-
1 引言
1,1‑二氨基‑2,2‑二硝基乙烯(FOX‑7)是瑞典国防研究局(FOI)于20世纪90年代后期合成的一种高能低敏感炸
药[1,2,3] 。由于其具有低的撞击感度和摩擦感度、高的能量密度和爆速等优异的综合性能,因此引起了军事科研工作者的广泛关注,被认为是目前军事工业广泛使用的炸药黑索今(RDX)和奥克托今(HMX)的潜在替代物[4,5] 。炸药的纳米化使得炸药具有爆速高、爆轰稳定、能量释放快且完全等多种优异性能,因此,很多研究人员对纳米炸药的制备及性能进行了研
究[6,7,8,9,10,11] 。对于FOX‑7,目前的研究重点主要在理论计算[12,13] ,合成[14,15] 和热性能[16,17] 等方面,仅有少量研究者对纳米FOX‑7的制备及性能进行了初步探索。Huang等[18] 利用喷雾冷冻干燥法制备了FOX‑7纳米准三维(3D)网格结构,结果表明,FOX‑7网格结构的平均粒径的减小会导致其分解温度更低,分解速率更高。Cai等[19] 通过在介孔碳FDU‑15中嵌入FOX‑7制备了新型FOX‑7纳米晶,结果表明FOX‑7纳米晶感度与FDU‑15的热稳定性和机械稳定性密切相关。Gao等[20] 利用超声波喷雾辅助静电吸附(USEA)方法成功制备了纳米FOX‑7炸药颗粒,其具有较少的晶格缺陷和较低的内部应力,与亚微米和微米FOX‑7相比,其具有更高的能量释放效率。这些探索初步表明,FOX‑7的纳米化对其性能具有很大的改善,因此,研究纳米FOX‑7对改善其性能,以及其在含能材料领域的应用具有重要意义。在纳米含能材料的制备工艺技术中,溶剂‑非溶剂法因操作简便、制备的纳米含能材料具有纯度高、粒度分布窄等优点而得到较广泛的研究和应用,而采用溶剂‑非溶剂法制备纳米FOX‑7目前尚未见报道。有机溶剂N,N‑二甲基乙酰胺(DMAC),N‑甲基吡咯烷酮(NMP)能与水、醇、醚、酯、苯、三氯甲烷和芳香化合物等有机溶剂任意混合,具有热稳定性高、不易水解、腐蚀性低等特点,并且对FOX‑7有较高的溶解度(20 ℃下溶解度均大于32 g/100 mL)。因此,本研究拟以DMAC、NMP为溶剂,采用溶剂‑非溶剂法制备纳米FOX‑7,并对影响纳米FOX‑7形貌,物相,结构和性能的相关因素(溶剂、表面活性剂等)进行研究。
-
2 实验部分
-
2.1 试剂与原料
DMAC、NMP、甲苯、乳化剂OP‑10、Tween 20,分析纯,成都科龙化工试剂厂生产。FOX‑7,西安近代化学研究所提供。
-
2.2 样品制备
将FOX‑7原料按0.4 g/2.5 mL比例分别溶于 DMAC、NMP和DMAC/NMP混合(按1∶1体积比混合)溶剂中配置成一定浓度的溶液,并分别向DMAC/NMP混合溶液中加入表面活性剂OP‑10、Tween 20各50 μL,另配置成新的溶液备用。在冰水浴搅拌下,用移液管将2.5 mL溶液以10 s/滴(1滴约50 μL)的速度滴入作为非溶剂的50 mL甲苯中,通过溶剂‑非溶剂
法[21] 得到FOX‑7晶体。经抽滤,冷冻干燥,得到纳米FOX‑7粉末样品。 -
2.3 性能表征
采用德国Carl Zeiss公司的Ultra‑55型场发射扫描电子显微镜(FE‑SEM)对制备的FOX‑7样品的形貌进行分析,并通过Nano measurer软件从所得FE‑SEM图像中对样品的粒度及粒度分布进行统计(统计的颗粒数为200个);在40 kV和40 mA的Cu
Kα (λ=1.540598 Å)辐射和单色石墨偏振光束下,采用荷兰Panalytical公司的X′pert pro型X射线衍射仪(XRD)对制备的纳米FOX‑7的物相进行分析;采用德国Bruker Tensor 27型红外光谱仪对制备的纳米FOX‑7的结构进行红外分析;采用美国SDT Q600型热分析仪(DSC‑TG)对制备的纳米FOX‑7的热性能进行分析,测试条件:升温速率10 K·min-1 ,氮气气氛;样品的撞击感度测试参考GJB 5891.22-2006方法,采用轻落锤(质量:2 kg)撞击感度测试仪(BFH PEx)进行测试,样品量约为10 mg,每组测试次数为5次;样品的摩擦感度测试参考GJB 5891.24-2006方法,采用轻摩擦感度测试仪(FSKM 10 L)进行测试,样品量约为8 mg,每组测试次数为5次。 -
