CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
TiwariS C, NomuraK, KaliaR K, et al. Multiple reaction pathways in shocked 2,4,6‑Triamino‑1,3,5‑trinitrobenzene Crystal[J]. Journal of Physical Chemistry C, 2017, 121(29):16029-16034.
参考文献 2
KroonblawdM P, SewellT D, MailletJ B. Characteristics of energy exchange between inter‑ and intramolecular degrees of freedom in crystalline 1,3,5‑triamino‑2,4,6 ‑trinitrobenzene (TATB) with implications for coarse‑grained simulations of shock waves in polyatomic molecular crystals[J]. Journal of Chemical Physics, 2016, 144(6): 064501-064514.
参考文献 3
RigdonL P, MoodyG L, McguireR R. Preparation of 1,3,5‑triamo‑2,4,6‑trinitrobenzene of submicron particle size: US, US6225503[P]. 2001.
参考文献 4
TalawarM B, AgarwalA P, AnniyappanM, et al. Method for preparation of fine TATB (2‑5 microm) and its evaluation in plastic bonded explosive (PBX) formulations[J]. Journal of Hazardous Materials, 2006, 137(3): 1848-1852.
参考文献 5
KasarS M. Synthesis and characterization of ultrafine TATB [J]. Journal of Energetic Materials, 2007, 25(4): 213-231.
参考文献 6
YangL, RenX, LiT, et al. Preparation of ultrafine TATB and the technology for crystal morphology control[J]. Chinese Journal of Chemistry, 2012, 30(2): 293-298.
参考文献 7
TanX‑R, DuanX‑H, PeiC‑H, et al. Preparation of NanoTATB by semibationrractioncrystallion[J]. Nano, 2013, 8(05): 1350055-1350062.
参考文献 8
SongX, WangY, ZhaoS, et al. Characterization and thermal decomposition of nanometer 2,2′,4,4′,6,6′‑hexanitro‑stilbene and 1,3,5‑triamino‑2,4,6‑trinitrobenzene fabricated by a mechanical milling method[J]. Journal of Energetic Materials, 2017,36(2): 179-190.
参考文献 9
HuangB, CaoM, WuX, et al. Twinned TATB nano belts: synthesis, characterization, and formation mechanism[J]. Crystengcomm, 2011, 13(22): 6658-6664.
参考文献 10
YangG, NieF, HuangH, et al. Preparation and characterization of nano‐TATB explosive[J]. Propellants, Explosives, Pyrotechnics, 2010, 31(5): 390-394.
参考文献 11
WangJ, WangY, QiaoZ, et al. Self‑assembly of TATB 3D architectures via micro‑channel crystallization and formation mechanism[J].Crystengcomm, 2016, 18(11): 1953-1957.
参考文献 12
杨光成, 聂福德, 黄辉,等.纳米TATB制备和表征[J]. 含能材料, 2005, 13(5): 354-354.
YANGGuang‑cheng, NIEFu‑de, HUANGHui, et al. Preparation and characterization of nano‑TATB[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(5): 354-354.
参考文献 13
ChengM, LiP, DuanX, et al. A three‐dimensional hierarchical dandelion‐like HMX architecture formed at a liquid‐liquid interface[J]. Crystal Research & Technology, 2018, 53(3): 1700226-1700233.
参考文献 14
黄新民, 解挺.材料分析测试方法 [M]. 北京: 国防工业出版社, 2006.
HUANGXin‑min, XIETing. Material analysis and testing methods [M]. Beijing: National Defense Industry Press, 2006.
参考文献 15
XieR, LiY, GuoB, et al. Exploring microstructure and surface features of Chinese coins using non‑invasive approaches [J]. Applied Surface Science, 2015, 332: 205-214.
参考文献 16
GaoB, WuP, HuangB, et al. Preparation and characterization of nano‑1,1‑diamino‑2,2‑dinitroethene(FOX‑7) explosive[J]. New Journal of Chemistry, 2014, 38(6): 2334-2341.
参考文献 17
KissingerH E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706.
参考文献 18
DuR L, WuK, XuD A, et al. A modified Arrhenius equation to predict the reaction rate constant of Anyuan pulverized‑coal pyrolysis at different heating rates[J]. Fuel Processing Technology, 2016, 148: 295-301.
参考文献 19
唐万军, 陈栋华.二水草酸亚铁热分解反应动力学[J]. 物理化学学报, 2007, 23(4): 605-608.
TANGWan‑jun, CHENDong‑hua. Thermal decomposition kinetics of ferrous oxalate dehydrate[J]. Acta Physico‑Chimica Sinica, 2007, 23(4): 605-608.
参考文献 20
潘云祥, 管翔颖, 冯增媛等.一种确定固相反应机理函数的新方法——固态草酸镍(Ⅱ)二水合物脱水过程的非等温动力学[J]. 无机化学学报, 1999, 15(2):247-251.
PANYun‑xiang, GUANXiang‑ying, FENGZeng‑yuan, et al. A new method determining mechanism function of solid state reaction‑the non‑isothermal kinetic of dehydration of nickel(Ⅱ) oxalate dihydrate in solid state[J]. Chinese Journal of Inorganic Chemistry, 1999, 15(2):247-251.
参考文献 21
YuwenL, WanjunT. Ammonium metavanadate by thermal method[J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 2054-2059.
目录 contents

