CHINESE JOURNAL OF ENERGETIC MATERIALS
+Advanced Search
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
RossiC, BriandD, DumonteuilM, et al. Matrix of 10×10 addressed solid propellant microthrusters:Review of the technologies[J]. Sensors and Actuators A, 2006, 126(1): 241-252.
参考文献 2
LewisD H, JansonS W, CohenR B, et al. Digital micropropulsion[J]. Sensors and Actuators A‑Physical, 2000, 80(2): 143-154.
参考文献 3
ZHANGK, CHOUS,AngbS. A solid propellant microthruster with metal igniter[J]. Proceeding of Powermems,2004,28(1):129-132.
参考文献 4
叶迎华. 火工品技术[M]. 北京:国防工业出版社,2014:181-184.
YEYing‑hua. Pyrotechnics Technology[M].Beijing: National Defense Industry Press, 2014: 181-184.
参考文献 5
XUJian‑bing, TAIYu, RUCheng‑bo, et al. Tuning the ignition performance of a microchip initiator by integrating various Al/MoO3 reactive multilayer films on a semiconductor bridge[J].ACS Appl Mater Interfaces, 2017, 9(6): 5580-5589.
参考文献 6
ZHUPeng, SHENRui‑qi, YEYing‑hua, et al. Energetic semiconductor bridge device incorporating Al/MoOx multilayer nanofilms and negative temperature coefficient thermistor chip[J]. J Appl Phys, 2014, 115(19): 194502.
参考文献 7
ZHANGDai‑xiong, XIANGQing, FANXing, et al. Electrophoretic assembly of B‑Ti nanoenergetic coating for micro‑ignitorapplication[J]. Chemical Engineering Journal, 2016, 301(1):58-64.
参考文献 8
陆冬梅, 王要东, 王大林, 等.用于片式电阻浆料的二氧化钌粉的制备[J]. 微电子学, 2014, 44(5): 696-700.
LUDong‑mei, WANGYao‑dong, WANGDa‑lin, et al. Preparation of ruthenium dioxide powder for chip resistor slurry[J]. Microelectronics, 2014, 44(5): 696-700.
参考文献 9
ZHANGK, CHOUS, AngbS. Development of a low‑temperature co‑fired ceramic solid propellant microthruster[J]. J Micromech Microeng, 2005, 15(5): 944-952.
参考文献 10
周彬,毛国强,秦志春,等.半导体桥上尖角、圆孔对其电爆性能的影响(英)[J].含能材料, 2009, 17(3): 349-352.
ZHOUBin, MAOGuo‑qiang, QINZhi‑chun, et al. Effect of V‑type angle and hole of semiconductor bridge on electro‑explosive performance[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(3): 349-352.
参考文献 11
周彬, 秦志春, 毛国强.半导体桥长宽比对其发火性能的影响[J].南京理工大学学报, 2009, 33(2): 235-237.
ZHOUBin, QINZhi‑chun, MAOGuo‑qiang. Influence of ratio of length to width of semiconductor bridge on its firing performance[J]. Journal of Nanjing University of Science and Technology(Nature Science), 2009, 33(2): 235-237.
参考文献 12
胡剑书, 焦清介.恒流作用下V型半导体桥电热特性研究[J]. 煤矿爆破, 2005, 4(71): 4-6.
HUJian‑shu, JIAOQing‑jie. A Study on the galvanothermy of V‑Type semiconductor bridge under constant current[J].Chinese Journal of Coal Mine Blasting, 2005, 4(71): 4-6.
参考文献 13
杨贵丽, 焦清介.双V型半导体桥电阻计算方法研究[J].火工品, 2009, 6(3): 1-5.
YANGGui‑li, JIAOQing‑jie. A study on calculation method for resistance of double V‑shaped semiconductor bridge[J]. Initiator and Pyrotechnics, 2009, 6(3): 1-5.
参考文献 14
MIL‑STD‑1901A. Munition rocket and missile motor ignition system design, safety criteria for[S]. Department of Defense Design Criteria Standard, 2002.
参考文献 15
RUCheng‑bo, DAIJi, XUJian‑bin, et al. Design and optimization of micro‑semiconductor bridge used for solid propellant microthrusters array[J].European Physical Journal Applied Physics, 2016, 74(3): 301103.
参考文献 16
DAIJi, XUJian‑bing, WANGFei, et al. Facile formation of nitrocellulose‑coated Al/Bi2O3, nanothermites with excellent energy output and improved electrostatic discharge safety[J]. Materials & Design,2018, 143(1): 93-103.
参考文献 17
XUJian‑bing, TAIYu, RUCheng‑bo, et al. Characteristic of energetic semiconductor bridge based on Al/MoOx energetic multilayer nanofilms with different modulation periods[J].Journal of Applied Physics, 2017, 21 (11):113301.
参考文献 18
付帅, 朱朋, 叶迎华, 等.基于Al/MoOx纳米复合含能薄膜的含能半导体桥研究[J].爆破器材, 2013, 6(1): 1-6.
FUShuai, ZHUPeng, YEYing‑hua, et al. Characterization of energetic semiconductor bridge realized by integrating Al/MoOxnano multilayer films[J]. Explosive Materials, 2013, 6(1): 1-6.
目录 contents