3 结果与讨论
-
3.1 FE‑SEM及粒度分析
对所制备的纳米FOX‑7进行FE‑SEM观察,并通过Nano Measurer软件对其粒度及粒度分布进行统计,其结果如图1所示。
从图1可知,原料FOX‑7粒径较大(最大可达140 μm),其颗粒形貌为不规则的棒状和块状的多空隙结构,并且能够发现明显的层状结构,这与文献[1]所描述的结果一致。而通过溶剂‑非溶剂法制备的纳米FOX‑7形貌及粒度与原料FOX‑7相比有较大差别。从DMAC溶液中结晶的FOX‑7微观形貌为类球形和胶囊形颗粒状,最小粒径为0.04 μm,粒径主要分布范围在0.10~0.40 μm,有接近1.00 μm的大颗粒出现(图1b)。从NMP溶液中结晶的FOX‑7微观形貌为椭球形和立方形颗粒,最小粒径为0.06 μm,粒径主要分布在0.10~0.40 μm,最大颗粒接近0.80 μm(图1c)。通过DMAC/NMP混合溶剂制备的FOX‑7样品微观形貌为类球形和短棒状形,最小粒径为0.07 μm,粒径主要分布在0.15~0.35 μm,最大颗粒接近0.65 μm(图1d)。在DMAC/NMP混合溶剂中添加表面活性剂OP‑10制备的FOX‑7样品,其微观形貌为椭球形和短棒状形,最小粒径为0.06 μm,粒径主要分布在0.15~0.35 μm(图1e),与未添加表面活性剂相比,其粒度变小,粒度分布更均匀,并具有较好的分散性。添加表面活性剂Tween 20制备的纳米FOX‑7微观形貌为块状、短棒形和类球形颗粒(图1f),最小粒径为0.04 μm,粒径主要分布在0.10~0.40 μm,与未添加表面活性剂相比,尽管其粒度更小,分散更好,团聚现象略微改善,但有少量的较大颗粒出现。
由上可知,采用溶剂‑非溶剂法制备的FOX‑7样品粒径都较小,最小粒径都小于0.10 μm。这主要是由于炸药溶液在加入非溶剂的过程中,FOX‑7在低温下快速结晶析出所造成的。采用单组分溶剂DMAC或NMP时,制备的纳米FOX‑7粒径分布范围较宽,颗粒大小不均匀,而通过DMAC/NMP混合溶剂制备的纳米FOX‑7粒径分布范围明显变窄,粒度分布更均匀,没有较大颗粒出现,这与溶剂在FOX‑7分子结晶过程和FOX‑7分子的相互作用有
关[22,23,24] 。当在DMAC/NMP混合溶剂中添加表面活性剂OP‑10、Tween 20时,所制备的纳米FOX‑7粒度变小,粒度分布更均匀,并具有较好的分散性。这是因为非离子类表面活性剂OP‑10、Tween 20的醇羟基与FOX‑7的硝基或氨基相互作用,对其晶体的生长有一定的阻滞作用;同时,分散剂的碳链所产生的空间位阻效应也对FOX‑7晶体的继续生长有抑制作用[25,26,27] 。而添加表面活性剂OP‑10制备的纳米FOX‑7,颗粒尺寸最小,粒径分布最均匀,效果最佳。 -
3.2 XRD分析
用粉末X射线衍射仪(XRD)对不同条件下所制备的纳米FOX‑7的物相进行了分析,其结果见图2。
从图2可知,原料FOX‑7在20.5°、26.8°和27.9°处有明显的衍射峰,此三个明显的特征衍射峰分别与α型FOX‑7的(1 1 1)、(0 2 0)和(0 2 1)晶面相对应,而在不同条件下制备的纳米FOX‑7的X射线衍射峰与原料FOX‑7的衍射峰基本一致,这说明制备的纳米FOX‑7具有较好的结晶度,其晶型为α型FOX‑7。
用Debye‑Scherrer公
