CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
罗景润,张寿齐,李大红,等.高聚物粘结炸药断裂特性实验研究[J].爆炸与冲击, 2000,20(4): 338-342.
LUOJing‑Rui, ZHANGShou‑qi, LIDa‑hong, et al. Experimental investigation on the fracture character of PBX[J]. Explosion and Shock Wave, 2000,20(4): 338-342.
参考文献 2
温茂萍,马丽莲,田勇,等.高聚物粘结炸药平面应变断裂韧度实验研究[J].火炸药学报,2001, 24(2): 16-18
WENMao‑ping, Li‑lianMA, TIANYong. Experimental study on the plane strain fracture toughness of high polymer bonded explosive[J]. Chinese Journal of Explosives & Propellants, 2001, 24(2): 16-18.
参考文献 3
PalmerS J P, FieldJ E, HuntleyJ M. Deformation, strengths and strains to failure of polymer bonded explosives[J]. Proceedings of Royal. Society A: Mathematics and Physics Science, 1993, 400: 399-419.
参考文献 4
RaeP J, PalmerS J P, GoldreinH T, et al. White‑light digital image cross‑correlation(DICC) analysis of the deformation of composite materials with random microstructure[J]. Optics and Lasers in Engineering, 2004, 41: 635-648.
参考文献 5
ZHOUZhong‑bin, CHENPeng‑wan, DUANZhuo‑ping, et al. Comparative study of the fracture toughness determination of a polymer‑bonded explosive simulant[J].Engineering Fracture Mechanics, 2011, 78(17): 2991-2997.
参考文献 6
ZHOUZhong‑bin, CHENPeng‑wan, HUANGFeng‑lei, et al. Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method[J]. Optics and Lasers in Engineering, 2011, 49(3): 366-370.
参考文献 7
LIJun‑ling, FUHua, TANDuo‑wang, et al. Fracture behavior investigation into a polymer‑bonded explosive[J] Strain, 2012, 48(6): 463-473.
参考文献 8
LAWNB. Fracture of brittle solids (Second Edition)[M]. Cambridge University Press, 1993: 24-28.
参考文献 9
LIUC, THOMPSOND G. Crack initiation and growth in PBX 9502 high explosive subject to compression[J]. Journal of Applied Mechanics, 2014, 81(10): 101004.
参考文献 10
黄西成, 李尚昆, 魏强,等. 基于XFEM与Cohesive模型分析PBX裂纹产生与扩展[J]. 含能材料, 2017, 25(8): 694-700.
HUANGXi‑cheng, LIShang‑kun, WEIQiang, et al. Analysis of crack initiation and growth in PBX energetic material using XFEM‑based cohesive method[J] .Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(8): 694-700.
参考文献 11
LIMing, ZHANGJue, XIONGC, et al. Damage and facture prediction of plastic bonded explosive by digital image correlation processing[J].Optics & Laser in Engineering, 2005, 43(8): 856-868.
参考文献 12
李明, 张珏, 李敬明,等.高聚物粘结炸药压缩破坏的细观力学实验研究[J].含能材料, 2005,13(2): 79-83.
LIMing, ZHANGJue, LIJing‑ming, et al. Experimental investigation to the damage localization of PBX mechanical failure at mesoscale[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(2): 79-83.
参考文献 13
董天宝,唐维,温茂萍,等. 基于三种强度准则的PBX Ⅰ型裂纹尖端失效区研究[J].含能材料,2017, 25(2): 113-117
DONGTian‑bao, TANGWei, WENMao‑ping, et al. Failure zone of PBX mode Ⅰ crack tip based on three strength criteria[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(2): 113-117.
参考文献 14
LiuY L, CendonD A, ChenP W, et al. Fracture of notched specimens: experimental research and numerical prediction[J]. Theoretical and Applied Fracture Mechanics, 2017, 90:268-275.
参考文献 15
ChongK P, KuruppuM D. New specimen for fracture toughness determination for rock and other materials[J]. International Journal Fracture, 1984, 26(2): 59-62.
参考文献 16
KuruppuM D, ObaraY, AyatollahiM R, et al. ISRM‑suggested method for determining the mode I static fracture toughness using semi‑circular bend specimen[J]. Rock Mechanics & Rock Engineering, 2013, 47(1): 267-274.
参考文献 17
ZhouY X, XiaK, LiX B, et al. Suggested methods for determining the dynamic strength parameters and mode‑I fracture toughness of rock materials[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 49(1): 105-112.
参考文献 18
ChenR, ChengL, LinY. Studies on the dynamic fracture properties and failure modes of a PBX[J] International Journal of Applied Mechanics, 2014, 6(4). 1450039: 1-9.
参考文献 19
SuttonM, OrteuJ, SchreierH. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications[M]. Springer Science & Business Media, 2009: 81-99.
参考文献 20
PanB, QianK, XieH, et al. Two‑dimensional digital image correlation for in‑plane displacement and strain measurement: a review[J]. Measurement Science and Technology, 2009, 20(6): 062001.
参考文献 21
唐维, 颜熹琳, 李明, 等.TATB基PBX的单轴主特征破坏参数识别研究[J].含能材料, 2015, 23(8): 766-770.
TANGWei, YANXi‑lin, LIMing, et al. Identification of uniaxial main characteristic failure parameter on TATB‑based PBX [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(8): 766-770.
参考文献 22
陈鹏万,黄风雷.含能材料损伤理论与应用[M].北京:北京理工大学出版社, 2006: 143-146.
CHENPeng‑wan, HUANGFeng‑lei. Damage theory and application of energetic materials[M]. Beijing: Beijing Institute of Technology Press, 2006:143-146.
参考文献 23
TaylorD. The theory of critical distances[J]. Engineering Fracture Mechanics, 2008, 75: 1696-1705.
参考文献 24
KfouriA P. Characteristic crack‑tip distances in fracture criteria: Is crack propagation discontinuous?[J].Engineering Fracture Mechanics, 2008, 75: 1815-1828.
参考文献 25
ZHUH, YANGL, LIZ. The shielding effects of the crack‑tip plastic zone[J].International Journal of Fracture, 2010, 161:131-139.
目录 contents

