-
1 引 言
近年来,为满足新型含能材料发展的需要,一系列富氮高能含能材料被合成,其中胍类物质由于其独特的结构引起了研究者的广泛兴
趣[1,2,3,4,5] 。胍类物质含氮丰富,其氮含量高达71%[6] ,并且分解产物是氮气,绿色环保。硝基胍结构简单易制备,由于其良好的爆炸性能,应用于推进剂、发射药、低损性炸药等[7] 。其衍生物也在医学、农业、炸药等方面得到广泛应用[8,9] 。氨基硝基胍(ANQ)是硝基胍的一种重要的含能衍生物,通过硝基胍与水合肼反应获得[10] ,其爆轰性能与RDX相当,具有广阔的应用[11,12] 。ANQ在一个碳原子上分别连接一个硝酰基、一个氨基和一个肼基,具有很高的反应性,因此,大量的ANQ衍生物被合成报道。金兴辉
等[13] 以ANQ和4‑硝胺基‑1,2,4‑三唑为原料合成了一种钝感的1‑氨基‑2‑硝基胍4‑硝胺基‑1,2,4‑三唑盐。Eugene L等[14] 在KNO2 /AcOH中合成了5‑硝氨基四唑,该四唑由于分子环张力以及具有含能N—N,C—N,N—N键,故其能量更高,稳定性更好。5‑硝氨基四唑可以进一步反应生成一系列盐和金属含能配合物,其中一些化合物具有良好的爆轰性能[14,15,16,17] 。O'Connor等[18] 在HCl/NaNO2 的体系中合成了叠氮硝基胍。本课题组[19] 前期将ANQ分别与二硝基氯苯、三硝基氯苯和3,5‑二硝基水杨酸反应,合成了三种新的ANQ的含能衍生物,并且发现ANQ与三硝基氯苯反应得到的含能化合物性能最好。与上述ANQ的衍生物相比,本文研究的MANG合成方法简单(一步反应)、反应时间短、产率高、放热剧烈,具有潜在的应用价值。本研究以ANQ为原料,意外地合成了新化合物亚甲氨基硝基胍(MANG),得到了MANG的单晶,并用X‑射线仪对其晶体结构进行了测定。采用差示扫描量热分析技术(DSC)和热重分析技术(TG‑DTG)研究其热分解性能,计算得到其非等温动力学参数和热爆炸临界温度等热力学参数。利用氧弹量热技术测定其燃烧热,并计算得到其标准生成焓。测试了其撞击感度,为MANG的研究应用提供参考。
表1 MANG的晶体参数与精修数据
Table 1 Crystallographic data and structure refinement details for MANG
compound MANG formula C2 H5 N5 O2 formula mass 131.11 temperature /K 298(2) crystal system orthorhombic space group Pnn2 a /Å 9.070(4) b /Å 16.591(6) c /Å 3.5508(13) V / Å3 534.3(4) Z 4 Dc / g·c m-3 1.63 absorption coefficient / m m-1 0.142 θ / (°) 2.46‑20.99 F(000) 272 h, k and l -9<h<9,-16<k<13,
-3<l<3
reflections collected 1696 independent reflections (Rint) 561 (0.0447) data/restraints/parameters 561 / 4 / 102 goodness‑of‑fit on F2 1.019 final R1, wR2 [I>2σ(I)] 0.0517, 0.0866 R1,wR2 (all data) 0.1047, 0.1057 largest difference peak and hole (e· Å-3 )0.188, -0.211 -
2 实 验
-
2.1 试剂与仪器
硝基胍,上海阿拉丁试剂有限公司,分析纯;水合肼(80%)、甲醛溶液(38%),天津市科密欧化学试剂有限公司,分析纯;ANQ为实验室根据文献[9]制备。