    摘要

    基于纳米结构对材料性能的调控,采用溶剂/非溶剂法来构筑三氨基三硝基苯(TATB)的纳米结构。通过强的非溶剂效应和温度效应,制备得到龙骨状纳米结构TATB。采用场发射扫描电镜(FE‑SEM)与透射电镜(TEM)观察样品的微观形貌,X射线衍射分析(XRD)和激光粒度分析仪测试样品的晶相和粒径分布。结果表明,所得样品整体呈龙骨状结晶,晶型较原料TATB未发生改变,粒径分布为70~400 nm。不同升温速率下的热分析结果表明,龙骨状TATB的热分解峰温较原料TATB提前1.54~2.91 ℃,表观活化能(Ea)提高0.29 kJ·mol-1,对热刺激的敏感性降低;通过微分法计算得出龙骨状TATB的热分解机理为随机核化,每一粒子有一个核,而原料则为三维扩散,其动力学方程为球形对称的Jander方程。

    Abstract

    Based on the regulating of nanostructure on the properties of materials, the nanostructure of 1,3,5‑triamino‑2,4,6‑trinitrobenzene (TATB) was constructed by solvent/non‑solvent method. Through strong nonsolvent effect and temperature effect,the keel‑like nanostructure TATB was prepared.The microstructure of the sample was observed by field emission scanning electron microscopy (FE‑SEM) and transmission electron microscopy (TEM) and the crystal phase and particle size distribution of the sample were measured by X‑ray diffraction (XRD) and Laser Particle Size Analyzer. The results show that the whole morphology of obtained sample is keel‑like crystalline. And the crystal form does not change compared with the raw material and the size distribution is from 70 to 400 nm. The thermal analyses at different heating rates show that the thermal decomposition peak temperature of keel‑like nanostructure TATB is 1.54-2.91 ℃ earlier than that of raw TATB, the apparent activation energy(Ea) is increased by 0.29 kJ·mol-1, and the sensitivity to thermal stimulation is decreased. The thermal decomposition mechanism of keel‑like nanostructure TATB obtained by differential method calculationis random nucleation (a core for a particle), whereas the raw material is three‑dimension diffusion and its kinetic equation is Jander equation with sphericalsymmetry.

  • 1 引 言

    1

    三氨基三硝基苯(TATB[1,2]是一种对热、光、冲击波、摩擦及撞击等外力作用极不敏感的炸药,具有极好的热稳定性。超细TATB爆炸能量释放完全、临界直径小、爆轰波传播快且稳定,因此,受到研究者广泛关注。

    国内外对超细TATB的研究主要集中在粒径尺度、粒度分布及其性能方[3,4,5,6,7,8,9,10,11]。Talawar[4]以浓硫酸为溶剂,去离子水为非溶剂制备出相较于原料粒径(55 μm)大大减小的超细TATB(2~5 μm),并将此超细TATB应用到炸药配方中,发现在10%聚氨酯中加入超细TATB,其体积密度及机械感度较加入原料TATB均有所改善。杨利[6]通过溶剂/非溶剂法及形貌控制技术制备出粒径30~50 nm的球形超细TATB,并对比了表面活性剂的种类和用量对TATB形貌的影响。本课题组谭学蓉[7]通过半反应结晶法制备出球形/椭球形纳米TATB,颗粒尺寸为60~200 nm。在加入非离子表面活性剂调控晶粒尺寸后,制备得到粒径为30~65 nm的TATB颗粒,所制备的纳米级TATB的热分解峰温较原料TATB提前7 ℃。

    除了对TATB进行超细化外,对其进行纳米结构化也逐渐引起研究者的关注。黄兵[12]通过湿化学法,以尿素为原料制备出孪晶TATB纳米带。杨光成[10]采用溶剂/非溶剂法,制备出直径为60 nm的纳米线TATB,其热分解峰温较原料提前10 ℃,失重率提高8%。王军[11]通过微通道定向自组装,制备出尺寸约2 μm的类菊花状三维结构TATB。该三维结构由长度为1 μm,直径为40 nm的纳米棒组成。通过改变微通道直径,制备出由直径为30 nm的纳米线组装而成的三维微球和直径为50 nm的一维类梭状纳米线。同样,所制备的纳米结构TATB表现出比原料更低的热分解峰温。

    但是,以上研究在制备过程中使用了添加剂或浓H2SO4,可能会影响样品的纯度和性能,浓H2SO4的使用也会带来安全隐患和环境污染。此外,TATB的纳米结构化研究尚处于初始阶段,寻找更简单绿色的制备方法来构筑TATB新型纳米结构,并对其性能进行研究,可进一步丰富和发展TATB纳米结构化研究。为此,本研究以二甲亚砜(DMSO)为良溶剂,以超纯水为非溶剂,采用溶剂/非溶剂法,通过反溶剂效应和温度效应,成功构筑龙骨状纳米结构TATB,并对其结构和热分解动力学进行了研究。

  • 2 实验部分

    2
  • 2.1 试剂与仪器

    2.1

    原料TATB为中国工程物理研究院化学材料研究所提供的荧光绿晶体,超纯水由实验室自制,溶剂DMSO(分析纯,含量≥99.0%)由成都科龙化工试剂公司提供。

    德国ZEISS公司ULTRA 55型高分辨FE‑SEM及Libra 200 FE型TEM,荷兰帕纳科公司X射线衍射仪(X`Pert pro);美国Brookhaven公司99 PLUS型粒度分布仪;美国TA公司Q600型热分析仪。