式[28] 计算不同条件下制备的纳米FOX‑7的三个明显特征衍射峰所在晶面(1 1 1)、(0 2 0)和(0 2 1)的晶粒尺寸,并对其取平均值,得到其平均晶粒尺寸(Average Grain Size,AGS),其结果见表1。图2 原料FOX‑7和不同条件下制备的纳米FOX‑7的XRD图谱
Fig.2 XRD patterns of RAW FOX‑7 and nano‑FOX‑7 prepared under different conditions
从表1可知,所制备的纳米FOX‑7的平均晶粒尺寸均小于30 nm。在未添加表面活性剂的情况下,采用NMP为溶剂时,所制备的纳米FOX‑7的平均晶粒尺寸最小(22.8 nm),其次为DMAC/NMP混合溶剂(27.0 nm)。当在混合溶剂中添加表面活性剂后,其晶粒尺寸进一步减小,其中添加表面活性剂OP‑10所制备的FOX‑7的晶粒尺寸最小(22.5 nm),这与前面FE‑SEM图和粒度分析所得到的结果基本一致。通过溶剂‑非溶剂法可制备出平均晶粒尺寸小于30 nm的纳米FOX‑7。
-
3.3 FT‑IR分析
对不同条件下制备的纳米FOX‑7进行红外分析,其结果见图3。
图3 原料FOX‑7和不同条件下制备的纳米FOX‑7的FT‑IR图谱
Fig.3 FT‑IR spectra of RAW FOX‑7 and nano‑FOX‑7 prepared under different conditions
从图3可以看出,在原料FOX‑7的红外光谱上,在3220.00~3406.00 c
m-1 处为—NH2 官能团的伸缩振动峰,1522.80 cm-1 处为—NH2 官能团的弯曲振动峰。1638.35 cm-1 处为—C C—的伸缩振动峰,1395.70 cm-1 及1352.20 cm-1 处为—NO2 官能团的对称伸缩振动峰,1240.83 cm-1 及1027.54 cm-1 处为C—N键的伸缩振动峰。制备的纳米FOX‑7的红外吸收峰与原料FOX‑7的红外吸收峰基本吻合,这表明制备的纳米FOX‑7分子结构并未发生变化。 -
3.4 TG ‑DSC分析
采用差示扫描量热法(DSC)和热重法(TG)对制备的纳米FOX‑7的热性能进行了测试分析,其结果分别如图4和图5所示。
图4 原料FOX‑7和不同条件下制备的纳米FOX‑7的DSC曲线
Fig.4 DSC curves of RAW FOX‑7 and nano‑FOX‑7 prepared under different conditions
图5 原料FOX‑7和不同条件下制备的纳米FOX‑7的TG曲线
Fig.5 TG curves of RAW FOX‑7 and nano‑FOX‑7 prepared under different conditions
表1 不同条件下制备的纳米FOX‑7平均晶粒大小
Table 1 Average grain sizes of nano‑FOX‑7 prepared under different conditions
solvent DMAC NMP DMAC/NMP DMAC/NMP
(OP‑10)
DMAC/NMP
(Tween 20)
AGS / nm 28.5 22.8 27.0 22.5 24.4 从图4可知,原料FOX‑7和所制备的纳米FOX‑7的DSC曲线均出现两个分解放热峰,这表明其分解放热过程分为两个阶段进行。第一个阶段为低温分解阶段(210~250 ℃),主要是FOX‑7的分子内和分子间氢键在加热情况下发生断裂,相邻FOX‑7分子脱去两个氨基的氢和一个硝基的氧,形成水分子,同时还伴随碳碳双键的缩合反应;第二个阶段为高温分解阶段(260~300 ℃),主要由于FOX‑7分子中碳骨架的断裂产