    摘要

    为研究1,3,5‑三氨基‑2,4,6‑三硝基苯(TATB)基高聚物粘结炸药(PBX)中张开型裂纹在准静态载荷下的失效与破坏行为,设计了含预制裂纹的半圆盘弯曲试验,应用数字图像相关方法和90000 fps的高速摄影技术分别研究了实验中裂纹的起裂及扩展行为。结果表明,试样沿预制裂纹方向发生脆性劈裂破坏,应变分析显示裂纹尖端有显著的拉伸应变集中区域。在裂纹扩展路径上仅裂纹尖端区域的应变演化有显著的时间效应,且演化过程有一个显著的拐点,约0.85 pmax载荷,裂纹尖端的应变集中效应在拐点后才开始显现并快速扩展。裂纹扩展过程中有显著的塑性迟滞现象。裂纹尖端的应变分布和演化特性的分析表明,TATB基PBX在裂纹尖端局部发生了塑性变形,且塑性变形对裂纹的起裂与扩展行为有明显影响。

    Abstract

    To study the failure and damage behavior of opening mode crack in 1,3,5‑triamino‑2,4,6‑trinitrobenzene (TATB)‑based polymer bonded explosive(PBX) under quasi‑static loading, a semi‑circular bending (SCB) specimen with pre‑fabricated crack was designed. The initiation and propagation behavior of cracks in the experiments were monitored and studied by digital image correlation method and high speed photography technology of 90000 fps. Results show that the brittle fracture of sample occurs along the pre‑fabricated crack direction, and the strain analysis shows that there is a significant tensile strain concentration region. On the crack propagation path, only the strain evolution of crack tip region has a significant time effect, and the evolution process has a significant inflection point at loading of about 0.85 pmax. The strain concentration effect at the crack tip begins to appear and expand rapidly after the inflection point. There is a significant plastic delaying phenomenon during the crack propagation process. The analyses of strain distribution and evolution characteristics at the crack tip indicate that plastic deformation of TATB‑based PBX takes place locally at the crack tip, and the plastic deformation has an obvious influence on the initiation and propagation behavior of the crack.

    Graphic Abstract

    图文摘要

    html/hncl/CJEM2018185/media/b07700ee-1a4e-4f94-9412-89ff9684124f-image009.png

    A semi‑circular bending specimen with pre‑fabricated crack was designed to study the initiation and propagation behavior of crack for TATB‑based PBX, the principle strain distribution and evolution characteristic at crack tip field and crack path were obtained using digital image correlation method

  • 1 引 言

    1

    以三氨基三硝基苯(TATB)为基的高聚物粘结炸药(Polymer‑bonded explosive, PBX)以其优异的安全性能和能量表现在武器行业得到了广泛应用,因此研究TATB基PBX的失效及破坏行为具有重要的现实意义和工程价值。

    PBX是典型的高颗粒填充复合材料,具有较显著的脆性力学特性,PBX材料中不可避免地存在诸多细观界面和微观缺陷,在成型、加工及设计中也会引入裂纹、缺口等薄弱结构,易发生因裂纹扩展引起的低应力破坏。国内外研究者围绕含能材料的断裂开展了诸多丰富的研究工[1,2,3,4,5,6,7]。依据线弹性断裂理[8],应力在裂纹尖端有奇异性,也是裂纹的起裂所在,因此裂纹尖端区域是认识和解决断裂问题的关键和难点所在。Liu和Thompson[9]借助数字图像相关方法(DIC)对含孔结构的PBX 9502在压缩加载下由局部裂纹萌生到裂纹扩展的全过程的开裂破坏行为。黄西成[10]借助扩展有限元方法和内聚力模型对文献[9]中带孔板压缩实验进行了数值模拟,与试验结果验证吻合。李明[11,12]在扫描电子显微镜下对预制裂纹PBX进行原位压缩破坏试验,分析了PBX在细观尺度下的破坏行为及规律。工程材料多以张开型裂纹为主要破坏形式,董天宝[13]、刘龑龙[14]分别对PBX中张开型裂纹的裂纹尖端区进行了理论推导和数值模拟,但针对PBX材料的裂纹尖端场特性的实验研究还不充分。