  • 2.2 龙骨状纳米结构TATB的制备

    2.2

    将0.07 g TATB溶解在250 mL、60 ℃的DMSO溶剂中形成均一溶液,将该溶液快速倒入1000 mL、0 ℃超纯水中,在转速为400 r·min-1条件下培养1.5 h,过滤并冷冻干燥得到TATB样品。

  • 2.3 结构和性能表征方法

    2.3

    XRD表征:以Cu为靶材料,Kα1作为辐射电源,测试电压40 kV,电流40 mA,扫描范围3°~80°,对所制备的样品及原料进行X射线衍射分析测试。

    差式扫描量热分析(DSC):每个样品取1~2 mg于三氧化二铝坩埚。升温速率分别为5,10,15 ℃·min-1及20 ℃·min-1,测试温度为25~500 ℃,气体氛围为N2

  • 3 结果与讨论

    3
  • 3.1 形貌分析

    3.1

    采用FE‑SEM表征原料TATB及制得的龙骨状TATB,结果见图1。由图1可知,原料TATB是粒径约为30 μm的不规则颗粒。制得的龙骨状TATB龙骨的主干长度约为4 μm,宽度约为200 nm,龙骨两侧的棒状颗粒直径为80~200 nm,长度为100~400 nm,且表面结构清晰,无孔洞等缺陷存在。

    图1
                            原料TATB及龙骨状TATB的SEM图

    a. raw TATB            b. keel‑liked TATB            c. enlarged view of Fig.1b           

    图1 原料TATB及龙骨状TATB的SEM图

    Fig.1 SEM images of raw TATBand keel‑like TATB

    为了进一步了解龙骨状TATB的结构细节,对其进行了TEM分析,结果见图2。由图2可知,龙骨的主干似由TATB的纳米颗粒组成,侧枝则是完整的结晶体。由于TATB的高能特性,在TEM高能电子束的照射下易发生碎裂。所以在主干上观察到的纳米颗粒,也有可能由TEM的电子束“打碎”所致。考虑到TATB为含能材料,TEM测试采用了快速照相的方法来尽量避免高能电子束对形貌的影响。

    图2
                            龙骨状TATB的TEM测试图

    图2 龙骨状TATB的TEM测试图

    Fig.2 TEM micrograph of keel‑like TATB

  • 3.2 激光粒度分析

    3.2

    所制备的龙骨状TATB的粒度分布如图3所示,其中G(d)表示任意尺寸下粒子所占百分比,C(d)表示该尺寸前所有粒子所占百分比。从图3可以看出,该样品的颗粒粒径主要分布在300~600 nm,其中值粒径D50为398.6 nm,这与SEM测试结果基本一致。

    图3
                            龙骨状TATB粒度分布图

    图3 龙骨状TATB粒度分布图

    Fig.3 Particle size distribution of keel‑like TATB

  • 3.3 X射线衍射分析

    3.3

    通过XRD分析原料TATB及所制样品的晶相,所得结果如图4所示。从图4可以看出,所制备的龙骨状纳米TATB结晶性良好,其衍射角与原料TATB基本一致,主要吸收峰从原料TATB的2θ=19.72°(3057),28.35°(35513)及42.18°(5582)处迁至2θ=19.49°(1222),28.18°(13297)及42.18°(1383)处,说明重结晶过程没有改变TATB的晶体结构。但从括号中的峰强度数值来看,所制备龙骨状TATB的衍射峰强度大大降低,导致原料TATB中的很多弱峰消失。从图4也可看出龙骨状TATB的衍射峰形变宽,呈现出典型纳米粒子的衍射特[12]

    图4
                            原料TATB及龙骨状TATB的XRD图

    图4 原料TATB及龙骨状TATB的XRD图

    Fig.4 XRD patterns of raw TATB and keel‑like TATB

    选取图4龙骨状TATB的三个XRD特征衍射峰,其晶面指数分别为(-2,1,0),(0,0,2),(-4,2,1),并进行半峰宽值计算,结合谢乐公式得到所制备样品的晶粒尺寸。描述晶粒大小D(nm)与衍射线宽度Bstruct(°)关系的谢乐(Scherrer)公[13,14,15]为:

    D = K λ B s t r u c t c o s θ h k l = K λ ( B o b s - B s t d ) c o s θ h k l
    (1)

    式中,λ是X射线仪所用X射线的波长,为0.15406 nm;θhkl表示(h k l)衍射线的θ角,°;Bstruct指实际由微晶产生的峰的宽化大小,rad;Bobs指谱图中峰的宽度,rad;Bstd表示仪器产生的宽化,rad;K是常数,与谢乐公式的推导方式以及Bstruct的定义有关,通常取0.89。根据(1)式求出所制备龙骨状纳米TATB中微晶晶粒尺寸为24.4653 nm。