EQ UINOX‑550 型傅里叶变换红外光谱仪,德国BRUKER 公司;INOVA‑400 MHz型核磁共振仪,美国Varian公司;SGW X‑4B型显微熔点测定仪,上海仪电物理光学仪器有限公司;Bruker Smart APEX Ⅱ CCD X‑射线面探衍射仪,德国BRUKER公司;DSC200F3差示扫描量热仪,德国NETZSCH公司;SDT‑Q600同步热分析仪,美国TA公司;IKA C5000氧弹量热仪,德国IKA公司;ZBL‑B型撞击感度仪,北京纳辰科技发展有限公司。
-
2.2 MANG的合成
将0.15 g(0.0013 mol)ANQ加入10 mL蒸馏水中,常温搅拌均匀后,加入1 mL 38%的甲醛溶液,搅拌并加热至35 ℃,反应物先溶解,几分钟后开始出现絮状白色物质,2 h结束反应。将反应液冷却至室温,过滤洗涤,烘干后得到MANG白色粉末产物0.142 g,产率约为86%
。13 C NMR(DMSO‑d6, 500 MHz): 158.584, 139.331;1 H NMR(DMSO‑d6,500 MHz):6.686, 7.132, 8.377, 8.736, 11.654;IR(KBr,ν/cm-1 ): 3388, 3283, 3209, 3082, 2930, 1648, 1606, 1411, 1271, 1132, 1060, 988, 938, 637;Anal.calcd forC2 H5 N5 O2 (%): C 18.32, H 3.82, N 53.44; found C 18.18, H 3.74, N 53.83。 -
2.3 晶体培养与结构测定
将MANG粉末溶于乙腈和水的混合液中(体积比1∶2),室温下缓慢挥发,15 d后得到无色棒状晶体。选取尺寸为0.30 mm×0.15 mm×0.15 mm的单晶置于Bruker SMART APEX Ⅱ CCD的X‑射线单晶衍射仪上:用石墨单色器单色化的Mo
Kα 射线(λ=0.071073 nm)光源,测试温度298(2) K,晶体结构通过直接法由SHELXS‑97解析得到[20] ,并由全矩阵最小二乘法精修用SHELXL‑97程序完成[21] 。晶体参数和精修结果列于表1。(CCDC:1852040) -
2.4 测试方法
DSC测试采用DSC200F3差示扫描量热仪,动态氮气气氛,流速80 mL·mi
n-1 ,升温速率为5,10,15,20 ℃·min-1 ,温度范围为30~350 ℃,样品量约0.5 mg。TG/DTG测试采用SDT‑Q600同步热分析仪,动态氮气气氛,流速100 mL·min-1 ,升温速率为10 ℃·min-1 ,样品量0.3~0.5 mg。测定燃烧热时仪器经苯甲酸标准样校准,样品量200 mg左右,平行测定六次。撞击感度测试时落锤质量为0.8 kg,样品量为30 mg,测定六次。 -
3 结果与讨论
-
3.1 合成过程
ANQ的特殊结构使其易发生加成反应、成环反应、成盐反应、酰基化反应、还原反应
等[19] 。在前期研究[22,23] 中,本课题组将硝基胍和甲醛反应生成了亚甲基二硝基胍,基于此本研究设计用亚甲基将两分子ANQ连接的路线,以合成具有对称结构的新型含能化合物A或B,但尝试了多种方法都没有得到目标产物。然而,却意外以较高收率(86%)合成了亚甲氨基硝基胍(MANG)(Scheme 1)。分析原因应该是肼基上的氨基亲核性更强,首先进攻羰基基团上带正电荷的碳原子,发生亲核加成反应,生成的中间物进一步脱水生成了MANG,此过程即经典的醛氨缩合反应。此外,希望通过成环反应得到更加稳定的五元氮杂环化合物C的努力也失败了。在此体系中,醛氨缩合更具有优势,链反应与成环反应难以发生。 -
3.2 晶体结构