生[29] 。原料FOX‑7的初始分解峰温度为223.7 ℃,第二个分解峰温度为290.4 ℃。对于低温分解峰,采用DMAC、DMAC/NMP溶剂制备的纳米FOX‑7的分解温度与原料相比略微上升,而采用NMP为溶剂或混合溶剂添加表面活性剂时,其分解温度可达238 ℃,比原料FOX‑7的分解峰温提高了接近15 ℃,这种现象可以用“拓扑化学反应理论”来解释[30,31,32] 。通常,较小(纳米)的FOX‑7颗粒需要较高的分解温度,因为其具有较少的晶格缺陷和较低的内部应力。而对于高温分解峰,制备的纳米FOX‑7放热峰温相较于原料依次提前了4.7,0.1,4.7,4.9,2.5 ℃,这可能是由于制备的纳米FOX‑7颗粒尺寸小,表面原子所占比例大大增加,与原料FOX‑7相比,纳米FOX‑7具有更高的表面能,导致其分解放热提前,这与之前的研究者[17,20,32] 所得到的结果是一致的。另外,与原料高低温分解放热温度范围(223.7~290.4 ℃)相比,纳米FOX‑7的两个分解放热过程集中在较窄的温度范围,这意味着制备的纳米FOX‑7具有更高的能量释放效率。其中,添加表面活性剂OP‑10和Tween 20制备的纳米FOX‑7的两个放热峰温度范围最窄,分别为238.6~285.5 ℃,238.8~287.9 ℃,这表明添加表面活性剂制备的纳米FOX‑7具有更好的热稳定性和能量释放效率。由图5可知,原料和所制备的纳米FOX‑7质量损失过程均按两步进行。其中,原料质量损失在213 ℃左右开始,在293 ℃左右完成,总体质量损失率约为91%;通过DMAC制备的样品质量损失在220 ℃左右开始,在285 ℃左右完成,质量损失率约为95%;通过NMP制备的样品质量损失在225 ℃左右开始,在293 ℃左右完成,质量损失率约为93%;通过DMAC/NMP制备的样品质量损失在217 ℃左右开始,在286 ℃左右完成,质量损失率约为93%;添加OP‑10制备的样品质量损失在227 ℃左右开始,在288 ℃左右完成,质量损失率约为95%;添加Tween 20制备的样品在291 ℃左右完成失质量损失,质量损失率约为93%。这与图4的DSC曲线相对应。
表2为原料和所制备的纳米FOX‑7的热性能数据,其中分解焓由TA Universal Analysis软件分析得到。从表2可知,单组分溶剂,混合溶剂和混合溶剂添加表面活性剂OP‑10、Tween 20制备的纳米FOX‑7的低温分解峰相较于原料分别提高了0.2,14.9,0.2,14.9 ℃和14.9 ℃,其分解焓明显高于原料分解焓(1289 J·
g-1 ),而混合溶剂添加表面活性剂制备的纳米FOX‑7分解焓提高更为明显,其分解焓较于原料相比分别提高了4.97%,4.65%,这表明添加表面活性剂制备的纳米FOX‑7粒径分布更为均匀,其能量释放效率更高,并且具有更高的分解焓。表2 原料FOX‑7及不同条件下制备的纳米FOX‑7的平均粒径及热性能
Table 2 Average grain sizes and thermal properties of RAW FOX‑7 and nano‑FOX‑7 prepared under different conditions
preparation conditions AGS / nm T1 / ℃ T2 / ℃ ΔH / J· g-1 RAW FOX‑7 - 223.7 290.4 1289 DMAC 28.5 223.9 285.7 1304 NMP 22.8 238.6 290.3 1319 DMAC/NMP 27.0 223.9 285.7 1324 DMAC/NMP(OP‑10) 22.5 238.6 285.5 1353 DMAC/NMP(Tween 20) 24.4 238.6 287.9 1349 NOTE: T1 is the first exothermic peak, T2 is the second exothermic peak, ΔH is the enthalpy of decomposition.