  • 3.4 热分解动力学分析

    3.4
  • 3.4.1 热分解动力学

    3.4.1

    通过TG‑DSC测试所制备的样品的热性能,结果见图5。由图5可以看出,所制备的龙骨状TATB的热分解峰温较原料提前1.54~2.91 ℃,表明其热分解活性高于原料TATB。与之前报[16]炸药颗粒纳米化能提前目标炸药放热峰温相一致。这是由于纳米粒子粒径较小,处于表面的原子比例较大,表面原子的振动、热焓及熵与体相内的原子不同所致。

    html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F004.jpg

    a. raw TATB

    html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F005.jpg

    b. keel‑liked TATB

    图5 原料TATB及龙骨状TATB的DSC曲线

    Fig.5 DSC curves of raw TATB and keel‑liked TATB

    为了研究热分解动力学机制,采用不同升温速率对原料和样品进行了DSC分析,结果见图6。通过Kissinger方[17]计算原料及样品的表观活化能。

    l n ( β / T p 2 ) = - E a / R T p + l n ( A R / E a )
    (2)

    式(2)中,β是升温速率,K·min-1Tp是分解峰值温度,K;Ea是表观活化能,kJ·mol-1A是指前因子;R是理想气体常数,8.314 J∙mol-1K-1

    计算得到龙骨状TATB的表观活化能为194.50 kJ·mol-1,较原料TATB(194.21 kJ·mol-1)提高0.29 kJ·mol-1,其指前因子(lnA=28.24)也高于原料(lnA=28.06),表明在热刺激下,所制备的龙骨状TATB较原料更难分解。

  • 3.4.2 热分解机理

    3.4.2

    将通过Kissinger法计算所得Ea和lnA代入Arrhenius公[18]可得相应的反应速率常数,其中龙骨状纳米TATB的反应速率常数为k=1.8386×1012 e x p - 1.9450 × 10 5 8.314 T ,原料TATB的反应速率常数为 k = 1.5369 × 10 12 e x p - 1.9421 × 10 5 8.314 T

    表1 常见固体热分解反应机理及其动力学方[21]

    Table 1 The thermal decomposition mechanism and kinetic equations of common solids

    number

    reaction mechanism

    equation

    reaction mechanism
    11-a

    random nucleation,

    a core for a particle

    22(1-a) [ - l n ( 1 - a ] 1 / 2

    random nucleation,

    avrami‑erofeev equation, A2

    33(1-a) [ - l n ( 1 - a ] 2 / 3

    random nucleation,

    avrami‑erofeev equation, A3

    42 ( 1 - a ) 1 / 2

    phase boundary reaction,

    cylindrically symmetry

    53- ( 1 - a ) 2 / 3

    phase boundary reaction,

    spherical symmetry

    61/(2a)one‑dimensional diffusion
    7 [ - l n ( 1 - a ] - 1

    two‑dimensional diffusion,

    cylindrically symmetry

    81.5 ( 1 - a ) 2 / 3 [ 1 - ( 1 - a ) 1 / 3 ] - 1

    three‑dimensional diffusion,

    spherical symmetry,

    jander equation

    91.5[ ( 1 - a ) - 1 / 3 - 1 ]-1

    three‑dimensional diffusion,

    spherical symmetry,

    ginstling‑brounshtein equation

    html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F007.jpg

    a. raw TATB

    html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F008.jpg

    b. keel‑liked TATB

    图6 DSC实验得到的放热峰温的Kissinger曲线

    Fig.6 Kissinger′s plots of the exothermic peak temperature obtained by DSC experiments

    表2 原料TATB和龙骨状TATB的热分析数据

    Table 2 The thermal analysis data of raw TATB and keel‑like TATB

    β

    /℃·min-1

    raw‑TATBkeel‑like TATB
    T/Kda/dtaT/Kda/dta
    5633.982.62000.3578609.530.50460.1533
    634.232.68700.3655610.350.53040.1594
    635.413.04700.4045611.550.55840.1658
    636.963.59000.4641612.560.58850.1723
    637.843.93300.5024613.530.62120.1795
    10633.280.08900.1466609.550.24160.08361
    634.460.10770.1565610.350.25230.08655
    635.560.12630.1667611.550.26390.08974
    636.990.15400.1817612.550.27650.09305
    637.850.17130.1915613.550.28970.09648
    15638.210.53350.1406609.560.0058070.06626
    639.600.59790.1496610.550.0059870.06822
    640.360.63800.1551611.550.0061460.07031
    641.370.69870.1628612.550.0063580.07252
    642.380.76680.1714613.550.0065620.07472
    20635.780.29910.0864609.570.0003810.05992
    636.950.32080.0906610.730.0004110.06187
    637.280.32780.0918611.900.000310.06383
    638.460.35520.0967613.030.000590.06591
    639.790.39150.1026613.400.000670.06652

    对于固体物质分解过[19]可表示为:A→B+C,其基本动力学方程可以表示为:

    d a d t = k f a
    (3)

    a定义为: a = ω 0 - ω ω 0 - ω i 。式中ω0(g)为样品初重,ωt(s)时刻样品重量,ωi(g)为样品热解后的残余重量,单位均为kg。

    反应速率常数可用Arrhenius公式[20]

    k = A e x p ( - E R T )
    (4)

    由式(3)和式(4)可得:

    l n ( d a / d t ) f ( a ) = l n A - E / R T
    (5)

    式中,f(a)为反应机理方程,常见固体热分解反应机理及方程见表1

    通过对原料TATB和龙骨状TATB在不同升温速率下的TG与DTG数据分析,可知原料TATB从270 ℃左右开始出现失重,390 ℃左右完成失重。而所制备的龙骨状TATB在230 ℃左右开始出现失重,380 ℃左右完成失重。同时,随机选取原料TATB和龙骨状TATB不同升温速率下的当前测试温度T及其对应的a和da/dt列于表2