    本工作主要研究准静态载荷下PBX中张开型裂纹的起裂与扩展行为,以某TATB基PBX为实验对象,用含预制裂纹的半圆盘弯曲(semi‑circular bend,SCB)试样进行准静态间接拉伸加载,应用数字图像相关方法分析试验中裂纹尖端主应变的分布与演化规律,并对裂纹的起裂行为进行推演分析;并借助高速摄影技术对裂纹扩展过程进行了观测分析。

  • 2 实验部分

    2
  • 2.1 材料与试样设计

    2.1

    材料:TATB基PBX,由中国工程物理研究院化工材料研究所提供。

    试样设计:本研究采用预制裂纹的半圆盘弯曲试样来实现张开型裂纹加载。

    PBX一般视为弹脆性材料,破坏应变很小,且PBX有显著的拉压不对称[13],其拉伸强度远低于压缩强度,因此多采用间接方式实现拉伸加载实验。半圆盘弯曲试样最早由Chong和Kuruppu[15]提出用于岩石等材料的断裂韧性实验测定,后广泛应用于岩石、混凝土等各类脆性材[16,17,18]。半圆盘弯曲试验原理类似于三点弯曲试验,试样由两平行水平支座上支撑,在弧顶施加径向压缩载荷,在横向为拉伸应力作用。试验所用试样见1,试样半径16 mm,厚度12 mm,在直边中心预制有长为6 mm的贯穿裂纹。试样由胚料先切割为圆柱,按指定厚度切割为圆盘后对剖为两个半圆盘,在直径中心沿垂直方向用数控刀具机加预制裂纹。

    图1
                            试样及加载示意图

    图1 试样及加载示意图

    Fig.1 Schematic diagram of specimen and loading

  • 2.2 数字图像相关方法

    2.2

    数字图像相关方法(Digital Image Correlation Method, DIC)是一种基于图像的光测方法,常用于结构表面位移和变形测量分析。其基本原[19,20]是,对试样不同时刻或状态下的图像进行对比和处理,基于各像素点的灰度值进行区域匹配,通过数学处理得到表面的位移场和变形场信息。DIC具有无损测量、非接触、全场测量、适用性强等突出优点,通过算法优化可以达到亚像素级的精度,是当下主流的力学实验方法。尤其在裂纹问题中,传统的引伸计或应变片方法只能做到区域监测,难以对裂纹尖端的高应变梯度和复杂分布情况进行有效描述,DIC提供的全场测量为断裂分析提供了理想的工具。

    为应用数字图像相关方法,在试样一侧表面通过喷漆预制人工散斑场。本试验中使用的是二维DIC,即单相机采集图像,调整相机光路使预制散斑场处在相机的焦平面,实际效果参见图1。通过DIC分析可以获得试样表面在不同状态/变形条件下的位移和变形的全场分布,SCB试验是一种间接拉伸试验,其水平方向的拉伸变形是试样破坏的关键因素,相应地在应变分析中主应变分量即为εx(以水平方向为x方向)。

    裂纹的开裂与扩展在断裂问题中备受关注,其持续时间很短,通常在毫秒量级,普通相机采样频率下的图像无法有效捕捉此过程,因此高速摄影技术在材料断裂研究中有较高的现实需求和应用价[6,18]

  • 3 结果与讨论

    3
  • 3.1 实验过程及结果

    3.1

    实验在Instron 5582万能材料试验机上完成,设计有专用铝合金支座,加载跨距为16 mm,支座固定在试验机平台与压头对心位置,如图1所示。采用位移控制的准静态加载,加载速度为0.1 mm·min-1。重复试验5次,依次记为No.1~No.5,环境温度为24 ℃,室内湿度为70%。

    典型的载荷‑时间(No.2试验)曲线如图2所示。由图2可见,载荷随时间近似线性增长,至最大值pmax=557 N突然跌落。各次试验最大载荷略有差异,但曲线特征基本一致,均为线性增长至最大值后破坏。各试样均沿预制裂纹方向劈裂为两半,断面较为平整微有起伏,基本与预制裂纹在同一平面。结果表明,实验中试样主要发生脆性断裂。