    摘要

    为了简化氧化钌(RuO2)点火桥制作工艺,提高输出能量,并能满足低能发火及快速响应的要求,采用低温共烧陶瓷技术设计并制作了30种不同结构尺寸的V型氧化钌点火桥,研究了点火桥在恒压激励下的电爆性能,根据B/KNO3点火药的点火试验结果,评估其点火能力。结果表明,V型结构设计有利于提高桥区电流密度,在V型桥的最窄处容易形成热点,有利于降低电爆所需能量;V型氧化钌点火桥的夹角、长宽比以及最窄处宽度对其电爆性能影响较大。在40 V恒压激励下,V型氧化钌点火桥夹角为60°,长宽比为0.43,最窄处宽度为100 μm时,电爆所需输入能量小为1.47 mJ,输出能量最大为8.46 mJ,可以点燃B/KNO3点火药。

    Abstract

    To simplify the production process of ruthenium oxide(RuO2) ignition bridge, improve the output energy and meet the requirements of low energy ignition and rapid response, the 30 kinds of V‑type RuO2 ignition bridges with different structure size were designed and manufactured by a low‑temperature co‑fired ceramic(LTCC) technology. The electro‑explosion properties of the bridge under constant‑voltage excitation were investigated. The ignition ability of B/KNO3 mixture was evaluated according to the ignition test results of B/KNO3 mixture. The results show that the design of V‑type structure is conducive to improving the current density in the bridge area and forming hot points in the narrowest part of the V‑type bridge, which is conducive to reducing the energy required by electro‑explosion.The angle, length/width ratio and width of the V‑type RuO2 ignition bridge have great influence on electro‑explosion performance. Under 40 V constant‑voltage excitation, when the angle, length/width ratio and width of the narrowest place of V‑type RuO2 ignition bridge are 60°, 0.43 and 100 μm, respectively, the input energy required by electro‑explosion is small, its value is 1.47 mJ, the output energy is maximum, its value is 8.46 mJ, which can ignite B/KNO3 mixture.

  • 1 引言

    1

    微纳卫星具有成本低、质量轻、机动性好、易于空间组网等优势,近年来发展迅猛。由于微纳卫星均不具备姿态调整和轨道控制能力,因此,用于微纳卫星姿轨控制的微推进系统成为研究热点。固体化学微推进器能够提供小而精确的冲量,其工作原理是通过电能、激光等激发能量使储存在微燃烧室内的推进剂燃烧,从而对外界做功,完成姿态控制、重力补偿等精确空间任[1,2,3]。点火桥是微推进器的发火元件,其性能直接影响微推进器的作用可靠[4]。传统的半导体桥(Semiconductor bridge, SCB)输出能量较小,为提高SCB的输出能量,保证点火桥在真空环境能可靠点燃推进剂,现阶段常使用磁控溅射或电泳沉积方法将含能复合薄膜集成到SCB上,但制作工艺较为繁[5,6,7]