-
3.5 感度分析
分别采用轻落锤撞击感度测试仪、轻摩擦感度测试仪对原料FOX‑7及不同条件下所制备的纳米FOX‑7的撞击感度、摩擦感度进行了测试和分析。其结果见表3。
表3 原料FOX‑7及不同条件下制备的纳米FOX‑7的撞击感度与摩擦感度
Table3 Impact sensitivities and friction sensitivities of RAW FOX‑7 and nano‑FOX‑7 prepared under different conditions
从表3可以看出,与原料相比,所制备的纳米FOX‑7的撞击感度降低,而摩擦感度则大幅下降。当
落锤在最高处(100 cm)落下时,原料FOX‑7有少量分解,所以认为其撞击感度接近20J,而通过溶剂‑非溶剂法所制备的纳米FOX‑7在此条件下均未发生分解,故其撞击感度大于20 J。原料FOX‑7摩擦感度为216 N,而所制备的纳米FOX‑7摩擦感度均有一定程度的下降,其中混合溶剂添加表面活性剂OP‑10、Tween 20制备的样品摩擦感度下降最为明显。相较于原料,其分别下降了66.7%和50%。造成这一现象的主要原因可能是由于:原料FOX‑7结构不规整,颗粒尺寸较大,晶体颗粒间存在间隙,在受到外部力的刺激作用时容易在颗粒内局部区域产生“热点”效应,发生反应进而发生爆炸,从而导致原料感度较高;而通过溶剂‑非溶剂法制备的纳米FOX‑7结构较为规整,颗粒尺寸小,在受到外部力的刺激作用时不容易在局部区域形成“热点”,因而感度较低。这个现象也可以通过粒径统计图进行说明,从DMAC结晶出的FOX‑7存在一些较大颗粒,而混合溶剂添加表面活性剂结晶出的FOX‑7颗粒尺寸明显变小,粒度分布更均匀,因此摩擦感度下降较为明显,而从DMAC结晶出的纳米FOX‑7摩擦感度下降效果不明显。
-
4 结 论
(1)采用溶剂‑非溶剂法在不同条件下成功制备了纳米FOX‑7。在制备过程中,溶剂及表面活性剂对所制备的纳米FOX‑7的性能具有重要影响。制备的纳米FOX‑7晶粒尺寸均小于30 nm,部分颗粒尺寸小于100 nm。添加表面活性剂有助于降低纳米FOX‑7的晶粒尺寸及颗粒尺寸,提高样品粒度分布的均匀性,改善样品分散性。
(2)热分析结果表明:所制备的纳米FOX‑7初始分解放热峰温度均有一定程度上升,其高低温分解放热峰之间温度范围相比原料变窄,比原料具有更好的热稳定性、能量释放效率和更高的分解焓。当采用DMAC/NMP混合溶剂添加表面活性剂OP‑10和Tween 20时,样品初始分解温度达到238℃,与原料相比提高了接近15 ℃;分解焓分别提高了4.97%,4.65%。
(3)与原料相比,所制备的纳米FOX‑7撞击感度、摩擦感度均有一定程度降低,当采用混合溶剂添加表面活性剂OP‑10和Tween 20时,其摩擦感度分别下降了66.7%,50.0%。采用混合溶剂添加表面活性剂OP‑10制备的纳米FOX‑7,性能最佳。
-
参考文献
-
1
Lochert I J. FOX‑7: a new insensitive explosive[J] DSTO,2001(6):1-23.