    将表1所示的9种反应微分形式动力学函数表达式代入方程(5)中,结合表2数据,以ln[(da/dt)/f(a)]~1000/T作图,用最小二乘法对热分解过程的数据进行线性回归,算得不同机理函数的动力学参数及拟合相关系数,其结果如图7所示。由图7a~图7d可以看出,对原料TATB而言,在不同升温速率下,从热分解阶段得到的每一组ln[(da/dt)/f(a)]~1000/T曲线中,表1中编号8的反应机理函数拟合结果线性最好,相关系数最大。所以可预测原料TATB热分解机理为三维扩散,动力学方程为球形对称的Jander方程,即 ( 1 - a ) 2 / 3 [ 1 - ( 1 - a ) 1 / 3 ] - 1 。同理可算得如图7e~图7h所示的龙骨状TATB不同机理函数的动力学参数及拟合相关系数图,结合图7与表1可知,编号1的反应机理函数拟合结果线性最好,对应的热分解机理可预测为随机核化,每一粒子有一个核,其反应方程为1-a。可见,由于三维结构和粒径的改变,TATB遵从不同的热分解机理,从而导致其宏观热性能的差异,比如活化能以及放热峰温等。

    html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F009.jpg

    a. raw TATB at 5 ℃·min-1 b. raw TATB at 10 ℃·min-1

    html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F010.jpg

    c. raw TATB at 15 ℃·min-1 d. raw TATB at 20 ℃·min-1

    html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F011.jpg

    e. keel‑liked TATB at 5 ℃ f. keel‑liked TATB at 10 ℃

    html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F012.jpg

    g. keel‑liked TATB at 15 ℃ h. keel‑liked TATB at 20 ℃

    图7 不同升温速率下原料TATB及龙骨状TATB的ln[(da/dt)/f(a)]~1000/T曲线

    Fig.7 The ln[(da/dt)/f(a)]~1000/T curves of raw TATB and keel‑liked TATB at different heating rates

  • 4 结 论

    4

    (1)以DMSO为溶剂,超纯水为非溶剂,通过溶剂/非溶剂法,制备得到龙骨状纳米结构TATB。FE‑SEM和TEM测试结果表明,样品TATB为形貌规整的龙骨状结晶体,龙骨的主干长度约为4 μm,宽度约为200 nm,龙骨两侧的棒状颗粒直径为80~200 nm,长度为100~400 nm。

    (2)激光粒度测试发现,龙骨状TATB的颗粒粒径为70~400 nm,中值粒径为398.6 nm。XRD测试结果发现重结晶并未改变TATB的晶体结构,由谢乐公式计算得到的微晶晶粒尺寸为24.4653 nm。

    (3)热分析结果表明,龙骨状TATB的热分解峰温较原料提前1.54~2.91 ℃。由基辛格方程计算得到,龙骨状TATB的反应活化能较原料提高0.29 kJ·mol-1,表明在热刺激下,其热稳定性优于原料。采用微分法计算得出龙骨状TATB的热分解机理为随机核化,每一粒子有一个核,而原料的热分解机理则为三维扩散模型,动力学方程为球形对称的Jander方程。

  • 参考文献

    • 1

      Tiwari S C, Nomura K, Kalia R K, et al. Multiple reaction pathways in shocked 2,4,6‑Triamino‑1,3,5‑trinitrobenzene Crystal[J]. Journal of Physical Chemistry C, 2017, 121(29):16029-16034.

    • 2

      Kroonblawd M P, Sewell T D, Maillet J B. Characteristics of energy exchange between inter‑ and intramolecular degrees of freedom in crystalline 1,3,5‑triamino‑2,4,6 ‑trinitrobenzene (TATB) with implications for coarse‑grained simulations of shock waves in polyatomic molecular crystals[J]. Journal of Chemical Physics, 2016, 144(6): 064501-064514.

    • 3

      Rigdon L P, Moody G L, Mcguire R R. Preparation of 1,3,5‑triamo‑2,4,6‑trinitrobenzene of submicron particle size: US, US6225503[P]. 2001.

    • 4

      Talawar M B, Agarwal A P, Anniyappan M, et al. Method for preparation of fine TATB (2‑5 microm) and its evaluation in plastic bonded explosive (PBX) formulations[J]. Journal of Hazardous Materials, 2006, 137(3): 1848-1852.

    • 5

      Kasar S M. Synthesis and characterization of ultrafine TATB [J]. Journal of Energetic Materials, 2007, 25(4): 213-231.

    • 6

      Yang L, Ren X, Li T, et al. Preparation of ultrafine TATB and the technology for crystal morphology control[J]. Chinese Journal of Chemistry, 2012, 30(2): 293-298.

    • 7

      Tan X‑R, Duan X‑H, Pei C‑H, et al. Preparation of NanoTATB by semibationrractioncrystallion[J]. Nano, 2013, 8(05): 1350055-1350062.

    • 8

      Song X, Wang Y, Zhao S, et al. Characterization and thermal decomposition of nanometer 2,2′,4,4′,6,6′‑hexanitro‑stilbene and 1,3,5‑triamino‑2,4,6‑trinitrobenzene fabricated by a mechanical milling method[J]. Journal of Energetic Materials, 2017,36(2): 179-190.

