CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731-739.
ZHANGXian‑feng, ZHAOXiao‑ning. Review on multifunctional energetic structural materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(6): 731-739.
参考文献 2
BosloughM B. A thermochemical model for shock‑induced reactions (heat detonations) in solids[J]. The Journal of Chemical Physics, 1990, 92(3): 1839-1848.
参考文献 3
WilliamP W, LaszloJ K, JustinE P. Investigation of a bulk metallic glass as a shaped charge liner material[C]//23rd International Symposium on Ballistics, Tarragona, 2007: 31-37.
参考文献 4
XuF Y, ZhengY F, YuQ B, et al. Experimental study on penetration behavior of reactive material projectile impacting aluminum plate[J]. International Journal of Impact Engineering, 2016, 95: 125-132.
参考文献 5
ConnerR D, DandlikerR B, ScruggsV, et al. Dynamic deformation behavior of tungsten‑fiber/metallic glass matrix composites[J]. International Journal of Impact Engineering, 2000, 24: 435-444.
参考文献 6
ZhangX F, ShiA S, QiaoL, et al. Experimental study on impact‑initiated characters of multifunctional energetic structural materials[J]. Journal of Applied Physics, 2013, 113: 083508.
参考文献 7
ZhangX F, ShiA S, ZhangJ, et al. Thermochemical modeling of temperature controlled shock‑induced chemical reactions in multifunctional energetic structural materials under shock compression[J]. Journal of Applied Physics, 2012, 111: 123501.
参考文献 8
WeiC T, VitaliE, JiangF, et al. Quasi‑static and dynamic response of explosively consolidated metal‑aluminum powder mixtures[J]. Acta Materialia, 2012, 60: 1418-1432.
参考文献 9
BacciochiniA, RadulescuM T, CharronY T, et al. Enhanced reactivity of mechanically‑activated nano‑scale gasless reactive materials consolidated by coldspray [J]. Surface & Coatings Technology, 2012, 206: 4343-4348.
参考文献 10
HerboldE B, JordanJ L, ThadhaniN N. Effects of processing and powder size on microstructure and reactivity in arrested reactive milled Al+Ni[J]. Acta Materialia, 2011, 59: 6717-6728.
参考文献 11
XIONGWei, ZHANGXian‑feng, WuYang, et al. Influence of additives on microstructures, mechanical properties and shock‑induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540-549.
参考文献 12
SpechtP E, ThadhaniN N, WeihsT P. Configurational effects on shock wave propagation in Ni‑Al multilayer composites [J]. Journal of applied physics, 2012, 111: 073527.
参考文献 13
QiaoL, ZhangX F, HeY, et al. Multiscale modelling on the shock‑induced chemical reactions of multifunctional energetic structural materials[J]. Journal of Applied Physics, 2013, 113: 173513.
参考文献 14
EakinsD, ThadhaniN N. Discrete particle simulation of shock wave propagation in a binary Ni+Al powder mixture[J]. Journal of Applied Physics, 2007, 101: 043508.
参考文献 15
XuX, ThadhaniN N. Investigation of shock‑induced reaction behavior of as‑blended and ball‑milled Ni+Ti powder mixtures using time‑resolved stress measurements[J]. Journal of Applied Physics, 2004, 96(4): 2000-2009.
参考文献 16
EakinsD E, ThadhaniN N. Mesoscale simulation of the configuration‑dependent shock‑compression response of Ni+Al powder mixtures[J]. Acta Materialia, 2008, 56: 1496-1510.
参考文献 17
EakinsD E, ThadhaniN N. Shock‑induced reaction in a flake nickel spherical aluminum powder mixture[J]. Journal of Applied Physics, 2006, 100: 113521.
参考文献 18
EakinsD E, ThadhaniN N. Shock compression of reactive powder mixtures[J]. International Materials Reviews, 2009, 54(4): 4181-213.
参考文献 19
JICheng, HEYuan, WANGChuan‑ting, et al. Investigation on shock‑induced reaction characteristics of an Al/Ni composite processed via accumulative roll‑bonding[J]. Materials and Design, 2017, 116: 591-598.
参考文献 20
CAIXuan‑ming, ZHANGWei, XIEWen‑bo, et al. Initiation and energy release characteristics studies on polymer bonded explosive materials under high speed impact[J]. Materials and Design, 2015, 68: 18-23.
参考文献 21
WANGHai‑fu, ZHENGYuan‑feng, YUQing‑bo. Impact‑induced initiation and energy release behavior of reactive materials[J]. Journal of applied physics, 2011, 110, 074904-1-074904-8.
参考文献 22
WANGChuan‑ting, HEYong, JICheng, et al. Investigation on shock‑induced reaction characteristics of a Zr‑based metallic glassv[J]. Intermatellics, 2018, 93: 383-388.
参考文献 23
XuF Y, YuQ B, ZhengY F, et al. Damage effects of double‑spaced aluminum plates by reactive material projectile impact[J]. International Journal of Impact Engineering, 2017, 104: 13-20.
参考文献 24
经福谦. 实验物态方程导引(第二版)[M]. 北京,科学出版社, 1999: 209-370.
JINGFu‑qian. Experimental state equation guidance (second edition)[M]. Beijing, Science Press, 1999: 209-370.
参考文献 25
谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007: 15-61.
TANHua. Introduction to experimental shock‑wave physics [M]. Beijing: National Defence Industry Press, 2007: 15-61.
参考文献 26
LUOPu‑guang, WANGZai‑cheng, JIANGChun‑lan, et al. Experimental study on impact‑initiated characters of W/Zr energetic fragments[J]. Materials and Design, 2015, 84: 72-78.
目录 contents