    图2
                            典型试验的载荷‑时间曲线

    图2 典型试验的载荷‑时间曲线

    Fig.2 Load‑time curve of typical test

    加载的同时用计算机控制CCD相机进行数字图像连续采集,采集速度为10 fps(frames per second),为2048*2048的灰度图像,用4位数字为图像依次编号。10 fps的采样速度不能满足观察裂纹开裂及扩展需求,在一次重复试验中应用高速相机(Photron的FASTCAM SA1.1)进行监测,。应用同步触发及负延时将采样时间限制在裂纹开裂前后较短时间内,并将视野限定在裂纹扩展路径周边的较小区域内,以获得尽可能高的采样速率。

  • 3.2 数字图像相关方法分析

    3.2
  • 3.2.1 全场应变分布及演化

    3.2.1

    基于Correlated Solutions Inc.的Vic‑2D软件进行DIC分析,以No.2试验为例进行分析,No.2中试样在0694时刻尚无可见裂纹,而在0695时刻已发生劈裂,图像并未监测到裂纹扩展过程,对劈裂前图像(0000‑0694)进行DICM分析。以0000时刻图像为参考图像,AOI(Area of Interest)沿试样边界选取半圆盘试样全域(扣除裂纹区域)。其中子区尺寸为21,步长为5,经标定像素尺寸约为0.014 mm。先获取了破坏前时刻各应变分量的全场分布,进而对裂纹尖端局部的主应变场的演化进行分析。而后通过选取特征线段和特征点,重点分析了裂纹扩展路径上的主应变的分布及演化规律。

    3所示为断裂前试样表面各应变分量的全场分布,从左至右依次为εx、εy、εxy,图像编号0694,对应载荷为Pmax 557 N。各分量全场分布均呈现一定的对称性,εxεxy以预制裂纹为轴对称分布,而εy则为反轴对称分布。而各应变分量幅值来看,εx明显占优,在裂纹尖端局部高达4000 με,而εyεxy两个分量数值较εx小得多,在1000 με左右。从分布特性和应变数值来看,εx是破坏分析的关键参数。TATB基PBX一般条件下的单轴拉伸破坏应变小于2000 με[21],而裂纹尖端区域的应变值远远超出这一范围。在PBX组分中,粘结剂作为高聚物具有良好的延展性,虽然在PBX中占比很小,但是对PBX的力学性能有重要影响。同时研究显示TATB晶体也有一定的晶体塑[22],因此TATB基PBX应有一定的塑性变形能力。综上,可以推知实验中TATB基PBX在裂纹尖端区域局部发生了塑性变形,即存在一个裂纹尖端塑性区(crack tip plastic zone)。

    图3
                            断裂前(0694)全场应变分布(No.2)

    图3 断裂前(0694)全场应变分布(No.2)

    Fig.3 Full‑field strain distribution before fracture(0694) (No.2)

    图4
                            裂纹尖端主应变场时间演化特征

    图4 裂纹尖端主应变场时间演化特征

    Fig.4 The time evolution characteristics of principle strain field around crack tip

    针对裂纹尖端应变场的演化问题,选取了若干特征时刻下裂尖附近的主应变场,如图4所示。0600时刻是一个转折点,裂纹尖端的应变集中效应开始显现,在图2中可见0600时刻对应载荷P1为476 N,约为0.85Pmax。由图4可见,应变水平随加载时间显著升高,0525时刻裂纹尖端区域尚无应变集中现象,0600时刻初步显现但应变值仍然较低,到0660时刻才达到较高的应变水平。同时,应变集中控制区域尺寸也随时间有显著的增长。裂纹尖端局部的应变集中效应在0600时刻左右才开始显现,而后应变集中区域的应变水平和控制区域随时间均有较为显著的增长。

  • 3.2.2 扩展路径应变分布及演化

    3.2.2

    为研究裂纹扩展路径上应变分布及演化特征,从裂纹尖端沿预制裂纹方向引至压头附近选取特征线段L,并取特征线L的两个端点和中点为特征点A、B、C,如图5所示。

    6给出了扩展路径上主应变εx的空间分布及时间演化特征,横坐标为与裂尖的距离,纵坐标为主应变εx。根据曲线特征可以将扩展路径分为裂纹尖端区、路径中段和加载邻域三段。裂纹尖端区应变水平高且应变梯度大,随时间增长应变幅值有大幅增长,其区域范围随载荷增加也有显著扩大。压头邻域也有应变集中效应,相较之下其应变梯度较小,应变水平与加载载荷呈正相关,但增幅相对较小,且区域范围基本维持不变。路径中段的应变在空间上仅有细微波动,总体较为均匀,随时间增长应变无明显增加趋势。值得一提的是,裂纹尖端区域最大应变并不出现在距离裂尖最近的点,而有一定的偏离,且随加载过程偏离距离有所增加。这一现象在文献中也有理论支[23,24],也可能是裂纹扩展造成的裂尖前移的体现,其原因有待进一步的理论分析和实验验证。

    图5
                            特征线段及特征点选取

    图5 特征线段及特征点选取

    Fig.5 Selection of characteristic line segment and characteristic points

    图6
                            裂纹扩展路径上主应变分布及演化

    图6 裂纹扩展路径上主应变分布及演化

    Fig.6 The distribution and evolution of principle strain on the crack propagation path