    • 9

      Huang B, Cao M, Wu X, et al. Twinned TATB nano belts: synthesis, characterization, and formation mechanism[J]. Crystengcomm, 2011, 13(22): 6658-6664.

    • 10

      Yang G, Nie F, Huang H, et al. Preparation and characterization of nano‐TATB explosive[J]. Propellants, Explosives, Pyrotechnics, 2010, 31(5): 390-394.

    • 11

      Wang J, Wang Y, Qiao Z, et al. Self‑assembly of TATB 3D architectures via micro‑channel crystallization and formation mechanism[J].Crystengcomm, 2016, 18(11): 1953-1957.

    • 12

      杨光成, 聂福德, 黄辉,等.纳米TATB制备和表征[J]. 含能材料, 2005, 13(5): 354-354.

      YANG Guang‑cheng, NIE Fu‑de, HUANG Hui, et al. Preparation and characterization of nano‑TATB[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(5): 354-354.

    • 13

      Cheng M, Li P, Duan X, et al. A three‐dimensional hierarchical dandelion‐like HMX architecture formed at a liquid‐liquid interface[J]. Crystal Research & Technology, 2018, 53(3): 1700226-1700233.

    • 14

      黄新民, 解挺.材料分析测试方法 [M]. 北京: 国防工业出版社, 2006.

      HUANG Xin‑min, XIE Ting. Material analysis and testing methods [M]. Beijing: National Defense Industry Press, 2006.

    • 15

      Xie R, Li Y, Guo B, et al. Exploring microstructure and surface features of Chinese coins using non‑invasive approaches [J]. Applied Surface Science, 2015, 332: 205-214.

    • 16

      Gao B, Wu P, Huang B, et al. Preparation and characterization of nano‑1,1‑diamino‑2,2‑dinitroethene(FOX‑7) explosive[J]. New Journal of Chemistry, 2014, 38(6): 2334-2341.

    • 17

      Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706.

    • 18

      Du R L, Wu K, Xu D A, et al. A modified Arrhenius equation to predict the reaction rate constant of Anyuan pulverized‑coal pyrolysis at different heating rates[J]. Fuel Processing Technology, 2016, 148: 295-301.

    • 19

      唐万军, 陈栋华.二水草酸亚铁热分解反应动力学[J]. 物理化学学报, 2007, 23(4): 605-608.

      TANG Wan‑jun, CHEN Dong‑hua. Thermal decomposition kinetics of ferrous oxalate dehydrate[J]. Acta Physico‑Chimica Sinica, 2007, 23(4): 605-608.

    • 20

      潘云祥, 管翔颖, 冯增媛等.一种确定固相反应机理函数的新方法——固态草酸镍(Ⅱ)二水合物脱水过程的非等温动力学[J]. 无机化学学报, 1999, 15(2):247-251.

      PAN Yun‑xiang, GUAN Xiang‑ying, FENG Zeng‑yuan, et al. A new method determining mechanism function of solid state reaction‑the non‑isothermal kinetic of dehydration of nickel(Ⅱ) oxalate dihydrate in solid state[J]. Chinese Journal of Inorganic Chemistry, 1999, 15(2):247-251.

    • 21

      Yuwen L, Wanjun T. Ammonium metavanadate by thermal method[J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 2054-2059.

李萍

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:Southwest University of Science and Technology, State Key Laboratory of Environment‑friendly Energy Materials, Mianyang 621010, China

邮 箱:1396680204@qq.com

作者简介:李萍(1993-),女,硕士研究生,主要从事纳米技术和纳米材料研究。e‑mail:1396680204@qq.com

敖登高娃

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:Southwest University of Science and Technology, State Key Laboratory of Environment‑friendly Energy Materials, Mianyang 621010, China

李纯志

机 构:泸州北方化学工业有限公司,四川 泸州 646606

Affiliation:Lu zhou North Chemical Industries Co. Ltd., Luzhou 646003, China

段晓惠

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:Southwest University of Science and Technology, State Key Laboratory of Environment‑friendly Energy Materials, Mianyang 621010, China

角 色:通讯作者

Role:Corresponding author

邮 箱:duanxiaohui@swust.edu.cn

作者简介:段晓惠(1970-),女,教授,主要从事含能材料结晶与理论模拟研究。e‑mail:duanxiaohui@swust.edu.cn

裴重华

机 构:西南科技大学 环境友好能源材料国家重点实验室,四川 绵阳 621010

Affiliation:Southwest University of Science and Technology, State Key Laboratory of Environment‑friendly Energy Materials, Mianyang 621010, China

html/hncl/CJEM2018129/media/293fc18a-eebe-41fb-8bd1-85aaa4a12036-image006.jpeg
html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F001.jpg
html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F002.jpg
html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F003.jpg
html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F004.jpg
html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F005.jpg
number

reaction mechanism

equation

reaction mechanism
11-a

random nucleation,

a core for a particle

22(1-a) [ - l n ( 1 - a ] 1 / 2

random nucleation,

avrami‑erofeev equation, A2

33(1-a) [ - l n ( 1 - a ] 2 / 3

random nucleation,

avrami‑erofeev equation, A3

42 ( 1 - a ) 1 / 2

phase boundary reaction,

cylindrically symmetry

53- ( 1 - a ) 2 / 3

phase boundary reaction,

spherical symmetry

61/(2a)one‑dimensional diffusion
7 [ - l n ( 1 - a ] - 1

two‑dimensional diffusion,

cylindrically symmetry

81.5 ( 1 - a ) 2 / 3 [ 1 - ( 1 - a ) 1 / 3 ] - 1

three‑dimensional diffusion,

spherical symmetry,

jander equation

91.5[ ( 1 - a ) - 1 / 3 - 1 ]-1

three‑dimensional diffusion,

spherical symmetry,

ginstling‑brounshtein equation

html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F007.jpg
html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F008.jpg