    摘要

    为研究新型ZrNiAlCuAg亚稳态合金材料的冲击释能特性,采用准密封室试验系统对含能破片进行了冲击超压试验,研究了材料在不同冲击速度下的超压时程曲线变化规律、超压峰值和超压峰值增长率。对比了新型ZrNiAlCuAg亚稳态合金材料与多种多功能含能结构材料的单位质量能量密度和单位体积能量密度。结果表明材料超压时程曲线呈先急速上升后缓慢下降的特点,其超压峰值、超压峰值增长率均与冲击速度正相关;当冲击速度大于1400 m·s-1时,其反应效率接近40%。低速冲击时,材料的能量密度与其它含能破片相近,冲击速度达到1100 m·s-1时,其能量密度快速上升,并超越其它种类含能破片,当冲击速度为1485 m·s-1时,新型ZrNiAlCuAg亚稳态合金材料的单位质量能量密度达 到3.83 kJ·g-1,单位体积能量密度达到0.026 kJ·mm-3

    Abstract

    To study the shock energy release characteristics of new ZrNiAlCuAg metastable alloy material, the shock overpressure experiments of energetic fragments were processed with quasi‑sealed chamber test system. The change rule of overpressure time history curves, the overpressure peak value and growth rates of overpressure peak value of materials under different shock velocities were studied. The specific energy per unit mass and specific energy per volume of new ZrNiAlCuAg metastable alloy materials and multifunctional energetic structural materials were compared. The results show that the overpressure time history curves of materials show the characteristic of rapid rise first and slow decline later. The overpressure peak value and growth rate of overpressure peak value have positive correlations with the impact velocities. The reaction efficiency is close to 40% when the shock velocity is greater than 1400 m·s-1. The energetic density of material was closed to other type of energetic fragments under lower shock velocities. The energetic density increases rapidly when the shock velocity reaches 1100 m·s-1, which surpasses the other kinds of energetic fragments. The specific energy per unit mass of ZrNiAlCuAg metastable alloy material reaches 3.83 kJ·g-1 and its specific energy per unit volume reaches 0.026 kJ·mm-3 when the shock velocity is 1485 m·s-1.

    Graphic Abstract

    图文摘要

    html/hnclen/CJEM2018170/media/70c34cb5-f85f-45a8-bd5d-336d84f7e871-image007.png

    The shock overpressure experiments of ZrNiAlCuAg metastable reactive alloy energetic fragments were processed with quasi‑seal chamber test system to illustrate relationship among overpressure curves, the peak pressures and growth rates of peak pressures. The energy release process of the fragments was recorded by high‑speed video. The specific energy per unit volume and specific energy per mass of various multifunctional energetic structural materials were compared. The characters and the capacity of shock induced energy release of the materials were deeply discussed.

  • 1 引 言

    1

    多功能含能结构材料(MESM)是综合利用化学能和动能以提高战斗部毁伤效能的新型功能材[1]。MESM受到外界冲击后会诱发化学反应,并释放内能,其反应产物为凝聚态,属于热爆[2]。因此,MESM在聚能射[3]、含能破[4]、含能侵彻[5]等军事应用领域具有较大的潜力。常见的MESM种类主要包括铝热剂、金属间化合物、金属-高聚物混合物、亚稳态分子间复合物[6,7],通过改变各组分及配[8]、材料制备方[9]、颗粒[10]、混入添加[11]等方式,可以调节材料的感度、强度、密度、能量密度、反应速度等材料性质。亚稳态合金是新一代MESM,其既具有高强度、高硬度的优异力学性[6,7],又具有冲击释能特性,是极具潜力的含能预制破片材料。