-
2
Bellamy A J. FOX‑7(1,1‑diamino‑2,2‑dinitroethene):high energy density materials[M]. Springer Berlin Heidelberg, 2007: 1-33.
-
3
Latypov N V, Bergman J, Langlet A, et al. Synthesis and reactions of 1,1‑diamino‑2,2‑dinitroethylene[J]. Cheminform, 1998, 30(1): 11525-11536.
-
4
Hudson R J, Zioupos P, Gill P P, et al. Investigating the mechanical properties of RDX crystals using nano‑indentation[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 191-197.
-
5
Zhang C, Peng Q, Wang L, et al. Thermal sensitivity of HMX crystals and HMX‑based explosives treated under various conditions[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(6): 561-566.
-
6
However. Nano‑CL‑20/HMX cocrystal explosive for significantly reduced mechanical sensitivity[J]. Journal of Nanomaterials, 2017, 2017(5): 1-7.
-
7
于佳莹, 王建华, 刘玉存,等.CL‑20/GO纳米复合含能材料的制备与性能研究[J]. 科学技术与工程, 2017, 17(12): 93-96.
YU Jia‑ying, WANG Jian‑hua, LIU Yu‑cun, et al. Preparation and properties of CL‑20/GO nanocomposite energetic materials[J].Science Technology and Engineering,2017, 17(12):93-96.
-
8
Han Gao, Xiao‑ting Hou, Xiang Ke, et al. Effects of nano‑HMX on the properties of RDX‑CMDB propellant: higher energy and lower sensitivity[J]. Defence Technology, 2017(5): 323-‑326.
-
9
Makhov M N. Energy content of HMX‑silicon nano‑powder mixtures[J]. Russian Journal of Physical Chemistry B, 2018, 12(1): 115-119.
-
10
Liu J, Bao X Z, Rong Y B, et al. Preparation of nano‑RDX‑based PBX and its thermal decomposition properties[J]. Journal of Thermal Analysis & Calorimetry, 2017(3): 1-6.
-
11
Doukkali M, Patel R B, Stepanov V, et al. The effect of ionic strength and ph on the electrostatic stabilization of nano‑RDX[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(9).
-
12
徐哲, 李小东, 边红莉,等.初始裂解产物对FOX‑7裂解通道影响的理论研究[J]. 科学技术与工程, 2017, 17(10): 36-39.
XU Zhe, LI Xiao‑dong, BIAN Hong‑li, et al. Theoretical study on the effect of initial cracking products on FOX‑7 cracking channel[J]. Science Technology and Engineering, 2017, 17(10): 36-39.
-
13
孟增睿, 尚丽平, 杜宇,等. FOX‑7太赫兹波吸收特性及理论计算[J]. 光谱学与光谱分析, 2015, 44(7): 1121-1125.
MENG Zeng‑rui, SHANG Li‑ping ,DU Yu, et al. Absorption characteristics and theoretical calculation of FOX‑7 terahertz wave[J]. Infrared and Laser Engineering, 2015, 44(7): 1121-1125.
-
14
Taylor D E, Rob F, Rice B M, et al. A molecular dynamics study of 1,1‑diamino‑2,2‑dinitroethylene (FOX‑7) crystal using a symmetry adapted perturbation theory‑based intermolecular force field[J].Physical Chemistry Chemical Physics, 2011, 13(37): 16629-16636.