    低温共烧陶瓷(Low‑temperature co‑fired ceramic,LTCC)技术可以实现分层布线功能,所用的陶瓷基板抗折强度高(320 MPa),可以耐受点火冲击,导热率低(3.3 W·m-1·K-1),隔热性能好,有利于微推进器的大规模集成与控制,也适合其他多种点火、起爆电路的设计与应用。LTCC行业广泛使用的氧化钌(RuO2)电阻浆料因其具有工艺重复性好、阻值范围宽、阻值稳定、性价比高等特点,成为普遍使用的电阻浆[8]。RuO2电阻可以通过丝网印刷技术直接印制并一起烧结而成,还可以通过激光调阻工艺,确保制作的RuO2电阻阻值的精度。国外曾研究过RuO2点火桥的电热式发火,设计了“蛇形”RuO2点火桥,阻值约为100 Ω,在37 V恒压激励方式下,发火延迟时间2.076 s[9]

    为了降低RuO2点火桥发火延迟时间,本研究结合V型半导体桥(SCB)设计经[10,11,12],改变桥区夹角、长宽比及最窄处宽度,设计了V型RuO2点火桥。测试了V型RuO2点火桥的电爆特性,并初步开展了点火桥点燃B/KNO3的试验,以期得到V型RuO2点火桥的最佳结构尺寸。

  • 2 实验部分

    2
  • 2.1 样品制备

    2.1

    1为V型RuO2点火桥结构示意图,其中:l为桥区长度,μm;w为桥区宽度,μm;l2为桥区扩展长度,μm;dn为最窄处宽度,μm。

    参照V型半导体桥电阻计算方[13],得出RuO2点火桥阻值计算公式:

    R = R S · ω 2 1 + 1 1 - ω · c o t θ / 2
    (1)
    图1
                            V型RuO2点火桥结构示意图

    图1 V型RuO2点火桥结构示意图

    Fig.1 Schematic diagram of the V‑type RuO2 ignition bridge structure

    式中,RS为方块电阻,Ω;ω=l/w为长宽比;θ为夹角,(°)。由式(1)可知,选用方块电阻一定的电阻材料,设计电阻值只与长宽比以及夹角有关。

    结合LTCC工艺要求,分别设计了最窄处宽度为100 μm和200 μm,夹角为30°、60°、90°、120°、150°,以及不同长宽比的桥型,表1为V型RuO2点火桥的设计参数,Rj为电阻计算值,Ω;Rc为电阻测试值,Ω。

    表1 V型RuO2点火桥的设计参数

    Table 1 Design parameters of the V‑type RuO2 ignition bridges

    dn / μmθ /(°)ωl / µmw / µml2 / µmRj / ΩRc / Ω
    1001501.93-2.30400.0-600.0207.2-260.8029.71-41.6232.3-41.7
    1201.21-1.34400.0-600.0330.9-446.4026.11-36.8527.8-35.7
    900.75-0.83300.0-500.0400.0-600.050.018.79-29.2717.0-27.3
    600.43-0.48173.2-288.7400.0-600.0113.4-155.714.24-19.9414.6-20.8
    300.20-0.2380.4-137.9400.0-600.0159.8-233.010.36-14.3710.6-15.2
    1501.30-1.66400.0-600.0307.2-360.8016.52-23.3415.4-23.3
    1200.87-1.10346.4-600.0400.0-546.40-26.813.69-20.5213.2-22.1
    200900.5-0.67200.0-400.0400.0-600.0100.010.42-15.1810.4-15.1
    600.29-0.38115.5-230.9400.0-600.0142.3-184.58.87-11.468.7-10.7
    300.13-0.1853.6-107.2400.0-600.0173.2-246.48.00-9.127.8-10.1
    表1
                    V型RuO2点火桥的设计参数