    MESM通常作用于冲击高压状态,可忽略强度作用而将材料视为流体,平板冲[12,13]、冲击超压测[11]等高速撞击实验为最常用的研究手段。Thadhani[14,15,16,17,18]通过理论分析、细观仿真、实验研究等方法,系统地研究了Ni/Al系、Ni/Ti系等颗粒混合MESM在一维正冲击波下的压力响应、状态方程、相变规律等物理化学特性。基于一维应变假设的平板冲击可以方便地测得材料的高压响应、状态方程等规律,冲击超压测试则可以直接获得材料的冲击释能特性。Ji[19]、Cai[20]、Wang[21]等研究了轧制Al/Ni复合材料、高聚物粘结反应材料的冲击诱发化学反应(SICR)过程、特性及准密闭箱气体泄漏规律;Xiong[11]研究了不同冲击速度下,添加物对Al/Ni系复合材料超压峰值、超压持续时间、超压增长率的影响;Wang[22]研究了ZrCuNiAl非晶合金的SICR特性。目前,对于传统MESM的冲击释能特性研究较为充分,但针对亚稳态合金材料的冲击释能特性的相关研究较少。

    本研究测试了不同冲击速度下,新型ZrNiAlCuAg亚稳态合金材料破片的超压时程曲线和SICR过程及规律,为该亚稳态合金材料释能特性的进一步研究和应用提供理论和实验依据。

  • 2 实验部分

    2

    实验材料为新型ZrNiAlCuAg亚稳态合金材料(简写为亚稳态合金),含有Zr、Ni和Al等多种活性元素,通过机械加工,得到直径8 mm,高10 mm的圆柱体破片;实验器材为密封箱体、14.5 mm弹道枪、测速靶、瞬时超压传感器、数采仪等,箱体的尺寸、结构、材料及传感器位置与文献[11]相同。

    图1
                            准密封箱测试布置概略图

    图1 准密封箱测试布置概略图

    Fig.1 Layout sketch diagram for quasi‑sealed chamber test

    准密封箱冲击超压实验布置概略如图1所示,破片及尼龙弹托由14.5 mm弹道枪发射,实验中,冲击速度v为500~1500 m·s-1,尼龙弹托刻有凹槽保证破片飞行过程中弹托破碎分离。三块铝箔断通靶纸与计时仪相连,可计算破片通过前后两个靶纸间隔的平均速度,若测量结果的速度差小于平均值的5%,则测试结果有效,取后一速度作为破片冲击速度。圆柱密封箱容积为35.2 L,前板材料为低碳钢,厚度0.5 mm,底板为30 mm厚的硬质钢板,破片撞击底板后激发化学反应。箱壁上的瞬时超压传感器连接测试仪,用于测量箱内超压信号。由于瞬时超压信号测试过程中箱体前板已被破片贯穿,故称为准密封箱冲击超压实验。密封箱侧面有圆形窗口,可用高速摄影机观察破片的SICR过程,高速摄影频率设置为10000 帧/s。

  • 3 结果与讨论

    3
  • 3.1 材料SICR现象

    3.1

    冲击速度v=1152 m·s-1时,高速摄影捕捉的材料SICR现象较为清晰,如图2所示。假设破片进入画幅的第一帧时刻为t=0 ms(图2a),可以清楚地看到破片冲击箱体前破片弹托已分离,破碎后的弹托弹道性能变差,空气阻力增大,因此位于破片后方飞行。t=0.3 ms时,破片冲击前板,巨大的冲击压力导致破片部分破碎释能(图2b);在破片贯穿前板后,部分碎片与主破片构成椭球状碎片云向底板飞行,该现象与文献[23]提出理论模型所描述的碎片云分布规律相似(图2c);碎片云撞击底板导致材料内部压力、温度急剧升高,主破片进一步破碎,高温碎片与空气混合并发生剧烈的化学反应,导致箱体内局部空气温度、压力升高,并产生冲击波伴随碎片呈球形向外传播,如图2c与图2d所示;由于系统内外压力不平衡,高温高压气体及碎片从被贯穿的前板喷出,形成火舌,直至箱体内外压力相等,如图2e与图2f所示。

    图2
                            冲击速度1152 m·s-1时破片SICR过程高速摄影图像

    图2 冲击速度1152 m·s-1时破片SICR过程高速摄影图像

    Fig.2 High‑speed photographic images of the SCIR process of fragment at a shock velocity of 1152 m‑s-1

  • 3.2 超压变化规律

    3.2

    3为冲击速度834 m·s-1时传感器测得的实测压力曲线与准静态压力曲线,与氧平衡反应类、富氧反应类MESM不同,该亚稳态合金材料破碎并与空气充分混合后才发生剧烈化学反应,因此实测压力曲线的初始冲击波不明显。为避免测试噪音对实验结果规律的影响,一般采用平滑所得准静态压力曲线研究MESM冲击反应规律,曲线平滑步长取50个数据点,如图3所示,准静态压力曲线与实测压力曲线走势吻合。表1为破片试样在不同冲击速度下的超压峰值,m表示破片质量,超压峰值Δp表示材料SICR过程中超压时程曲线的最大值。

