1 引言
全氮类物质具有高密度、高生成焓、超高能量及爆轰产物无污染等优点,因此有希望作为新一代超高能含能材料应用于炸药、发射药和推进剂等领域。在过去三十年中,人们对全氮物质的结构和性质进行了广泛的探
索[1] ,由于氮原子上具有较多孤对电子,降低了这类分子的稳定性,迄今实验上仅合成或探测到少数几种全氮分子或离子,N3 -[2],N3 [3],N4 [4],N5 +[5]和N5 -[6-7]。相比之下,富氮化合物由于结构中的杂原子能够减少相邻氮孤对电子的排斥作用,通常具有比全氮分子更好的稳定性,有利于实验的制备。国内外学者已经成功制备了许多高能量富氮化合物,包括杂环类(嗪类、唑类等
)[8,9] 以及叠氮类化合物,如C(N3 )3 +[10]和M(N3 )6 2−(M=Si,Ge,Sn,Pb)离子[11] ,以及中性的M(N3 )4 (M=C,Si)[12,13] 和M(N3 )3 (M=B,Al,Ga)等[14,15,16,17] 。通过引入碳原子,人们合成了一系列包含N7 [18],N8 [19],N10 [20]和N11 [21]链状结构的富氮化合物。理论研究也证实了当纯的N12 和N18 笼上的六个氮原子替换成六个磷原子后,笼状富氮分子具有比全氮结构更好的稳定性[22] 。越来越多的研究开始关注富氮分子作为含能结构单元的可能性[23,24,25] 。在掺杂原子的选择上,从金属原子向C,O,B等非金属原子过渡。在实验探测到N3 O+ 的基础上[26] ,李前树等[27] 研究了[N3 X]+ (X=O,S,Se,Te)体系中的三种异构体的结构和稳定性,结果显示四面体结构的决速反应能垒均大于104.65 kJ·mol-1 ,具有较好的动力学稳定性。丁益宏等[28] 研究了与N4 等电子体的CN3 -的势能面,结果表明碳原子掺杂的四面体型富氮分子CN3 -具有良好的动力学稳定性。含杂原子的四面体结构,分解途径需要同时断裂若干键,通常伴随着较高能垒,已有的关于富氮化合物的研究很少有关注四面体结构展开。为探究与氮同族的磷原子作为杂原子形成的二元富氮化合物P
N3 是否同样具有稳定的四面体结构,本研究在CCSD(T)/aug‑cc‑pVTZ//M06‑2X/6‑31+G(d,p)水平下研究了PN3 化合物的单重态和三重态势能面,通过理论计算探究PN3 体系异构体的动力学稳定性,并对稳定异构体进行波恩‑奥本海默分子动力学计算,以期更深层次了解此类体系的行成及转化过程。2 计算方法
通过全局反应路径搜索程序GRRM(Global Reaction Route Mapping
)[29] ,采用密度泛函M06‑2X/6‑31+G(d,p)[30] 方法,对PN3 分子的单重态和三重态势能面上的全部极小点的几何构型进行了全优化计算,经振动频率分析确定了异构体及异构体间异构化反应和解离反应的过渡态,通过内禀反应坐标分析,确认了异构体、分解产物和过渡态的相关性。为获得更精确的能量,在CCSD(T)/aug‑cc‑pVTZ//M06‑2X/6‑31+G(d,p
)[31] 水平下,计算了异构体和过渡态的单点能。使用B3LYP/6‑31G(d)方法[32,33] 对部分异构体进行了波恩‑奥本海默分子动力学(Born‑Oppenheimer molecular dynamics,BOMD)[34] 计算。所有计算均使用Gaussian09程序[35] 完成。为了简化表述,本研究用数字代表异构体序号,DC代表解离产物(PN+
N2 ),符号“s TSm/n”表示连接异构体m和异构体n的过渡态,异构体、过渡态和解离产物左上角数字“1”和“3”代表自旋多重度(即单重态和三重态)。3 结果与讨论
3.1 结构和能量
如图1所示,P
N3 异构体包含链状、三元环、四元环、四面体等形式。异构体1 1是具有C3v 对称性的四面体形异构体,其中P原子和N原子之间的键长(1.761 Å),比典型的P—N单键键长(1.766 Å)略短,N—N键长(1.452 Å)比典型的N—N单键键长(1.466 Å)稍短,说明P—N和N—N原子之间能够形成较强的单键,因此该异构体的总能量较低,相对能量为63.46 kJ·mol-1 (见表1),表明异构体1 1具有较好的热力学稳定性。表1 P
N3 异构体的总能量和相对能量Table 1 The total energy and relative energy of P
N3 isomersisomers CCSD(T)//M06+ZPVE
/a.u.