-
15
蔡华强, 舒远杰, 郁卫飞,等.FOX‑7的合成和反应机理研究[J]. 化学学报, 2004, 62(3): 295-301.
CAI Hua‑qiang, SHU Yuan‑jie, YU Wei‑fei, et al. Study on the synthesis and reaction mechanism of FOX‑7[J]. Acta Chimica Sinica, 2004, 62(3): 295-301.
-
16
宗和厚.FOX‑7热分解机理及晶体特性的理论研究[D]. 绵阳: 中国工程物理研究院, 2007: 44-50.
ZONG He‑hou.Theoretical study on thermal decomposition mechanism and crystal properties of FOX‑7[D]. Mianyang: China Academy of Engineering Physics, 2007:44-50.
-
17
Burnham A K, Weese R K, Wang R, et al. Thermal properties of FOX‑7[J]. Office of Scientific & Technical Information Technical Reports, 2005: 211114-211119.
-
18
Huang B, Qiao Z, Nie F, et al. Fabrication of FOX‑7 quasi‑three‑dimensional grids of one‑dimensional nanostructures via a spray freeze‑drying technique and size‑dependence of thermal properties[J]. Journal of Hazardous Materials, 2010, 184(1‑3): 561-566.
-
19
Cai H, Tian L, Huang B, et al. 1,1‑Diamino‑2,2‑dintroethene (FOX‑7) nanocrystals embedded in mesoporous carbon FDU‑15[J]. Microporous & Mesoporous Materials, 2013, 170(4): 20-25.
-
20
Gao B, Wu P, Huang B, et al. Preparation and characterization of nano‑1,1‑diamino‑2,2‑dinitroethene (FOX‑7) explosive[J]. New Journal of Chemistry, 2014, 38(6): 2334-2341.
-
21
储峰, 邓潘, 樊祥,等.溶剂‑非溶剂法在含能材料中的应用[J]. 化学推进剂与高分子材料, 2010, 8(3): 38-41.
CHU Feng, DENG pan, FAN xiang, et al. Application of solvent‑non solvent method in energetic materials[J]. Chemical Propellants & Polymeric Materials,2010, 8(3): 38-41.
-
22
Fernandez E J, Laguna A, Lopez‑De‑Luzuriaga J M, et al.Gold‑thallium supramolecular arrays with 4,4'‑bipyridine solvent induction of luminescent networks[J]. Dalton Transactions, 2004, 4(12): 1801-1806.
-
23
Celebre G, De L G, Maiorino M, et al. Solute‑solvent interactions and chiral induction in liquid crystals[J]. Journal of the American Chemical Society, 2005, 127(33):11736-11744.
-
24
Yagi S, Morinaga T, Nomura T, et al. Solvent effect on helicity induction of zinc bilinone bearing a chiral auxiliary at the helix terminal[J]. Journal of Organic Chemistry, 2001, 66(11):3848-3853.
-
25
Bakshi M S, Sachar S, Kaur G, et al. Dependence of crystal growth of gold nanoparticles on the capping behavior of surfactant at ambient conditions[J]. Crystal Growth & Design, 2008, 8(5): 1713-1719.
-
26
Mitarai M, Kishimoto M, Suh D, et al. Surfactant effects on the crystal growth of clathrate hydrate at the interface of water and hydrophobic‑guest Liquid[J]. Crystal Growth & Design, 2015, 15(2):812-821.
-
27
Gómez‑Cisneros M, Treviño M E, Peralta R D, et al. Surfactant concentration effects on the microemulsion polymerization of vinyl acetate[J]. Polymer, 2005, 46(9): 2900-2907.
-
28
Qingping Luo, Chonghua Pei, Guixiang Liu, et al. Insensitive High Cyclotrimethylenetrinitramine (RDX) nanostructured explosives derived from solvent/nonsolvent method in a bacterial cellulose (BC) gelatin matrix[J]. Nano, 2015,10(3):1550033‑1-1550033‑8.