    图5
                            不同冲击速度下Δp‑v曲线

    图5 不同冲击速度下Δp‑v曲线

    Fig.5 The Δp‑v curves under different shock velocities

    4为不同冲击速度下的pt曲线,材料受冲击并激发释能反应后,箱体内压力迅速上升,表现为曲线第一阶段较为陡峭,当压力达到峰值后,由于气体从被贯穿的前板泄漏,此时曲线开始缓慢下降,压力上升阶段时间较短,约在10 ms数量级内,压力下降阶段时间较长,约在100 ms数量级内。图5为不同冲击速度下的Δpv曲线,散点为实验数据,曲线为拟合结果,可以看出,超压峰值Δp与冲击速度v具有明显的正相关性,随着冲击速度的增加,Δp呈上升趋势,且冲击速度较低时Δp增长较为平缓,冲击速度较高时Δp增长速率也变大,即冲击速度500~1500 m·s-1内,超压峰值增长率也与冲击速度正相关。

    图3
                            冲击速度834 m·s-1时实测压力曲线与准静态压力曲线

    图3 冲击速度834 m·s-1时实测压力曲线与准静态压力曲线

    Fig.3 The actual measured pressure curve and quasi‑static pressure curve at a shock velocity of 834 m·s-1

    表1 不同冲击速度下的超压峰值

    Table 1 Overpressure peak value under different shock velocities

    shotsv/m·s-1m/gΔp/MPa
    1#5523.430.019
    2#7233.400.033
    3#8343.420.042
    4#11053.490.058
    5#11523.420.069
    6#12423.360.105
    7#14063.410.124
    8#14853.470.151
    表1
                    不同冲击速度下的超压峰值

    NOTE: Δp is overpressure peak value.

    图4
                            不同冲击速度下p‑t曲线

    图4 不同冲击速度下pt曲线

    Fig.4 The pt curves under different shock velocities

  • 3.3 材料SICR反应效率

    3.3

    根据一维冲击波理论可以推导出破片冲击速度与压力的关系,由界面连续条[24]

    p1=p2
    (1)
    v-u1=u2
    (2)

    式中,p1为破片冲击压力,m·s-1p2为靶板冲击压力,m·s-1u1为破片粒子速度,m·s-1u2为靶板粒子速度,m·s-1v为破片撞击速度,m·s-1。由冲击波阵面的动量守恒或冲量原理,可以推导出波直线公[25]

    p1=ρ1D1u1
    (3)
    p2=ρ2D2u2
    (4)

    式中,D1为破片冲击波速度,m·s-1D2为靶板冲击波速度,m·s-1ρ1为破片密度,kg·m-3ρ2为靶板密度,kg·m-3。对于大部分固体,击波速度D与粒子速度u存在线性Hugoniot关[25]

    D1=C1+S1u1
    (5)
    D2=C2+S2u2
    (6)

    式中,C1=4021 m·s-1S1=4.124,C2=4570 m·s-1S2=1.49。

    由于释能反应开始到准密封箱内压力达到超压峰值时间极短,因此,在分析时该段时间内气体泄漏可忽略不[6,19],箱体内能增量与超压峰值的关系可以表示[6]

    Δp=γ-1VΔQ
    (7)

    式中,V为箱体容积,ΔQ为箱体中的内能增量,γ=1.4为箱内气体的比热容比。内能增量ΔQ由破片的部分动能Ek及释放化学能Ec共同组成,一般认为Ek约为MESM破片的初始动能的20%[26]

    MESM在冲击波加载下的化学释能行为与材料组元元素之间的反应焓及燃烧焓密切相关,其反应式可见文献[22]。根据Eakins[18]的研究成果,NiAl为可能性最大的反应产物,剩余的Al与O2反应,利用类似原理,经计算,该亚稳态合金材料的反应焓为8565.4 J·g-1。根据表1中实验结果及式(1)~(7),可计算冲击压力、能量及反应效率等,结果如表2所示。可以看到,在500~1500 m·s-1,撞击速度增加导致了材料冲击压力增大,进而诱发了不同程度的化学反应,材料的反应效率与撞击速度、冲击压力正相关,最大冲击释能反应效率达到42.13%。

    通常,含氧化剂的MESM如Al/Ni系材料反应效率较高,而需与空气混合反应的负氧平衡类MESM反应效率较低,新型ZrNiAlCuAg亚稳态合金材料属于负氧平衡类MESM,因此中低速撞击条件下,其反应效率小于50%。

    表2 冲击诱发释能实验数据的计算结果

    Table 2 Calculated results of shock induced energy release experiment data

    Shots

    v

    /m·s-1

    p

    /GPa

    ΔQ

    /kJ

    Ek

    /kJ

    Ec

    /kJ

    ET

    /kJ

    R

    /%

    1#55210.241.670.101.5729.385.34
    2#72314.042.900.182.7329.129.36
    3#83416.663.700.243.4629.2911.81
    4#110523.525.100.434.7829.8915.65
    5#115224.786.070.455.6229.2919.18
    6#124227.249.240.528.7228.7830.30
    7#140631.9210.910.6710.2429.2135.05
    8#148534.2613.290.7712.5229.7242.13
    表2
                    冲击诱发释能实验数据的计算结果

    NOTE: 1) ΔQ is the energy deposition of the chamber. 2) EK is the kinetic energy part of ΔQ. 3) EC is the chemical energy part of ΔQ. ET is theoretical chemical energy. R is reaction efficiency.