    5A、B、C三个特征点分别对应裂纹扩展路径的三个区域,点A在裂纹尖端控制区,点B在扩展路径中段,点C在加载邻域。绘制各特征点的主应变与时间的演化关系,以研究各区域的应变演化规律,如图7所示。

    由图7可见,B、C两点的主应变值均随时间准线性增长,且C点曲线斜率远高于B点曲线斜率。A点的应变‑时间演化以t时刻为界分为两个阶段,前期随时间呈线性增长,增长速度介于B、C之间;在t时刻后,应变曲线转为指数型增长,应变远超过C点。后期A点名义应变远超过单轴拉伸破坏应变,可能有裂纹造成的计算误差,裂纹尖端局部应该发生塑性变形,与前文应变场分析结果相印证。

    图7
                            特征点主应变‑时间演化关系

    图7 特征点主应变‑时间演化关系

    Fig.7 Principle strain‑time evolution curves at characteristic points

    7中的转折点t时刻与应变集中区出现时间基本一致,均在0600时刻左右,对应载荷约为0.85 pmax。与图4中的应变集中区演化规律相验证,裂纹尖端区加载前期应变线性增长,几乎无显著的应变集中现象,在t时刻后局部应变演化转变为指数型增长,应变集中区开始显现并快速发展。

  • 3.3 高速摄影下的裂纹扩展

    3.3

    在重复试验中,高速摄影的实际采样速率达90000 fps,图片分辨率为128×272,实验获得图片530幅。图片编号规则与前相似,用字母G加对应的三位图像序号以示区别。高速摄影下的若干典型时刻的图像如图8所示,各子图序号标注在相应图片下方。由图8可见,宏观可见的扩展裂纹出现始于G235,而后裂纹沿预制裂纹方向直线扩展至试样破坏,实际裂纹扩展过程约3 ms。基于图像可将裂纹扩展过程分为两个阶段:第一阶段(G235‑G250),以尖锐的细裂纹快速向前扩展,裂纹尖端在短时间内推进至试样边缘;第二阶段(G251‑G530),裂纹尖端向前推进几乎停滞,裂纹逐渐变宽至最终断裂。第一阶段持续时间仅0.2 ms,这一阶段可以近似为半无限体中的裂纹扩展。当裂纹前缘扩展至压头附近的塑性区时,在边界约束条件和材料塑性迟[25]等作用下,裂纹扩展减缓乃至暂时停止。裂纹前缘钝化,TATB基PBX局部塑性变形消耗了输入的能量,在能量持续输入克服材料塑性功后,裂纹继续扩展至试样断裂。

    本试样中预制裂纹为机械加工所得,机械加工精度受制于材料的特殊性,实际裂纹宽度约0.3 mm,而非理想的尖锐裂纹。预制裂纹是有两个尖角的矩形,实验中裂纹开裂发生在两侧尖角区域中的某一侧,与裂纹尖端局部形态和缺陷分布特性有关。在裂纹扩展过程中,尤其是裂纹扩展初期,过程非常迅速,难以确定裂纹前缘的瞬时位置,这对实验控制和观测技术、弹塑性应变场的理论分析都带来了挑战。裂纹扩展的机理和规律,还有待于进一步研究探索。

    图8
                            高速摄影下的裂纹扩展过程(90000 fps)

    图8 高速摄影下的裂纹扩展过程(90000 fps)

    Fig.8 Crack propagation process under high‑speed photography of 90000 fps

  • 4 结 论

    4

    开展了预制裂纹的半圆盘弯曲实验,借助数字图像相关方法和高速摄影技术,获得了准静态载荷下TATB基PBX张开型裂纹开裂及扩展行为特性,主要结论如下:

    (1) 半圆盘弯曲试样沿预制裂纹方向发生脆性断裂。

    (2) 破坏前在裂纹尖端有显著的拉伸应变集中区域,其应变水平远高于单轴拉伸破坏应变,裂纹尖端区随加载进行应变显著升高且范围随之扩大,而扩展路径中段和压头邻区的应变分布随加载时间无明显变化。

    (3) 应变演化存在一个显著的拐点,出现在约0.85 pmax载荷下,裂尖应变集中效应在拐点后才开始显现并快速演化。且裂尖特征点应变前期呈线性平稳增长,拐点后转为急剧增长。

    (4) 高速摄影下的裂纹扩展过程约3 ms,扩展初期短时间内以细裂纹高速扩展,至试样边缘附近后扩展暂时停滞,在进一步加载后发生破坏。

    研究表明,TATB基PBX在裂纹尖端局部发生了塑性变形,且材料的塑性变形对裂纹的起裂和扩展过程有显著影响,值得进一步的分析和研究。

  • 参考文献

    • 1

      罗景润,张寿齐,李大红,等.高聚物粘结炸药断裂特性实验研究[J].爆炸与冲击, 2000,20(4): 338-342.