MANG的分子结构如图1所示,由图1可以看出,MANG分子比较简单,包括一个氨基、一个硝酰基和一个亚甲氨基,比ANQ只多了一个亚甲基。晶体结构的主要键长、键角和二面角见表2,由表2可知,N(5)—C(2)双键键长为1.250 Å,比常见的碳氮双键键长 (1.34~1.38 Å)还略为短些,但显著长于碳氮叁键键长(1.14~1.16 Å)。N(2)—C(1)、N(3)—C(1)和N(4)—C(1)键长分别为1.359、1.303 Å和1.340 Å,因共轭效应均表现为典型的共轭双键。原来肼基上的N(4)—N(5)键(1.376 Å)也因两边的共轭效应,使其更接近氮氮共轭双键(1.22~1.30 Å)。整个分子中原子分布比较规律,键角都接近于120°,结构规整。分子中最大的二面角O(1)—N(1)—N(2)—C(1)为6.8(7)°,其他二面角均约为1°,即整个化合物分子中所有非氢原子几乎都处在同一个平面上。
MANG的氢键图和堆积图见图2和图3。由图2可知,MANG晶体中存在三种氢键,一种分子内氢键N(3)—H(3B)…O(1)[d(D…A)=2.568 Å,∠DHA=124.2°]和两种分子间氢键[N(3)—H(3A)…O(1)#1(d(D…A)=2.993 Å,∠DHA=166°)和N(4)—H(4)…N(2)#2(d(D…A)=3.041 Å,∠DHA=169°); symmetry transformations: #1:x‑1/2,‑y+1/2,z‑1/2;#2:‑x+1,‑y+1,z]。每个MANG分子与周围其他三个分子通过四个分子间氢键连接(两两对称),向外无限扩展,加以范德华力形成了有序的3D空间结构(图3)。
表2 MANG的部分键长、键角和二面角
Table 2 Selected bond lengths, bond angles and torsion angles of MANG
bond length / Å O(2)—N(1) 1.238(4) O(1)—N(1) 1.239(5) N(1)—N(2) 1.354(5) N(3)—C(1) 1.303(5) N(4)‑—C(1) 1.340(5) N(2)—C(1) 1.359(5) N(5)—C(2) 1.250(5) N(4)—N(5) 1.376(5) bond angle / (°) O(1)—N(1)—O(2) 122.2(4) O(2)—N(1)—N(2) 114.6(4) O(1)—N(1)—N(2) 123.2(4) N(1)—N(2)—C(1) 117.9(4) C(1)—N(4)—N(5) 118.8(4) C(2)—N(5)—N(4) 116.6(4) N(3)—C(1)—N(2) 129.4(4) N(4)—C(1)—N(2) 111.1(4) N(3)—C(1)—N(4) 119.5(4) O(2)—N(1)—N(2)—C(1) -174.2(4) O(1)—N(1)—N(2)—C(1) 6.8(7) N(3)—C(1)—N(2)—N(1) -0.8(7) N(4)—C(1)—N(2)—N(1) 178.9(4) N(2)—C(1)—N(4)—N(5) -179.0(4) N(3)—C(1)—N(4)—N(5) 0.8(7) C(1)—N(4)—N(5)—C(2) -180.0(5) -
3.3 热性能
MANG的热分解DSC及TG‑DTG曲线见图4和图5。由图4和图5可知,MANG的热行为呈现出一个剧烈的放热分解过程,相对应的失重约为43%。5 ℃·mi
n-1 的升温速率下,起始分解温度、峰温和放热量分别为:170.2,170.9 ℃和1440 J·g-1 。对比ANQ的DSC结果[6] 可知,亚甲基的引入反而使热稳定性降低,但分解过程更加剧烈,热流率可达240 mW·mg-1 。不同升温速率下的DSC外推起始温度、峰温及采用Kissinger
法[24] 和Ozawa法[25] 计算的动力学参数列于表3。由表3可知,两种方法计算得到的表观活化能接近,且线性相关系数都接近于1,因此该测试结果可信。表观活化能较低表明容易发生分解。自加速分解温度(TSADT)和热爆炸临界温度(Tb)是评估含能材料的热稳定性的两个重要参数。TSADT和Tb可以由方程(1)和(2)得