  • 3.4 多种MESM能量密度对比研究

    3.4

    特定冲击速度下的能量密度是评价MESM毁伤能力的重要参考指标,主要包括单位体积能量密度和单位质量能量密度,根据上述指标,对比研究亚稳态合金及其它多种MESM破片的冲击释能特性。

    6为多种MESM破片的单位质量能量密度-速度曲线,在600~1400 m·s-1速度范围内,新型亚稳态合金材料的单位质量能量密度低于Al/Ni/PTFE材料,高于其它MESM材料,在1450 m·s-1左右,新型亚稳态合金材料的单位质量能量密度超越Al/Ni/PTFE材料,当v=1485 m·s-1时,其单位质量能量密度为3.83 kJ·g-1,表明其具有较大的单位质量能量密度;亚稳态合金单位质量能量密度的急速上升段起点大约为1100 m·s-1左右,明显大于Al/Ni/PTFE材料(约750 m·s-1),小于Al/Ni/Cu、Al/Ni、ZrCuNiAl合金材料,而W/Zr、颗粒W/ZrCuNiAl材料没有明显的急速上升段,表明新型亚稳态合金材料更适用于高速冲击状态;新型亚稳态合金材料的反应效率表现出两种特征的速度相关性:低速(600~1100 m·s-1)时,反应效率随速度的缓慢增加,高速(>1100 m·s-1)时,反应效率随速度的急剧增加。这也表明,新型ZrNiAlCuAg亚稳态合金材料破片适用于交汇速度高的工况,例如作为防空反导破片使用时,其毁伤效应将更为显著。

    图6
                            多种MESM的单位质量能量密度

    图6 多种MESM的单位质量能量密度

    Fig.6 The specific energy per unit mass of various MESM

    由于含能破片载体空间受限,追求高密度以提高毁伤能力是含能破片发展方向之一,一定程度上,单位体积能量密度较单位质量体能更具有实际意义。图7为多种MESM的单位体积能量密度曲线,由于Zr/W系MESM密度较高,虽然Al/Ni系MESM单位质量能量密度大于MESM与Zr/W系MESM,但两者单位体积能量密度相差不大。低冲击速度时,亚稳态合金的单位体积能量密度与其它MESM相近,当速度大于1200 m·s-1时,该亚稳态合金单位体积能量密度超越其它材料并继续可上升,在1485 m·s-1冲击速度下,其单位体积能量密度为0.026 kJ·mm3,表明材料具有良好的冲击释能特性。

    图7
                            多种MESM的单位体积能量密度

    图7 多种MESM的单位体积能量密度

    Fig.7 The specific energy per unit volume of various MESM

  • 4 结 论

    4

    (1)亚稳态合金受冲击后激发剧烈的化学反应,在500~1500 m·s-1,其超压峰值、超压峰值增长率均与冲击速度正相关,当冲击速度为1485 m·s-1时,其反应效率达到42.13%。

    (2)与几种Al/Ni系、Zr/W系MESM相比,高速冲击状态下亚稳态合金的能量密度较高,当冲击速度为1485 m·s-1时,其单位质量能量密度达到3.83 kJ·g-1,单位体积能量密度达到0.026 kJ·mm-3

    (3)当冲击速度小于1100 m·s-1时,亚稳态合金较为钝感,其能量密度缓慢上升,当冲击速度大于1100 m·s-1时,其能量密度迅速上升,具有良好的冲击释能特性,是一类较为理想的多功能含能结构材料。

  • 参考文献

    • 1

      张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731-739.

      ZHANG Xian‑feng, ZHAO Xiao‑ning. Review on multifunctional energetic structural materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(6): 731-739.

    • 2

      Boslough M B. A thermochemical model for shock‑induced reactions (heat detonations) in solids[J]. The Journal of Chemical Physics, 1990, 92(3): 1839-1848.

    • 3

      William P W, Laszlo J K, Justin E P. Investigation of a bulk metallic glass as a shaped charge liner material[C]//23rd International Symposium on Ballistics, Tarragona, 2007: 31-37.

    • 4

      Xu F Y, Zheng Y F, Yu Q B, et al. Experimental study on penetration behavior of reactive material projectile impacting aluminum plate[J]. International Journal of Impact Engineering, 2016, 95: 125-132.

    • 5

      Conner R D, Dandliker R B, Scruggs V, et al. Dynamic deformation behavior of tungsten‑fiber/metallic glass matrix composites[J]. International Journal of Impact Engineering, 2000, 24: 435-444.