RE
/kJ·mo
l-1 CCSD(T)//M06+GFE
/a.u.
RE
/kJ·mo
l-1 11 -504.7729 63.46 -504.7986 68.69 12 -504.7234 193.60 -504.7500 196.44 13 -504.7490 126.41 -504.7751 130.68 14 -504.7556 108.96 -504.7818 112.93 15 -504.7169 210.59 -504.7429 215.19 36 -504.9109 39.64 -504.9500 38.22 37 -504.7820 0.00 -504.8103 0.00 38 -504.7971 80.87 -504.8248 80.33 39 -504.7663 217.16 -504.7942 218.71 310 -504.7144 159.44 -504.7415 160.65 311 -504.7364 274.84 -504.7636 275.30 312 -504.6925 151.57 -504.7200 153.12 313 -504.7394 285.68 -504.7665 285.60 1DC -504.6883 -298.95 -504.7161 -328.84 3DC -504.7723 65.17 -504.8126 32.06 NOTE: RE represents the relative energy of P
N3 isomers to ³1(3 PNNN). ZPVE and GFE represent the energywith inclusion of ZPVE correction and with Gibbs free energy correction separately.异构
体3 7是由P原子位于端位形成的链状平面结构,其键长和Wiberg键序(WBI)分别为RP(1)‑N(2),N(2)‑B(3),B(3)‑N(4)=1.701,1.230,1.131,WBIP(1)‑N(2),N(2)‑B(3),B(3)‑N(4) =0.845,1.470,2.370 Å,P原子与N3 分子以P—N单键连接。由表1中的总能量信息可知,该异构体为PN3 分子能量最低的异构体。异构
体1 2,3 11和3 13是三元环状异构体,从表1中的能量信息可知,四个异构体的相对能量分别为193.60,274.84 kJ·mol-1 和285.68 kJ·mol-1 ,由于三元环结构具有较大的环张力,导致异构体总能量较高。异构体3 2是由N—N和P—N组成的络合物,P(1)与N(2)和N(3)原子之间的成键较弱,均接近于单键,该异构体的总能量比基态高80.87 kJ·mol‑1 。异构
体1 3,1 4,1 5,3 10和3 12均为平面四元环结构,总能量分别为126.41,108.96,210.59,159.44 kJ·mol-1 和151.57 kJ·mol-1 ,其中由PN与NN形成的四元环异构体1 4,在热力学上具有相对较低的总能量。异构体3 9是由P原子同时与三个N原子成键形成的双环结构,P(1)与N(3)之间形成较弱的单键,总能量比基态结构高217.16 kJ·mol-1 。综上所述,P原子掺杂的富氮化合物中,直链形异构体热力学上能量最低,三元环状结构能量较高。