    RuO2点火桥采用低温共烧陶瓷技术设计并制作。制作流程如图2所示,具体制作步骤主要包括:(1)将Dupont951PT带膜生瓷片贴入钢框待打孔,整个基板共用10层生瓷片,其中单层生瓷片的厚度为0.114 mm,尺寸为170 mm×170 mm;(2)将贴好的生瓷片利用模块打孔,在生瓷片上冲出叠压对位孔;(3)利用丝网印刷技术对表层电极部分进行导体印刷,其中电极材料为金;(4)待表层电极层湿膜烘干后,印制RuO2薄膜电阻,型号为DupontCF011,方阻为10 Ω,印刷完成后将其烘干;(5)将所有印制完成的生瓷片根据图层顺序,依次叠压好,放入等静压力机热压;(6)将热压好的产品,放入共烧炉烧结,烧结温度为850 ℃,烧结后RuO2薄膜电阻厚度为20 μm;(7)利用激光划片机,将整版产品切成单体。

    图2
                            V型RuO2点火桥制作流程图

    图2 V型RuO2点火桥制作流程图

    Fig.2 Flow chart of fabricating the V‑type RuO2 ignition bridge

  • 2.2 电爆与点火试验

    2.2
  • 2.2.1 电爆试验

    2.2.1

    实验装置示意图如图3所示。其中安捷伦电源型号为:Agilent E3634A,作为点火桥点火激发源;数字示波器型号为:Tektronix DPO 5054B,带宽500 MHz,采样率5 GS•s-1,电压探头型号为:TPP0500B C054549,电流探头型号为:TCP0150 C015564,光纤探头型号为:DET02AFC,采集并记录点火桥发火时电压、电流以及光信号随时间的变化曲线;高速摄影仪型号为:HG‑100K,记录点火桥发火影像。

    图3
                            实验装置示意图

    图3 实验装置示意图

    Fig.3 Schematic diagram of the experimental device

    分别对表1所列的V型RuO2点火桥进行电爆测试。为了和文献[9]报道的“蛇形”RuO2点火桥发火延迟时间进行对比,采用恒压点火方式,初步探索了V型RuO2点火桥在35 V和40 V条件下的电爆情况,发现在35 V条件下部分桥型电爆不完全,所以设定激励电压40 V。根据高速摄影仪记录的点火桥电爆影像,可测得点火桥电爆的火焰面积,由数字示波器记录的电压、电流以及光信号随时间变化的曲线,可获得点火桥电爆延迟时间和等离子体加热时间,进而可以得到各种桥型的电爆所需能量和输出能量,筛选出性能较好的桥型用于点火试验。

  • 2.2.2 点火试验

    2.2.2

    点火试验所用药剂为B/KNO3点火药,B/KNO3是美军标MIL‑STD‑1901A中规定的火箭发动机直列式点火系统用典型点火药,具有热值高、点火能量强以及安全钝感等优异的性[14]。选用国营第二〇四厂生产的GJB6217-2008硼/硝酸钾点火药,规格为80~120目,用于V型RuO2点火桥和SCB点火试验,评定两种点火桥的点火能力。将适量的酒精加入10 mg B/KNO3粉末中,配成油墨形式后,滴在点火桥上,待溶液挥发,B/KNO3均匀紧密的附着在点火桥表面,分别对两种点火桥进行40 V恒压激励,通过B/KNO3点火药的燃烧状况,评定两种点火桥的点火能力。

  • 3 结果与讨论

    3
  • 3.1 V型RuO2点火桥结构对电爆性能的影响

    3.1

    4为激励电压40 V时,V型RuO2点火桥电爆的典型电压、电流、光信号随时间的变化曲线。其中,U为电压信号,V;I为电流信号,A;L为光信号,mV。为了方便描述,定义电爆延迟时间te为RuO2点火桥通电至产生等离子体时间,等离子体加热时间tc为产生光信号至电流变为零时间,电爆所需输入能量Ecte时间段内电流与电压乘积的积分。

    图4
                            V型RuO2点火桥电爆过程特征曲线

    图4 V型RuO2点火桥电爆过程特征曲线

    Fig.4 Characteristic curves of the electro‑explosion process for the V‑type RuO2 ignition bridge(te is the electro‑explosion delay time. tc is the plasmduration time.)