    • 6

      Zhang X F, Shi A S, Qiao L, et al. Experimental study on impact‑initiated characters of multifunctional energetic structural materials[J]. Journal of Applied Physics, 2013, 113: 083508.

    • 7

      Zhang X F, Shi A S, Zhang J, et al. Thermochemical modeling of temperature controlled shock‑induced chemical reactions in multifunctional energetic structural materials under shock compression[J]. Journal of Applied Physics, 2012, 111: 123501.

    • 8

      Wei C T, Vitali E, Jiang F, et al. Quasi‑static and dynamic response of explosively consolidated metal‑aluminum powder mixtures[J]. Acta Materialia, 2012, 60: 1418-1432.

    • 9

      Bacciochini A, Radulescu M T, Charron Y T, et al. Enhanced reactivity of mechanically‑activated nano‑scale gasless reactive materials consolidated by coldspray [J]. Surface & Coatings Technology, 2012, 206: 4343-4348.

    • 10

      Herbold E B, Jordan J L, Thadhani N N. Effects of processing and powder size on microstructure and reactivity in arrested reactive milled Al+Ni[J]. Acta Materialia, 2011, 59: 6717-6728.

    • 11

      XIONG Wei, ZHANG Xian‑feng, Wu Yang, et al. Influence of additives on microstructures, mechanical properties and shock‑induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540-549.

    • 12

      Specht P E, Thadhani N N, Weihs T P. Configurational effects on shock wave propagation in Ni‑Al multilayer composites [J]. Journal of applied physics, 2012, 111: 073527.

    • 13

      Qiao L, Zhang X F, He Y, et al. Multiscale modelling on the shock‑induced chemical reactions of multifunctional energetic structural materials[J]. Journal of Applied Physics, 2013, 113: 173513.

    • 14

      Eakins D, Thadhani N N. Discrete particle simulation of shock wave propagation in a binary Ni+Al powder mixture[J]. Journal of Applied Physics, 2007, 101: 043508.

    • 15

      Xu X, Thadhani N N. Investigation of shock‑induced reaction behavior of as‑blended and ball‑milled Ni+Ti powder mixtures using time‑resolved stress measurements[J]. Journal of Applied Physics, 2004, 96(4): 2000-2009.

    • 16

      Eakins D E, Thadhani N N. Mesoscale simulation of the configuration‑dependent shock‑compression response of Ni+Al powder mixtures[J]. Acta Materialia, 2008, 56: 1496-1510.

    • 17

      Eakins D E, Thadhani N N. Shock‑induced reaction in a flake nickel spherical aluminum powder mixture[J]. Journal of Applied Physics, 2006, 100: 113521.

    • 18

      Eakins D E, Thadhani N N. Shock compression of reactive powder mixtures[J]. International Materials Reviews, 2009, 54(4): 4181-213.

    • 19

      JI Cheng, HE Yuan, WANG Chuan‑ting, et al. Investigation on shock‑induced reaction characteristics of an Al/Ni composite processed via accumulative roll‑bonding[J]. Materials and Design, 2017, 116: 591-598.

    • 20

      CAI Xuan‑ming, ZHANG Wei, XIE Wen‑bo, et al. Initiation and energy release characteristics studies on polymer bonded explosive materials under high speed impact[J]. Materials and Design, 2015, 68: 18-23.

    • 21

      WANG Hai‑fu, ZHENG Yuan‑feng, YU Qing‑bo. Impact‑induced initiation and energy release behavior of reactive materials[J]. Journal of applied physics, 2011, 110, 074904-1-074904-8.

    • 22

      WANG Chuan‑ting, HE Yong, JI Cheng, et al. Investigation on shock‑induced reaction characteristics of a Zr‑based metallic glassv[J]. Intermatellics, 2018, 93: 383-388.

    • 23

      Xu F Y, Yu Q B, Zheng Y F, et al. Damage effects of double‑spaced aluminum plates by reactive material projectile impact[J]. International Journal of Impact Engineering, 2017, 104: 13-20.

    • 24

      经福谦. 实验物态方程导引(第二版)[M]. 北京,科学出版社, 1999: 209-370.

      JING Fu‑qian. Experimental state equation guidance (second edition)[M]. Beijing, Science Press, 1999: 209-370.

    • 25

      谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007: 15-61.

      TAN Hua. Introduction to experimental shock‑wave physics [M]. Beijing: National Defence Industry Press, 2007: 15-61.

    • 26

      LUO Pu‑guang, WANG Zai‑cheng, JIANG Chun‑lan, et al. Experimental study on impact‑initiated characters of W/Zr energetic fragments[J]. Materials and Design, 2015, 84: 72-78.