-
29
付秋菠.1,1‑二氨基‑2,2‑二硝基乙烯的合成及其性能研究[D]. 成都: 四川大学, 2007: 34-40.
FU Qiu‑bo.Synthesis and properties of 1,1‑diamino‑2,2‑dinitroethylene[D]. Chengdu: Sichuan University, 2007: 34-40.
-
30
Wang K, Zhang W, Phelan R, et al. Direct fabrication of well‑aligned free‑standing mesoporous carbon nanofiber arrays on silicon substrates[J]. Journal of the American Chemical Society, 2007, 129(44): 13388-13389.
-
31
Prodan E A. Localization phenomena of topo chemical reactions[J]. Journal of Thermal Analysis, 1984, 29(5):941-948.
-
32
Zohari N, Keshavarz M H, Seyedsadjadi S A. The advantages and shortcomings of using nano‑sized energetic materials[J]. Central European Journal of Energetic Materials, 2013, 10(1):135-147.
-
1
摘要
以N,N‑二甲基乙酰胺(DMAC)、N‑甲基吡咯烷酮(NMP)及两者的混合物为溶剂,通过溶剂‑非溶剂法制备了纳米1,1‑二氨基‑2,2‑二硝基乙烯(FOX‑7)。通过场发射电子显微镜(FE‑SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FT‑IR)、差示扫描量热法(DSC)和热重分析法(TG)对所制备的纳米FOX‑7的形貌、物相、结构和热性能进行了表征,并对样品的感度进行了测试;在此基础上,研究了溶剂、表面活性剂对纳米FOX‑7性能的影响。结果表明:所制备的纳米FOX‑7平均晶粒尺寸小于30 nm。添加表面活性剂有助于降低纳米FOX‑7的晶粒尺寸及颗粒尺寸,提高其粒度分布均匀性,改善其分散性。与原料相比,所制备的纳米FOX‑7的初始分解温度提高,两个分解放热峰之间温度范围变窄,能量释放效率及分解焓有较大的提高,撞击感度与摩擦感度明显降低。当采用混合溶剂并添加表面活性剂OP‑10和Tween 20时,所制备的纳米FOX‑7的初始分解温度都提高近15 ℃,分解焓分别提高了4.97%,4.65%,摩擦感度降低了66.7%,50.0%。
Abstract
Nano‑1,1‑diamino‑2,2‑dinitroethylene(FOX‑7) was prepared by the solvent‑non‑solvent method using N,N‑dimethylacetamide(DMAC), N‑methylpyrrolidone (NMP) and a mixture of the two as solvents. The morphology, phase, structure and thermal performances of the prepared nano‑FOX‑7 were characterized by field emission scanning electron microscope (FE‑SEM), X‑ray diffraction(XRD), Fourier transform infrared spectroscopy(FT‑IR), differential scanning calorimetry(DSC) and thermogravimetric analysis(TG) method and its sensitivities were tested. On this basis, the effects of solvents and surfactants on the performances of nano‑FOX‑7 were investigated. The results show that the average grain size of the prepared nano‑FOX‑7 is less than 30 nm. The addition of surfactant is helpful to reduce the grain size and particle size of the prepared nano‑FOX‑7, enhance its uniformity of particle size distribution and improve its dispersity. Compared with the raw material, the initial decomposition temperatures of the prepared nano‑FOX‑7 increase, the temperature ranges between their two decomposition exothermic peaks become narrow, their energy release efficiency and decomposition enthalpy greatly increase and the impact and friction sensitivities significantly reduce. When using the mixed solvents and adding the surfactants OP‑10 and Tween 20, the initial decomposition temperatures of the prepared nano‑FOX‑7 increase nearly by 15 ℃, the enthalpies of decomposition increase by 4.97% and 4.65% respectively. And the friction sensitivities decrease by 66.7% and 50.0% respectively.