      LUO Jing‑Rui, ZHANG Shou‑qi, LI Da‑hong, et al. Experimental investigation on the fracture character of PBX[J]. Explosion and Shock Wave, 2000,20(4): 338-342.

    • 2

      温茂萍,马丽莲,田勇,等.高聚物粘结炸药平面应变断裂韧度实验研究[J].火炸药学报,2001, 24(2): 16-18

      WEN Mao‑ping, MA Li‑lian, TIAN Yong. Experimental study on the plane strain fracture toughness of high polymer bonded explosive[J]. Chinese Journal of Explosives & Propellants, 2001, 24(2): 16-18.

    • 3

      Palmer S J P, Field J E, Huntley J M. Deformation, strengths and strains to failure of polymer bonded explosives[J]. Proceedings of Royal. Society A: Mathematics and Physics Science, 1993, 400: 399-419.

    • 4

      Rae P J, Palmer S J P, Goldrein H T, et al. White‑light digital image cross‑correlation(DICC) analysis of the deformation of composite materials with random microstructure[J]. Optics and Lasers in Engineering, 2004, 41: 635-648.

    • 5

      ZHOU Zhong‑bin, CHEN Peng‑wan, DUAN Zhuo‑ping, et al. Comparative study of the fracture toughness determination of a polymer‑bonded explosive simulant[J].Engineering Fracture Mechanics, 2011, 78(17): 2991-2997.

    • 6

      ZHOU Zhong‑bin, CHEN Peng‑wan, HUANG Feng‑lei, et al. Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method[J]. Optics and Lasers in Engineering, 2011, 49(3): 366-370.

    • 7

      LI Jun‑ling, FU Hua, TAN Duo‑wang, et al. Fracture behavior investigation into a polymer‑bonded explosive[J] Strain, 2012, 48(6): 463-473.

    • 8

      LAWN B. Fracture of brittle solids (Second Edition)[M]. Cambridge University Press, 1993: 24-28.

    • 9

      LIU C, THOMPSON D G. Crack initiation and growth in PBX 9502 high explosive subject to compression[J]. Journal of Applied Mechanics, 2014, 81(10): 101004.

    • 10

      黄西成, 李尚昆, 魏强,等. 基于XFEM与Cohesive模型分析PBX裂纹产生与扩展[J]. 含能材料, 2017, 25(8): 694-700.

      HUANG Xi‑cheng, LI Shang‑kun, WEI Qiang, et al. Analysis of crack initiation and growth in PBX energetic material using XFEM‑based cohesive method[J] .Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(8): 694-700.

    • 11

      LI Ming, ZHANG Jue, XIONG C, et al. Damage and facture prediction of plastic bonded explosive by digital image correlation processing[J].Optics & Laser in Engineering, 2005, 43(8): 856-868.

    • 12

      李明, 张珏, 李敬明,等.高聚物粘结炸药压缩破坏的细观力学实验研究[J].含能材料, 2005,13(2): 79-83.

      LI Ming, ZHANG Jue, LI Jing‑ming, et al. Experimental investigation to the damage localization of PBX mechanical failure at mesoscale[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(2): 79-83.

    • 13

      董天宝,唐维,温茂萍,等. 基于三种强度准则的PBX Ⅰ型裂纹尖端失效区研究[J].含能材料,2017, 25(2): 113-117

      DONG Tian‑bao, TANG Wei, WEN Mao‑ping, et al. Failure zone of PBX mode Ⅰ crack tip based on three strength criteria[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(2): 113-117.

    • 14

      Liu Y L, Cendon D A, Chen P W, et al. Fracture of notched specimens: experimental research and numerical prediction[J]. Theoretical and Applied Fracture Mechanics, 2017, 90:268-275.

    • 15

      Chong K P, Kuruppu M D. New specimen for fracture toughness determination for rock and other materials[J]. International Journal Fracture, 1984, 26(2): 59-62.

    • 16

      Kuruppu M D, Obara Y, Ayatollahi M R, et al. ISRM‑suggested method for determining the mode I static fracture toughness using semi‑circular bend specimen[J]. Rock Mechanics & Rock Engineering, 2013, 47(1): 267-274.

    • 17

      Zhou Y X, Xia K, Li X B, et al. Suggested methods for determining the dynamic strength parameters and mode‑I fracture toughness of rock materials[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 49(1): 105-112.

    • 18

      Chen R, Cheng L, Lin Y. Studies on the dynamic fracture properties and failure modes of a PBX[J] International Journal of Applied Mechanics, 2014, 6(4). 1450039: 1-9.

    • 19

      Sutton M, Orteu J, Schreier H. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications[M]. Springer Science & Business Media, 2009: 81-99.

    • 20

      Pan B, Qian K, Xie H, et al. Two‑dimensional digital image correlation for in‑plane displacement and strain measurement: a review[J]. Measurement Science and Technology, 2009, 20(6): 062001.