3.2 异构体的稳定性分析
3.2.1 单重态异构体的稳定性
图2a是单重态P
N3 分子异构化和解离过程的势能面图,其中过渡态的几何构型见图3。图3 M06‑2X/6‑31+G(d,p)水平下过渡态的几何结构
Fig.3 Geometries of transition states optimized by M06‑2X/6‑31+G(d,p)
由图2a异构体之间的连接关系可知,四面体形异构
体1 1的解离有两种反应式(1)和(2),解离产物均为1 PN和1 N2 。反应式(1)异构体1 1同时断裂P—N单键和N—N单键,需要克服的能垒为231.39 kJ·mol-1 。反应式(2)需要同时断裂两个P—N单键,需要克服的能垒为235.75 kJ·mol-1 ,因此异构体1 1的解离反应主要为反应式(1),该反应过程需要经过较高的反应能垒,表明异构体1 1具有很好的解离稳定性。三元环形异构
体1 2通过反应式(3)易分解生成1 PN和1 N2 ,分解能垒为14.23 kJ·mol-1 ,反应较容易发生,因此该异构体的动力学稳定性较差。四元环结构1 3和1 4可以通过反应式(4)发生异构化反应,转化过程仅需要经过0.08 kJ·mol-1 的能垒,表明异构体1 3和1 4较容易进行相互转化,且异构体1 4通过反应式(5)分解生成产物1 PN和1 N2 的过程仅需吸收49.23 kJ·mol-1 的能量,因此异构体1 3和1 4在动力学上均不稳定。异构
体1 5可以通过反应式(6)与异构体1 4进行相互转化,也可以通过反应式(7)发生分解,其中反应式(6)仅需要经过6.40 kJ·mol-1 的能垒,因此是异构体1 5的主要反应途径。综上所述,异构体1 2、1 3、1 4和1 5动力学不稳定。3.2.2 三重态异构体的稳定性
图2b是P
N3 分子中三重态异构体的势能面。异构体3 7(PNNN)的解离方式见反应式(8)和(9),均分解为产物3 PN和1 N2 ,与NNNN→3 N2 +1 N2 的放热解离过程不同,异构体3 7的解离反应从热力学上是吸热过程,反应需要吸收65.17 kJ·mol-1 的能量,结果表明,异构体3 7具有较好的热力学稳定性。异构
体3 6(NPNN)通过反应式(10)进行解离,由图3和表2可知断开P—N单键的解离过程仅需要16.95 kJ·mol-1 的能量。三元环异构体3 8可以通过三种方式进行转化,见反应式(11),(12)和(13),异构化能垒分别为6.24,137.21 kJ·mol-1 和227.71 kJ·mol-1 ,其中通过P—N单键断裂开环转化到异构体3 6的反应式(11)为反应的主要途径。表2 P
N3 分子过渡态的总能量及它们与异构体³1(3 PNNN)的相对能量。Table 2 The total energy and relative energy of P
N3 transition states to ³1(3 PNNN)TSs CCSD(T)//M06+ZPVE
/a.u.
RE
/kJ·mo
l-1 CCSD(T)//M06+GFE
/a.u.