到[26,27] 。计算得到的MANG的TSADT和Tb分别为163.73 ℃和165.04 ℃,显著低于ANQ(184.5 ℃和192.68 ℃)[6] 。 -
3.4 爆轰性能
MANG的燃烧热平行测定六次,均值为-11629 J·
g-1 ,标准不确定度为45.5,因此MANG的恒容燃烧热为(-11629±45.5) J·g-1 。通过燃烧反应方程式(a)和(b)以及计算式(3)[23] 得到其标准摩尔燃烧热(Δc Hm)为-1526.09 kJ·mol-1 。表3 不同升温速率下MANG的动力学参数
Table 3 Values of the kinetic parameters for MANG at various β
β / ℃·mi n-1 Te/ ℃ Tp / ℃ EK / kJ·mo l-1 log(A / s-1 )rk EO / kJ·mo l-1 rO 5 170.18 170.90 174.84 18.52 0.9992 173.39 0.9993 10 176.77 176.95 15 180.41 180.61 20 183.42 183.80 NOTE: β is the heating rate. Te and Tp are the extrapolated onset temperature and the peak temperature, respectively. E is the apparent activation energy. A is the pre‑exponential factor. r is the linear correlation coefficient. Subscript K and subscript O are data obtained by Kissinger method and Ozawa method.
其中, Δn=∑ni(products,g)-∑ni(reactants,g)
标准摩尔生成焓( ΔfHθm )可以用盖斯定律计算,通过方程(4)得出MANG的标准摩尔生成焓为33.81 kJ·mo
l-1 。已知 ΔfHθm (C
O2 ,g)=-(393.51±0.13) kJ·mol-1 , ΔfHθm (H2 O,l)=-(285.83±0.04) kJ·mol-1 , ΔfHθm (HNO3 ,l)=-(174.10±0.8) kJ·mol-1 和 ΔfHθm (NO,g)=(90.25±0.75) kJ·mol-1[28,29] 采用Kamlet‑Jacobs(K‑J)方
程[30] 计算了MANG的爆速、爆压,并测试了其撞击感度(IS),结果列于表4,并与ANQ、TNT和RDX进行了对比。从表4可以看出MANG的爆速(7.1 km·s-1 )和爆压(20.9 GPa)均优于TNT(6.9 km·s-1 和19.1 GPa),但显著低于ANQ和RDX。MANG的感度(>7.9 J)低于ANQ (3.0 J),接近于RDX的撞击感度(7.4 J),故MANG相对不敏感。表4 MANG与ANQ、TNT和RDX的性能对比
Table 4 Properties of MANG compared with ANQ, TNT and RDX
compound M
/ g·mo
l-1 ρ(crystal)
/ g·c
m-3 D
/ km·
s-1 p / GPa IS / J MANG 131.11 1.63 7.1 20.9 >7.9 AN Q[31] 119.08 1.72 8.7 30.7 3.0 TN T[19] 227.13 1.63 6.9 19.1 15.0 RD X[19] 222.12 1.82 8.7 33.7 7.4 NOTE: M is the molecular mass. ρ is the crystal density. D is the detonation velocity. p is the detonation pressure. IS is the impact sensitivity.