β

/℃·min-1

raw‑TATBkeel‑like TATB
T/Kda/dtaT/Kda/dta
5633.982.62000.3578609.530.50460.1533
634.232.68700.3655610.350.53040.1594
635.413.04700.4045611.550.55840.1658
636.963.59000.4641612.560.58850.1723
637.843.93300.5024613.530.62120.1795
10633.280.08900.1466609.550.24160.08361
634.460.10770.1565610.350.25230.08655
635.560.12630.1667611.550.26390.08974
636.990.15400.1817612.550.27650.09305
637.850.17130.1915613.550.28970.09648
15638.210.53350.1406609.560.0058070.06626
639.600.59790.1496610.550.0059870.06822
640.360.63800.1551611.550.0061460.07031
641.370.69870.1628612.550.0063580.07252
642.380.76680.1714613.550.0065620.07472
20635.780.29910.0864609.570.0003810.05992
636.950.32080.0906610.730.0004110.06187
637.280.32780.0918611.900.000310.06383
638.460.35520.0967613.030.000590.06591
639.790.39150.1026613.400.000670.06652
html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F009.jpg
html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F010.jpg
html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F011.jpg
html/hncl/CJEM2018129/alternativeImage/293fc18a-eebe-41fb-8bd1-85aaa4a12036-F012.jpg

图1 原料TATB及龙骨状TATB的SEM图

Fig.1 SEM images of raw TATBand keel‑like TATB

图2 龙骨状TATB的TEM测试图

Fig.2 TEM micrograph of keel‑like TATB

图3 龙骨状TATB粒度分布图

Fig.3 Particle size distribution of keel‑like TATB

图4 原料TATB及龙骨状TATB的XRD图

Fig.4 XRD patterns of raw TATB and keel‑like TATB

图5 原料TATB及龙骨状TATB的DSC曲线 -- a. raw TATB

Fig.5 DSC curves of raw TATB and keel‑liked TATB -- a. raw TATB

图5 原料TATB及龙骨状TATB的DSC曲线 -- b. keel‑liked TATB

Fig.5 DSC curves of raw TATB and keel‑liked TATB -- b. keel‑liked TATB

表1 常见固体热分解反应机理及其动力学方[21]

Table 1 The thermal decomposition mechanism and kinetic equations of common solids

图6 DSC实验得到的放热峰温的Kissinger曲线 -- a. raw TATB

Fig.6 Kissinger′s plots of the exothermic peak temperature obtained by DSC experiments -- a. raw TATB

图6 DSC实验得到的放热峰温的Kissinger曲线 -- b. keel‑liked TATB

Fig.6 Kissinger′s plots of the exothermic peak temperature obtained by DSC experiments -- b. keel‑liked TATB

表2 原料TATB和龙骨状TATB的热分析数据

Table 2 The thermal analysis data of raw TATB and keel‑like TATB

图7 不同升温速率下原料TATB及龙骨状TATB的ln[(da/dt)/f(a)]~1000/T曲线 -- a. raw TATB at 5 ℃·min-1 b. raw TATB at 10 ℃·min-1

Fig.7 The ln[(da/dt)/f(a)]~1000/T curves of raw TATB and keel‑liked TATB at different heating rates -- a. raw TATB at 5 ℃·min-1 b. raw TATB at 10 ℃·min-1

图7 不同升温速率下原料TATB及龙骨状TATB的ln[(da/dt)/f(a)]~1000/T曲线 -- c. raw TATB at 15 ℃·min-1 d. raw TATB at 20 ℃·min-1

Fig.7 The ln[(da/dt)/f(a)]~1000/T curves of raw TATB and keel‑liked TATB at different heating rates -- c. raw TATB at 15 ℃·min-1 d. raw TATB at 20 ℃·min-1

图7 不同升温速率下原料TATB及龙骨状TATB的ln[(da/dt)/f(a)]~1000/T曲线 -- e. keel‑liked TATB at 5 ℃ f. keel‑liked TATB at 10 ℃

Fig.7 The ln[(da/dt)/f(a)]~1000/T curves of raw TATB and keel‑liked TATB at different heating rates -- e. keel‑liked TATB at 5 ℃ f. keel‑liked TATB at 10 ℃

图7 不同升温速率下原料TATB及龙骨状TATB的ln[(da/dt)/f(a)]~1000/T曲线 -- g. keel‑liked TATB at 15 ℃ h. keel‑liked TATB at 20 ℃

Fig.7 The ln[(da/dt)/f(a)]~1000/T curves of raw TATB and keel‑liked TATB at different heating rates -- g. keel‑liked TATB at 15 ℃ h. keel‑liked TATB at 20 ℃

image /

a. raw TATB                     b. keel‑like TATB               c. enlarged view of Fig.1b

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Tiwari S C, Nomura K, Kalia R K, et al. Multiple reaction pathways in shocked 2,4,6‑Triamino‑1,3,5‑trinitrobenzene Crystal[J]. Journal of Physical Chemistry C, 2017, 121(29):16029-16034.