RE
/kJ·mo
l-1 1T Sa 0/1 DC-504.6848 294.85 -504.7113 298.16 1T Sb 0/1 DC-504.6832 299.20 -504.7094 303.22 1TS1 /1 DC-504.7180 207.83 -504.7451 209.29 1TS2/3 -504.7489 126.50 -504.7748 131.27 1T Sa 3/1 DC-504.7511 120.72 -504.7772 125.03 1T Sb 3/1 DC-504.7358 161.07 -504.7620 164.96 1TS2 /1 DC-504.7511 120.72 -504.7772 125.03 1TS4 /1 DC-504.6978 260.82 -504.7240 264.80 1TS4/3 -504.7145 216.99 -504.7404 221.64 3TS0 /3 DC-504.7756 56.59 -504.8053 51.28 3TS0/1 -504.7335 167.14 -504.7609 167.77 3TS3/2 -504.7141 218.08 -504.7411 219.76 3TS4/1 -504.7140 218.21 -504.7414 219.13 3T Sa 1/3 DC-504.7682 75.93 -504.7968 73.46 3TS2/0 -504.7639 87.11 -504.7920 86.06 3TS1/6 -504.7319 171.16 -504.7591 172.46 3T Sb 1/3 DC-504.7664 80.58 -504.7949 78.44 3TS4/6 -504.7326 169.40 -504.7597 170.95 3TS3/6 -504.7098 229.43 -504.7368 231.02 3TS5/1 -504.6962 265.01 -504.7237 265.68 3TS7/2 -504.6796 308.58 -504.7077 307.62 NOTE: RE represents the relative energy of P
N3 isomers to ³1(3 PNNN). ZPVE and GFE represent the energy with inclusion of ZPVE correction and with Gibbs free energy correction separately.双环异构
体3 9向3 8转化的过程可通过反应式(12)的逆过程进行,反应仅需要经过0.92 kJ·mol-1 的能垒,因此异构体3 9极其不稳定。四元环异构体3 10可以通过反应式(14)经过9.96 kJ·mol-1 的能垒转化到异构体3 12。异构体3 12有多种异构化途径,其中转化为链状结构的反应式(15)经过的能垒最低,约为17.83 kJ·mol-1 。结果表明,异构体3 10和3 12极易发生异构化反应,动力学上不能稳定地存在,实验检测困难。综上所述,异构
体1 1和异构体3 7是PN3 分子中最稳定的两个异构体,有望于实验获得。3.3 分子动力学模拟(BOMD)
在B3LYP/6‑31G(d)水平下通过波恩‑奥本海默分子动力学(BOMD)方法,研究了异构
体1 1和3 7的动力学稳定性,图4和图5分别是300 K下异构体1 1和3 7的能量随时间变化的轨迹,可以看出异构体1 1的结构变化较小,在35 ps范围内未发生分解和异构化等变化,其能量变化范围在35.79 kJ·mol-1 之内,初始构型可以保持35 ps。链状异构体3 7在模拟过程中,结构也未发生分解或异构化等变化,其能量随时间的变化范围在24.32 kJ·mol-1 之内。这两个异构体均可以保持最初的构型至少35 ps,足够光谱上的检测。因此,四面体形异构体1 1和链状异构体3 7均具有优异的动力学稳定性。4 结 论
在M06‑2X/6‑31+G(d,p),CCSD(T)/aug‑cc‑pVTZ//M06‑2X/6‑31+G(d,p)水平下,研究了二元富氮化合物P
N3 的结构和稳定性,构建了PN3 的单重态和三重态势能面,并对异构体1 1和3 7进行了波恩‑奥本海默分子动力学(BOMD)计算。结果表明:(1)P
N3 分子的基态为链状的三重态异构体3 7(3 PNNN,Cs ),该异构体分解过程为吸热反应,需要吸收的能量为65.17 kJ·mol-1 ,具有较好的热力学稳定性。(2)四面体形异构
体1 1(1 PN3 ,C3v )的决速能垒为231.39 kJ·mol-1 ,具有较好的动力学稳定性。(3)在B3LYP/6‑31G(d)水平下通过波恩‑奥本海默分子动力学方法,研究了300 K温度下,异构
体1 1和3 7的动力学轨迹,结果表明两个异构体在35 ps内均未发生解离和异构化等变化,具有优异的动力学稳定性。(责编:高 毅)
参考文献
- 1
Samartzis P C, Wodtke A M. All‑nitrogen chemistry: how far are we from N60?[J]. International Reviews in Physical Chemistry, 2006, 25(4): 527-552.
- 2
Curtius T. Ueber Stickstoff was serstoffsäure azoimid N3H[J]. Berichte der Deutschen Chemischen Gesellschaft,1890, 23(2):3023-3033.
- 3
Hansen N,Wodtke A M. Velocity map ion imaging of chlorineazidephotolysis: Evidence for photolytic production of cyclic‑N3[J]. Journal of Physical Chemistry A, 2003, 107(49):10608-10614.