-
4 结论
(1)以ANQ和甲醛为原料意外合成了MANG,产率86%。MANG属于正交晶系,空间群为Pnn2,密度为1.63 g·c
m-3 。MANG分子间通过4个两两对称的氢键与周围3个分子连接,形成了高度有序的3D空间结构。(2)MANG的热行为只有一个剧烈的放热分解过程。MANG的TSADT和Tb分别为163.73 ℃和165.04 ℃,亚甲基的引入使其热稳定性相较于ANQ有所下降。MANG的标准摩尔燃烧热和生成焓分别为-1526.09 kJ·mo
l-1 和33.81 kJ·mol-1 ,爆速和爆压分别为7.1 km·s-1 和20.9 GPa,撞击感度>7.9 J,具有作为含能材料的潜力。 -
参考文献
- [1]
Hermann T S, Klapötke T M, Krumm B, et al. Synthesis, characterization and properties of ureido-furazan derivatives[J]. Journal of Heterocyclic Chemistry, 2018, 55(3): 852-862.
- [2]
Yin P, Zhang Q H, Shreeve J M. Dancing with energetic nitrogen atoms: versatile N-functionalization strategies for N-heterocyclic frameworks in high energy density materials[J]. Accounts of Chemical Research, 2015, 49(1): 4-16.
- [3]
赵国政, 陆明.两种氮杂环硝胺母体的合成及热力学性质[J]. 含能材料, 2018, 2(26): 138-143.ZHAO Guo-zheng, LU Ming. Synthesis and thermodynamic properties of two N-heterocyclic nitramine precursors[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2018, 2(26):138-143.
- [4]
Berlinck R G S, Burtoloso A C B, Kossuga M H. The chemistry and biology of organic guanidine derivatives[J]. Natural Product Reports, 2012, 29(3): 1382-1406.
- [5]
王义惠, 杜志明, 何春林,等.偶氮四唑二胍的合成优化与性能表征[J]. 含能材料,2008,16(5): 581-584.WANG Yi-hui, DU Zhi-ming, HE Chun-lin, et al. Synthesis and characterization of GZT[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(5): 581-584.
- [6]
Li Y F, Wang M J, Xu K Z, et al.Thermal behaviors of 1-Amino-2-Nitroguanidine[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 24(9): 848-852.
- [7]
张光全, 刘晓波, 黄明.含能硝基胍衍生物的研究进展[J]. 含能材料, 2013, 21(5): 668-674.ZHANG Guang-quan, LIU Xiao-bo, HUANG Ming. Review on energetic derivatives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013, 21(5): 668-674.
- [8]
陈超, 杨毅, 金建平, 等.硝基胍结晶热力学[J]. 化工进展, 2012,增刊(1): 486-489.CHEN Chao, YANG Yi, JIN Jian-ping, et al. Study on the thermodynamics of crystallization of nitroguanidine[J]. Chemistry Industry and Engineering Progress, 2012, suppl: 486-489.
- [9]
Kamekawa H, Miyashita T, Katsuta H, et al. Process for producing nitroguanidine derivatives: US: 7977496[P]. 2009.
- [10]
Phillips R, Williams J F. Nitro-aminoguanidine[J]. Journal of the American Chemical Society, 1928, 50(9): 2465-2470.
- [11]
Klapötke T M, Stierstorfer J. Current advances in RDX replacements[C]//Proceedings of the 27th Army Science conference, Orlando, FL, USA, 2010.
- [12]
Fischer N, Klapötke T M, Stierstorfer J. 1-Amino-3-nitroguanidine(ANQ) in high-performance ionic energetic materials[J]. Zeitschrift für Naturforschung B, 2012, 67(6): 573-588.
- [13]
金兴辉, 胡炳成, 刘祖亮, 等.1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐的合成及性能[J]. 含能材料, 2015, 23(3): 213-217.JIN Xing-hui, HU Bing-cheng, LIU Zu-liang, et al. Synthesis and properties of 1-amino-2-nitroguanidinium 4-nitroamino-1,2,4-triazole salt[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015, 23(3): 213-217.
- [14]
Lieber E, Sherman E, Henry R A, et al. The reaction of nitrous acid with nitroaminoguanidine[J]. Journal of the American Chemical Society, 1951, 73(5): 2327-2329.