    • 2

      Kroonblawd M P, Sewell T D, Maillet J B. Characteristics of energy exchange between inter‑ and intramolecular degrees of freedom in crystalline 1,3,5‑triamino‑2,4,6 ‑trinitrobenzene (TATB) with implications for coarse‑grained simulations of shock waves in polyatomic molecular crystals[J]. Journal of Chemical Physics, 2016, 144(6): 064501-064514.

    • 3

      Rigdon L P, Moody G L, Mcguire R R. Preparation of 1,3,5‑triamo‑2,4,6‑trinitrobenzene of submicron particle size: US, US6225503[P]. 2001.

    • 4

      Talawar M B, Agarwal A P, Anniyappan M, et al. Method for preparation of fine TATB (2‑5 microm) and its evaluation in plastic bonded explosive (PBX) formulations[J]. Journal of Hazardous Materials, 2006, 137(3): 1848-1852.

    • 5

      Kasar S M. Synthesis and characterization of ultrafine TATB [J]. Journal of Energetic Materials, 2007, 25(4): 213-231.

    • 6

      Yang L, Ren X, Li T, et al. Preparation of ultrafine TATB and the technology for crystal morphology control[J]. Chinese Journal of Chemistry, 2012, 30(2): 293-298.

    • 7

      Tan X‑R, Duan X‑H, Pei C‑H, et al. Preparation of NanoTATB by semibationrractioncrystallion[J]. Nano, 2013, 8(05): 1350055-1350062.

    • 8

      Song X, Wang Y, Zhao S, et al. Characterization and thermal decomposition of nanometer 2,2′,4,4′,6,6′‑hexanitro‑stilbene and 1,3,5‑triamino‑2,4,6‑trinitrobenzene fabricated by a mechanical milling method[J]. Journal of Energetic Materials, 2017,36(2): 179-190.

    • 9

      Huang B, Cao M, Wu X, et al. Twinned TATB nano belts: synthesis, characterization, and formation mechanism[J]. Crystengcomm, 2011, 13(22): 6658-6664.

    • 10

      Yang G, Nie F, Huang H, et al. Preparation and characterization of nano‐TATB explosive[J]. Propellants, Explosives, Pyrotechnics, 2010, 31(5): 390-394.

    • 11

      Wang J, Wang Y, Qiao Z, et al. Self‑assembly of TATB 3D architectures via micro‑channel crystallization and formation mechanism[J].Crystengcomm, 2016, 18(11): 1953-1957.

    • 12

      杨光成, 聂福德, 黄辉,等.纳米TATB制备和表征[J]. 含能材料, 2005, 13(5): 354-354.

      YANG Guang‑cheng, NIE Fu‑de, HUANG Hui, et al. Preparation and characterization of nano‑TATB[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005, 13(5): 354-354.

    • 13

      Cheng M, Li P, Duan X, et al. A three‐dimensional hierarchical dandelion‐like HMX architecture formed at a liquid‐liquid interface[J]. Crystal Research & Technology, 2018, 53(3): 1700226-1700233.

    • 14

      黄新民, 解挺.材料分析测试方法 [M]. 北京: 国防工业出版社, 2006.

      HUANG Xin‑min, XIE Ting. Material analysis and testing methods [M]. Beijing: National Defense Industry Press, 2006.

    • 15

      Xie R, Li Y, Guo B, et al. Exploring microstructure and surface features of Chinese coins using non‑invasive approaches [J]. Applied Surface Science, 2015, 332: 205-214.

    • 16

      Gao B, Wu P, Huang B, et al. Preparation and characterization of nano‑1,1‑diamino‑2,2‑dinitroethene(FOX‑7) explosive[J]. New Journal of Chemistry, 2014, 38(6): 2334-2341.

    • 17

      Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706.

    • 18

      Du R L, Wu K, Xu D A, et al. A modified Arrhenius equation to predict the reaction rate constant of Anyuan pulverized‑coal pyrolysis at different heating rates[J]. Fuel Processing Technology, 2016, 148: 295-301.

    • 19

      唐万军, 陈栋华.二水草酸亚铁热分解反应动力学[J]. 物理化学学报, 2007, 23(4): 605-608.

      TANG Wan‑jun, CHEN Dong‑hua. Thermal decomposition kinetics of ferrous oxalate dehydrate[J]. Acta Physico‑Chimica Sinica, 2007, 23(4): 605-608.

    • 20

      潘云祥, 管翔颖, 冯增媛等.一种确定固相反应机理函数的新方法——固态草酸镍(Ⅱ)二水合物脱水过程的非等温动力学[J]. 无机化学学报, 1999, 15(2):247-251.

      PAN Yun‑xiang, GUAN Xiang‑ying, FENG Zeng‑yuan, et al. A new method determining mechanism function of solid state reaction‑the non‑isothermal kinetic of dehydration of nickel(Ⅱ) oxalate dihydrate in solid state[J]. Chinese Journal of Inorganic Chemistry, 1999, 15(2):247-251.

    • 21

      Yuwen L, Wanjun T. Ammonium metavanadate by thermal method[J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 2054-2059.