    • 21

      唐维, 颜熹琳, 李明, 等.TATB基PBX的单轴主特征破坏参数识别研究[J].含能材料, 2015, 23(8): 766-770.

      TANG Wei, YAN Xi‑lin, LI Ming, et al. Identification of uniaxial main characteristic failure parameter on TATB‑based PBX [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(8): 766-770.

    • 22

      陈鹏万,黄风雷.含能材料损伤理论与应用[M].北京:北京理工大学出版社, 2006: 143-146.

      CHEN Peng‑wan, HUANG Feng‑lei. Damage theory and application of energetic materials[M]. Beijing: Beijing Institute of Technology Press, 2006:143-146.

    • 23

      Taylor D. The theory of critical distances[J]. Engineering Fracture Mechanics, 2008, 75: 1696-1705.

    • 24

      Kfouri A P. Characteristic crack‑tip distances in fracture criteria: Is crack propagation discontinuous?[J].Engineering Fracture Mechanics, 2008, 75: 1815-1828.

    • 25

      ZHU H, YANG L, LI Z. The shielding effects of the crack‑tip plastic zone[J].International Journal of Fracture, 2010, 161:131-139.

刘晨

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

邮 箱:liu_chen@caep.cn

作者简介:刘晨(1991-),男,研究实习员,主要从事含能材料的力学行为研究。e‑mail:liu_chen@caep.cn

蓝林钢

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

陈华

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

唐明峰

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

甘海啸

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

李明

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, CAEP, Mianyang 621999, China

角 色:通讯作者

Role:Corresponding author

邮 箱:li_ming@caep.cn

作者简介:李明(1971-),男,研究员,主要从事固体力学、晶体力学研究。e‑mail:li_ming@caep.cn

html/hncl/CJEM2018185/media/b07700ee-1a4e-4f94-9412-89ff9684124f-image001.png
html/hncl/CJEM2018185/media/b07700ee-1a4e-4f94-9412-89ff9684124f-image002.png
html/hncl/CJEM2018185/media/b07700ee-1a4e-4f94-9412-89ff9684124f-image003.png
html/hncl/CJEM2018185/media/b07700ee-1a4e-4f94-9412-89ff9684124f-image004.png
html/hncl/CJEM2018185/media/b07700ee-1a4e-4f94-9412-89ff9684124f-image005.png
html/hncl/CJEM2018185/media/b07700ee-1a4e-4f94-9412-89ff9684124f-image006.png
html/hncl/CJEM2018185/media/b07700ee-1a4e-4f94-9412-89ff9684124f-image007.png
html/hncl/CJEM2018185/media/b07700ee-1a4e-4f94-9412-89ff9684124f-image008.png

图1 试样及加载示意图

Fig.1 Schematic diagram of specimen and loading

图2 典型试验的载荷‑时间曲线

Fig.2 Load‑time curve of typical test

图3 断裂前(0694)全场应变分布(No.2)

Fig.3 Full‑field strain distribution before fracture(0694) (No.2)

图4 裂纹尖端主应变场时间演化特征

Fig.4 The time evolution characteristics of principle strain field around crack tip

图5 特征线段及特征点选取

Fig.5 Selection of characteristic line segment and characteristic points

图6 裂纹扩展路径上主应变分布及演化

Fig.6 The distribution and evolution of principle strain on the crack propagation path

图7 特征点主应变‑时间演化关系

Fig.7 Principle strain‑time evolution curves at characteristic points

图8 高速摄影下的裂纹扩展过程(90000 fps)

Fig.8 Crack propagation process under high‑speed photography of 90000 fps

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      罗景润,张寿齐,李大红,等.高聚物粘结炸药断裂特性实验研究[J].爆炸与冲击, 2000,20(4): 338-342.

      LUO Jing‑Rui, ZHANG Shou‑qi, LI Da‑hong, et al. Experimental investigation on the fracture character of PBX[J]. Explosion and Shock Wave, 2000,20(4): 338-342.

    • 2

      温茂萍,马丽莲,田勇,等.高聚物粘结炸药平面应变断裂韧度实验研究[J].火炸药学报,2001, 24(2): 16-18

      WEN Mao‑ping, MA Li‑lian, TIAN Yong. Experimental study on the plane strain fracture toughness of high polymer bonded explosive[J]. Chinese Journal of Explosives & Propellants, 2001, 24(2): 16-18.

    • 3

      Palmer S J P, Field J E, Huntley J M. Deformation, strengths and strains to failure of polymer bonded explosives[J]. Proceedings of Royal. Society A: Mathematics and Physics Science, 1993, 400: 399-419.

    • 4

      Rae P J, Palmer S J P, Goldrein H T, et al. White‑light digital image cross‑correlation(DICC) analysis of the deformation of composite materials with random microstructure[J]. Optics and Lasers in Engineering, 2004, 41: 635-648.