- 4
Cacase F, Petris G,Troiani A. Experimental detection oftetranitrogen[J]. Science, 2002, 295(5554): 480-481.
- 5
Christe K O, Wilson W W, Sheehy J A, et al. N5+: A novel homolepticpolynitrogen ion as a high energy density material[J]. Angewandte Chemie International Edition,1999, 38(13): 2004-2009.
- 6
ZHANG Chong, SUN Cheng‑guo, HU Bing‑cheng, et al. Synthesis and characterization of the pentazolate anion cyclo‑N5- in (N5)6(H3O)3(NH4)4Cl[J]. Science, 2017, 355(6323): 374-376.
- 7
Christe K O. Polynitrogen chemistry enters the ring[J]. Science, 2017, 355(6323): 351.
- 8
王宏社,杜志明,韩志跃.含氧富氮含能化合物的合成研究进展[J].含能材料, 2018, 26(8): 708-719.
WANG Hong‑she, DU Zhi‑ming, HAN Zhi‑yue. Progress of study on the synthesis of nitrogen‑rich energetic compounds containing oxygen[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(8): 708-719.
- 9
张英豪, 杜志明, 韩志跃, 等.无氢富氮含能化合物的研究进展[J].含能材料, 2015, 23(5): 496-503.
ZHANG Ying‑hao, DU Zhi‑ming, HAN Zhi‑yue, et al. Review on nitrogen‑rich compounds without hydrogen[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2015,23(5): 496-503.
- 10
Petrie M A, Sheehy J A, Boatz J A, et al. Novel high‑energy density materials. synthesis and characterization of triazidocarbenium dinitramide,‑perchlorate,and ‑tetrafluoroborate[J].Journal of the American Chemical Society,1997,119(38):8802-8808.
- 11
Filippou A C, Portius P, Neumann D U, et al. The hexaazidosilicate (IV) ion: synthesis, properties, and molecular structure[J]. Journal of the American Chemical Society, 2002, 124(42): 12396-12397.
- 12
Banert K, Joo Y H, Rüffer T, et al. The exciting chemistry of tetraazidomethane[J]. Angewandte Chemie, 2007, 46(7):1168-1171.
- 13
Portius P, Filippou A C, Schnakenburg G, et al. Neutral lewis base adducts of silicon tetraazide[J]. Angewandte Chemie International Edition, 2010, 49(43): 8013-8016.
- 14
Al‑JihadI A, LIU Bing , Linnen C J, et al. Generation of NNBN via photolysis of B(N3)3 in low‑temperature argon matrices: IR spectra and ab initio calculations[J]. Journal of Physical Chemistry A, 1998, 102(31): 6220-6226.
- 15
LIU Feng‑yi, ZENG Xing‑rong, ZHANG Jing, et al. A simple method to generate B(N3)3[J]. Chemical Physics Letters, 2006, 419(1-3): 213-216.
- 16
Haiges R, Boatz J, Vij A, et al. Polyazidechemistry: preparation and characterization of Te(N3)4 and [P(C6H5)4]2[Te(N3)6] and evidence for [N(CH3)4][Te(N3)5][J]. Angewandte Chemie, 2003, 42(47): 5847-5851.
- 17
Haiges R, Boatz J A, Williams J M, et al. Preparation and characterization of the binary group 13 azides M(N3)3 and M(N3)3·CH3CN(M=Ga, In,Tl), [Ga(N3)5]2-, and [M(N3)6]3- (M=In, Tl)[J]. Angewandte Chemie, 2011, 123(38): 8890-8995.
- 18
YU Tao, LIU Ying‑zhe, Haiges R, et al. 4‑Oxo‑ or 1‑oxo‑N7O+? A computational and experimental study[J].Rsc Advances, 2014, 4(54): 28377-28389.
- 19
LI Yu‑chuan, QI Cai, LI Sheng‑hua, et al.1,1‑Azobis‑1,2,3‑triazole: a high‑nitrogen compound with stable N8 structure and photochromism[J]. Journal of the American Chemical Society, 2010, 132(35): 12172-12173.