张云峰

机 构:陆军工程大学 石家庄校区,河北 石家庄 050000

Affiliation:Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050000, China

邮 箱:1193954881@qq.com

作者简介:张云峰(1990-),男,博士生,主要从事非晶含能结构材料研究。e‑mail:1193954881@qq.com

刘国庆

机 构:陆军工程大学 石家庄校区,河北 石家庄 050000

Affiliation:Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050000, China

角 色:通讯作者

Role:Corresponding author

邮 箱:13081106809@163.com

作者简介:刘国庆(1975-),男,教授,主要从事兵器科学与技术研究。e‑mail:13081106809@163.com

李晨

机 构:陆军工程大学 石家庄校区,河北 石家庄 050000

Affiliation:Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050000, China

施冬梅

机 构:陆军工程大学 石家庄校区,河北 石家庄 050000

Affiliation:Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050000, China

张玉令

机 构:陆军工程大学 石家庄校区,河北 石家庄 050000

Affiliation:Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050000, China

甄建伟

机 构:陆军工程大学 石家庄校区,河北 石家庄 050000

Affiliation:Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050000, China

html/hnclen/CJEM2018170/media/70c34cb5-f85f-45a8-bd5d-336d84f7e871-image001.png
html/hnclen/CJEM2018170/media/70c34cb5-f85f-45a8-bd5d-336d84f7e871-image002.png
html/hnclen/CJEM2018170/media/70c34cb5-f85f-45a8-bd5d-336d84f7e871-image005.png
html/hnclen/CJEM2018170/media/70c34cb5-f85f-45a8-bd5d-336d84f7e871-image003.png
shotsv/m·s-1m/gΔp/MPa
1#5523.430.019
2#7233.400.033
3#8343.420.042
4#11053.490.058
5#11523.420.069
6#12423.360.105
7#14063.410.124
8#14853.470.151
html/hnclen/CJEM2018170/media/70c34cb5-f85f-45a8-bd5d-336d84f7e871-image004.png
Shots

v

/m·s-1

p

/GPa

ΔQ

/kJ

Ek

/kJ

Ec

/kJ

ET

/kJ

R

/%

1#55210.241.670.101.5729.385.34
2#72314.042.900.182.7329.129.36
3#83416.663.700.243.4629.2911.81
4#110523.525.100.434.7829.8915.65
5#115224.786.070.455.6229.2919.18
6#124227.249.240.528.7228.7830.30
7#140631.9210.910.6710.2429.2135.05
8#148534.2613.290.7712.5229.7242.13
html/hnclen/CJEM2018170/media/70c34cb5-f85f-45a8-bd5d-336d84f7e871-image006.png
html/hnclen/CJEM2018170/media/70c34cb5-f85f-45a8-bd5d-336d84f7e871-image007.png

图1 准密封箱测试布置概略图

Fig.1 Layout sketch diagram for quasi‑sealed chamber test

图2 冲击速度1152 m·s-1时破片SICR过程高速摄影图像

Fig.2 High‑speed photographic images of the SCIR process of fragment at a shock velocity of 1152 m‑s-1

图5 不同冲击速度下Δp‑v曲线

Fig.5 The Δp‑v curves under different shock velocities

图3 冲击速度834 m·s-1时实测压力曲线与准静态压力曲线

Fig.3 The actual measured pressure curve and quasi‑static pressure curve at a shock velocity of 834 m·s-1

表1 不同冲击速度下的超压峰值

Table 1 Overpressure peak value under different shock velocities

图4 不同冲击速度下pt曲线

Fig.4 The pt curves under different shock velocities

表2 冲击诱发释能实验数据的计算结果

Table 2 Calculated results of shock induced energy release experiment data

图6 多种MESM的单位质量能量密度

Fig.6 The specific energy per unit mass of various MESM

图7 多种MESM的单位体积能量密度

Fig.7 The specific energy per unit volume of various MESM

image /

无注解

无注解

无注解

无注解

Δp is overpressure peak value.

无注解

1) ΔQ is the energy deposition of the chamber. 2) EK is the kinetic energy part of ΔQ. 3) EC is the chemical energy part of ΔQ. ET is theoretical chemical energy. R is reaction efficiency.

无注解

无注解

  • 参考文献

    • 1

      张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731-739.

      ZHANG Xian‑feng, ZHAO Xiao‑ning. Review on multifunctional energetic structural materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(6): 731-739.

    • 2

      Boslough M B. A thermochemical model for shock‑induced reactions (heat detonations) in solids[J]. The Journal of Chemical Physics, 1990, 92(3): 1839-1848.

    • 3

      William P W, Laszlo J K, Justin E P. Investigation of a bulk metallic glass as a shaped charge liner material[C]//23rd International Symposium on Ballistics, Tarragona, 2007: 31-37.

    • 4

      Xu F Y, Zheng Y F, Yu Q B, et al. Experimental study on penetration behavior of reactive material projectile impacting aluminum plate[J]. International Journal of Impact Engineering, 2016, 95: 125-132.