    • 5

      ZHOU Zhong‑bin, CHEN Peng‑wan, DUAN Zhuo‑ping, et al. Comparative study of the fracture toughness determination of a polymer‑bonded explosive simulant[J].Engineering Fracture Mechanics, 2011, 78(17): 2991-2997.

    • 6

      ZHOU Zhong‑bin, CHEN Peng‑wan, HUANG Feng‑lei, et al. Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method[J]. Optics and Lasers in Engineering, 2011, 49(3): 366-370.

    • 7

      LI Jun‑ling, FU Hua, TAN Duo‑wang, et al. Fracture behavior investigation into a polymer‑bonded explosive[J] Strain, 2012, 48(6): 463-473.

    • 8

      LAWN B. Fracture of brittle solids (Second Edition)[M]. Cambridge University Press, 1993: 24-28.

    • 9

      LIU C, THOMPSON D G. Crack initiation and growth in PBX 9502 high explosive subject to compression[J]. Journal of Applied Mechanics, 2014, 81(10): 101004.

    • 10

      黄西成, 李尚昆, 魏强,等. 基于XFEM与Cohesive模型分析PBX裂纹产生与扩展[J]. 含能材料, 2017, 25(8): 694-700.

      HUANG Xi‑cheng, LI Shang‑kun, WEI Qiang, et al. Analysis of crack initiation and growth in PBX energetic material using XFEM‑based cohesive method[J] .Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(8): 694-700.

    • 11

      LI Ming, ZHANG Jue, XIONG C, et al. Damage and facture prediction of plastic bonded explosive by digital image correlation processing[J].Optics & Laser in Engineering, 2005, 43(8): 856-868.

    • 12

      李明, 张珏, 李敬明,等.高聚物粘结炸药压缩破坏的细观力学实验研究[J].含能材料, 2005,13(2): 79-83.

      LI Ming, ZHANG Jue, LI Jing‑ming, et al. Experimental investigation to the damage localization of PBX mechanical failure at mesoscale[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(2): 79-83.

    • 13

      董天宝,唐维,温茂萍,等. 基于三种强度准则的PBX Ⅰ型裂纹尖端失效区研究[J].含能材料,2017, 25(2): 113-117

      DONG Tian‑bao, TANG Wei, WEN Mao‑ping, et al. Failure zone of PBX mode Ⅰ crack tip based on three strength criteria[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(2): 113-117.

    • 14

      Liu Y L, Cendon D A, Chen P W, et al. Fracture of notched specimens: experimental research and numerical prediction[J]. Theoretical and Applied Fracture Mechanics, 2017, 90:268-275.

    • 15

      Chong K P, Kuruppu M D. New specimen for fracture toughness determination for rock and other materials[J]. International Journal Fracture, 1984, 26(2): 59-62.

    • 16

      Kuruppu M D, Obara Y, Ayatollahi M R, et al. ISRM‑suggested method for determining the mode I static fracture toughness using semi‑circular bend specimen[J]. Rock Mechanics & Rock Engineering, 2013, 47(1): 267-274.

    • 17

      Zhou Y X, Xia K, Li X B, et al. Suggested methods for determining the dynamic strength parameters and mode‑I fracture toughness of rock materials[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 49(1): 105-112.

    • 18

      Chen R, Cheng L, Lin Y. Studies on the dynamic fracture properties and failure modes of a PBX[J] International Journal of Applied Mechanics, 2014, 6(4). 1450039: 1-9.

    • 19

      Sutton M, Orteu J, Schreier H. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications[M]. Springer Science & Business Media, 2009: 81-99.

    • 20

      Pan B, Qian K, Xie H, et al. Two‑dimensional digital image correlation for in‑plane displacement and strain measurement: a review[J]. Measurement Science and Technology, 2009, 20(6): 062001.

    • 21

      唐维, 颜熹琳, 李明, 等.TATB基PBX的单轴主特征破坏参数识别研究[J].含能材料, 2015, 23(8): 766-770.

      TANG Wei, YAN Xi‑lin, LI Ming, et al. Identification of uniaxial main characteristic failure parameter on TATB‑based PBX [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(8): 766-770.

    • 22

      陈鹏万,黄风雷.含能材料损伤理论与应用[M].北京:北京理工大学出版社, 2006: 143-146.

      CHEN Peng‑wan, HUANG Feng‑lei. Damage theory and application of energetic materials[M]. Beijing: Beijing Institute of Technology Press, 2006:143-146.

    • 23

      Taylor D. The theory of critical distances[J]. Engineering Fracture Mechanics, 2008, 75: 1696-1705.

    • 24

      Kfouri A P. Characteristic crack‑tip distances in fracture criteria: Is crack propagation discontinuous?[J].Engineering Fracture Mechanics, 2008, 75: 1815-1828.

    • 25

      ZHU H, YANG L, LI Z. The shielding effects of the crack‑tip plastic zone[J].International Journal of Fracture, 2010, 161:131-139.