- 20
Klapötke T M, Piercey D G. 1,1′‑Azobis(tetrazole): a highly energetic nitrogen‑rich compound with a N10 chain[J]. Inorganic Chemistry, 2011, 50(7): 2732-2734.
- 21
Tang Y, Yang H, Wu B, et al. Synthesisand characterization of a stable, catenated N11 energetic salt[J]. Angewandte Chemie International Edition, 2013, 125(18): 4875-4877.
- 22
Strout D L. Stabilization of cylindrical N12 and N18 by phosphorus substitution[J]. Journal of Chemical Theory Computation, 2005, 1(4): 561-565.
- 23
LIANG Yan‑hong, LI Nan. Chain or ring: which one is favorable in nitrogen‑rich molecules N6XHm, N8XHm, and N10XHm (X=B, Al, Ga, m=1 and X=C, Si, Ge, m=2)?[J]. The Journal of Physical Chemistry A, 2014, 118(1): 248-259.
- 24
Tsyshevsky R, Pagoria P F, ZHANG Mao‑xi, et al. Comprehensive end‑to‑end design of novel high energy density materials: Ⅰ. Synthesis and characterization of oxadiazolebased heterocycles[J]. Journal of Physical Chemistry C, 2017, 121(39):1-26.
- 25
YU Tao, LIU Ying‑zhe, LAI Wei‑peng. Exploration for the stabilities of CHN7 and CN7-: a theoretical study on the formation and dissociation mechanisms[J].Chemical Physics, 2018, 502(6): 27-32.
- 26
Engelke, R,Blais N.C, Sander, R. K. Mass spectroscopic observation of [N3O]+[J].Journal of Physical Chemistry A,1999, 103(28): 5611-5614.
- 27
LI Qian‑shu, CHENG Li‑ping. Theoretical study of [N3X]+(X =O, S, Se, Te) systems[J].The Journal of Physical Chemistry A, 2003, 107(29): 5561-5565.
- 28
GAO Si‑meng, DING Yi‑hong.Theoretical study of nitrogen‑rich CN3- anion and related salts M+[CN3]-(M=Li,Na,K)[J]. Rsc Advances, 2012, 2(31): 11764-11776.
- 29
Maeda S, Ohno K, Morokuma K.Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods[J]. Physical Chemistry Chemical Physics, 2013, 15(11):3683-3701.
- 30
Hohenstein E G, Chill S T, Sherrill C D. Assessment of the performance of the M05‑2X and M06‑2X exchange‑correlation functionals for noncovalent interactions in biomolecules[J]. Journal of Chemical Theory Computation, 2008, 4(12):1996-2000.
- 31
Brinck T, Rahm M. Theoretical design of green energetic materials: predicting stability, detection, synthesis and performance[M]. John Wiley Sons: Green Energetic Materials, 2014:15-44.
- 32
Becke A D. Density‑functional thermochemistry.III. the role of exact exchange[J].The Journal of Chemical Physics, 1993, 98(7): 5648-5652.
- 33
LEE C, YANG Wei‑tao, Parr R G. Development of the colle‑salvetti correlation‑energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2):785-289.
- 34
Thompson D L. Modern methods for multidimensional dynamics computations in chemistry[M]. Singapore World Scientific, 1998: 143-147.
- 35
Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian09, Revision D.01[CP]. Gaussian, Inc, Wallingford C T, 2009.
- 1
摘要
为寻找高能量和动力学性能优异的潜在含能分子,采用量子化学方法在CCSD(T)/aug‑cc‑pVTZ//M06‑2X/6‑31+G(d,p)水平下构建了磷原子掺杂的富氮化合物P
Abstract
To explore promising energetic molecular species with huge energy release and significant kinetic stability, the singlet and triplet potential energy surface of nitrogen‑rich compound P