    • 5

      Conner R D, Dandliker R B, Scruggs V, et al. Dynamic deformation behavior of tungsten‑fiber/metallic glass matrix composites[J]. International Journal of Impact Engineering, 2000, 24: 435-444.

    • 6

      Zhang X F, Shi A S, Qiao L, et al. Experimental study on impact‑initiated characters of multifunctional energetic structural materials[J]. Journal of Applied Physics, 2013, 113: 083508.

    • 7

      Zhang X F, Shi A S, Zhang J, et al. Thermochemical modeling of temperature controlled shock‑induced chemical reactions in multifunctional energetic structural materials under shock compression[J]. Journal of Applied Physics, 2012, 111: 123501.

    • 8

      Wei C T, Vitali E, Jiang F, et al. Quasi‑static and dynamic response of explosively consolidated metal‑aluminum powder mixtures[J]. Acta Materialia, 2012, 60: 1418-1432.

    • 9

      Bacciochini A, Radulescu M T, Charron Y T, et al. Enhanced reactivity of mechanically‑activated nano‑scale gasless reactive materials consolidated by coldspray [J]. Surface & Coatings Technology, 2012, 206: 4343-4348.

    • 10

      Herbold E B, Jordan J L, Thadhani N N. Effects of processing and powder size on microstructure and reactivity in arrested reactive milled Al+Ni[J]. Acta Materialia, 2011, 59: 6717-6728.

    • 11

      XIONG Wei, ZHANG Xian‑feng, Wu Yang, et al. Influence of additives on microstructures, mechanical properties and shock‑induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540-549.

    • 12

      Specht P E, Thadhani N N, Weihs T P. Configurational effects on shock wave propagation in Ni‑Al multilayer composites [J]. Journal of applied physics, 2012, 111: 073527.

    • 13

      Qiao L, Zhang X F, He Y, et al. Multiscale modelling on the shock‑induced chemical reactions of multifunctional energetic structural materials[J]. Journal of Applied Physics, 2013, 113: 173513.

    • 14

      Eakins D, Thadhani N N. Discrete particle simulation of shock wave propagation in a binary Ni+Al powder mixture[J]. Journal of Applied Physics, 2007, 101: 043508.

    • 15

      Xu X, Thadhani N N. Investigation of shock‑induced reaction behavior of as‑blended and ball‑milled Ni+Ti powder mixtures using time‑resolved stress measurements[J]. Journal of Applied Physics, 2004, 96(4): 2000-2009.

    • 16

      Eakins D E, Thadhani N N. Mesoscale simulation of the configuration‑dependent shock‑compression response of Ni+Al powder mixtures[J]. Acta Materialia, 2008, 56: 1496-1510.

    • 17

      Eakins D E, Thadhani N N. Shock‑induced reaction in a flake nickel spherical aluminum powder mixture[J]. Journal of Applied Physics, 2006, 100: 113521.

    • 18

      Eakins D E, Thadhani N N. Shock compression of reactive powder mixtures[J]. International Materials Reviews, 2009, 54(4): 4181-213.

    • 19

      JI Cheng, HE Yuan, WANG Chuan‑ting, et al. Investigation on shock‑induced reaction characteristics of an Al/Ni composite processed via accumulative roll‑bonding[J]. Materials and Design, 2017, 116: 591-598.

    • 20

      CAI Xuan‑ming, ZHANG Wei, XIE Wen‑bo, et al. Initiation and energy release characteristics studies on polymer bonded explosive materials under high speed impact[J]. Materials and Design, 2015, 68: 18-23.

    • 21

      WANG Hai‑fu, ZHENG Yuan‑feng, YU Qing‑bo. Impact‑induced initiation and energy release behavior of reactive materials[J]. Journal of applied physics, 2011, 110, 074904-1-074904-8.

    • 22

      WANG Chuan‑ting, HE Yong, JI Cheng, et al. Investigation on shock‑induced reaction characteristics of a Zr‑based metallic glassv[J]. Intermatellics, 2018, 93: 383-388.

    • 23

      Xu F Y, Yu Q B, Zheng Y F, et al. Damage effects of double‑spaced aluminum plates by reactive material projectile impact[J]. International Journal of Impact Engineering, 2017, 104: 13-20.

    • 24

      经福谦. 实验物态方程导引(第二版)[M]. 北京,科学出版社, 1999: 209-370.

      JING Fu‑qian. Experimental state equation guidance (second edition)[M]. Beijing, Science Press, 1999: 209-370.

    • 25

      谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007: 15-61.

      TAN Hua. Introduction to experimental shock‑wave physics [M]. Beijing: National Defence Industry Press, 2007: 15-61.

    • 26

      LUO Pu‑guang, WANG Zai‑cheng, JIANG Chun‑lan, et al. Experimental study on impact‑initiated characters of W/Zr energetic fragments[J]. Materials and Design, 2015, 84: 72-78.