst Eng Comm, 2002, 66(4):378-392.

    • 18

      Spackman M A, Jayatilaka D. Hirshfeld surface analysis[J]. Cryst Eng Comm, 2009, 11(1): 19-32.

    • 19

      Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 1957, 29(12): 1702-1706.

    • 20

      Ozawa T. A new method of analyzing thermogravimetric data [J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881-1886.