- [15]
Gao H X, Huang Y G, Ye C F, et al. The synthesis of di(aminoguanidine) 5-nitroiminotetrazolate: some diprotic or monoprotic acids as precursors of energetic salts[J]. Chemistry-A European Journal , 2010, 14(18): 5596-5603.
- [16]
Semenov S N, Rogachev A Y, Eliseeva S V, et al. 5-Nitroaminotetrazole as a building block for extended network structures: syntheses and crystal structures of a number of heavy metal derivatives[J]. Polyhedron, 2007, 26(17): 4899-4907.
- [17]
Klapötke T M, Stierstorfer J, Weber B. New energetic materials: synthesis and characterization of copper 5-nitriminotetrazolates[J]. Inorganica Chimica Acta, 2009, 362(7): 2311-2320.
- [18]
O'Connor T E, Fleming G, Reilly J. Diazotization of nitroaminoguanidine[J]. Journal of the Society of Chemical Industry, 1949, 68(11): 309-310.
- [19]
Feng Z C, Guan X G, Xu K Z, et al. Three new energetic compounds based on 1-amino-2-nitroguanidine(ANQ): synthesis, crystal structure and properties[J]. Journal of Molecular Structure, 2018, 1166: 369-376.
- [20]
Sheldrick G M. SHELXS-97, Program for solution of crystalstructures[CP]. University of Gottingen, Germany, 1997.
- [21]
Sheldrick G M.SHELXL-97, Program for refinement of crystalstructures[CP]. University of Gottingen, Germany, 1997.
- [22]
Li Y F, Zhai L J, Xu K Z, et al. Thermal behaviors of a novel nitrogen-rich energetic compound hydrazinium 3,5-dinitroamino-1,2,4-triazole[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3): 1167-1173.
- [23]
Guan X G, Li J, Li Y F, Xu K Z, et al. Thermal behaviors of bis(nitroguanidine)methane(BNGM)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(8): 653-658.
- [24]
Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29: 1702-1706.
- [25]
Ozawa T.A method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38: 1881-1886.
- [26]
Hu R Z, Gao S L, Zhao F Q, et al. Thermal analysis kinetics(2th)[M]. Beijing: Science Press, 2008.
- [27]
Zhang T L,Hu R Z,Xie Y,et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC[J]. Thermochimica Acta,1994,244(244): 171-176.
- [28]
David L R.Handbook of chemistry and physics[M]. CRC Press, Boca Raton, FL, 2003.
- [29]
Cox J D, Drowart J, Helper L G, et al. CODATA recommended key values for thermodynamics, 1977, report of the CODATA task group on key values for thermodynamics[J]. Journal of Chemical Thermodynamics, 1978, 10(10): 903-906.
- [30]
Kamlet M J, Jacobs S J. Chemistry of detonations. I. a simple method for calculating detonation properties of C—H—N—O explosives[J]. Journal of Chemical Physics. 1968, 48(1): 23-25.
- [31]
Tian D Y, Zhao F Q, Liu J H. Handbook of energetic materials and the related compounds[M]. Beijing: National Defense Industry Press, 2011.
- [1]
摘要
以氨基硝基胍(ANQ)和甲醛为原料,合成了新的化合物亚甲氨基硝基胍(MANG),并对其反应过程进行了分析。采用X‑射线单晶衍射仪分析了MANG的晶体结构,结果表明,其晶体属于正交晶系,空间群为Pnn2,每个晶胞中包含4个MANG分子,晶体密度为1.63 g·c
Abstract
A new compound methyleneaminonitroguanidine (MANG) was synthesized using aminoguanidine (ANQ)and formaldehyde as raw materials, and the reaction process was analyzed. The crystal structure of MANG was analyzed by an X‑ray single diffractometer. Results show that the crystal belongs to an orthorhombic crystal system. Its space group is Pnn2. Each unit cell contains four MANG molecules, and the crystal density is 1.63 g·c