    从图4可以看出,V型RuO2点火桥的电爆过程为:在te阶段,桥区迅速升温,达到RuO2点火桥的熔化温度,在tc阶段,熔融态的RuO2在电能的作用下汽化,产生高温等离子体,并伴随火花。tc阶段电流曲线抖动可能是熔融态的RuO2以及汽化产生的高温等离子体分布不均匀,导电性质不稳定造成[15]

    5为30种V型RuO2点火桥电爆所需输入能量的试验结果。从图5可以发现:dn为200 μm的RuO2点火桥电爆所需输入能量明显大于dn为100 μm的RuO2点火桥,说明最窄处宽度越小越有利于能量的集中,而且最窄处宽度越大,电爆所需输入能量Ec散布也越大;当dn和夹角一定时,长宽比ω对电爆所需的输入能量Ec也有影响,主要是因为长宽比越小其点火桥的电阻值也越小,在相同电压激励下,流经桥区的电流越大,桥区升温速率越快,越容易电爆;从图5还可以发现,dn为100 μm时,点火桥的电爆规律随ω变化的规律更明显,ω越小Ec越小。因此,进一步研究了dn为100 μm,ω为最小时,5种不同夹角的V型RuO2点火桥(对应编号为1#~5#)的电爆性能,通过高速摄影记录了点火桥的电爆过程,比较电爆产生的等离子体面积大小和等离子体加热时间长短,评估5种点火桥的输出能[16,17],结果如图6所示。

    图5
                            输入能量随桥型变化趋势

    图5 输入能量随桥型变化趋势

    Fig.5 The change trend of input energy with bridge type

    6为1#~5#不同夹角的V型RuO2点火桥电爆过程高速摄影图,高速摄影采样率为20000帧/s。结果表明,夹角为60°的4#点火桥,电爆延迟时间te=12.93 μs,等离子体加热时间tc=547.43 μs,电爆所需能量Ec=1.47 mJ。电爆等离子体面积最大为6.82 mm2,持续时间最长为1.5 ms,该点火桥输出能量最大。

    图6
                            不同夹角V型RuO2点火桥电爆过程高速摄影图

    图6 不同夹角V型RuO2点火桥电爆过程高速摄影图

    Fig.6 High‑speed photographic maps of the electro‑explosion process for V‑type RuO2 ignition bridges with different angles

  • 3.2 4#点火桥点火试验结果

    3.2

    选用电爆性能最好的4#点火桥进行点火试验,并将其与SCB对比。用于和4#点火桥点火性能作对比的SCB尺寸为120 μm×60 μm,电阻为14 Ω,在40 V恒压激励下,两种点火桥点火特征曲线如图7所示。图7a为SCB点火特征曲线,整个过程可以分为SCB升温(t0~t1)、融化(t1~t2)、汽化(t2~t3)和等离子体加热(t3~t4)4个阶[18]t4时刻桥区完全断开,定义为电能作用于桥区的终止时刻,此时刻对应电流曲线降至零值时刻,SCB电爆时间为6.15 μs。根据电流与电压的乘积在t0~t4时间段内的积分,可以得到整个电爆过程中电能作用于SCB上的总能量为0.45 mJ。

    7b为V型RuO2点火桥点火特征曲线,在te阶段,桥区迅速升温,达到RuO2点火桥的熔化温度,在tc阶段,熔融态的RuO2在电能的作用下汽化,产生高温等离子体,热量的累积使B/KNO3点火药发火,发火延迟时间t1为273.1 μs,优于文献[9]的“蛇形”RuO2点火桥。整个电爆过程中电能作用于RuO2点火桥上的总能量为8.46 mJ。

    V型RuO2点火桥发火延迟时间小于文献[9]的“蛇形”RuO2点火桥的原因主要有以下两方面:一方面“蛇形”RuO2点火桥阻值比V型RuO2点火桥大,在恒压方式激励下,功率随电阻值的增大而减小,所以阻值小的V型RuO2点火桥的升温速率更快。另一方面,V型点火桥更容易在最窄处形成热点,产生高温等离子体,作用于药剂,响应速度明显快于“蛇形”RuO2点火桥设计。

    8为两种点火桥点燃B/KNO3点火药的高速摄影图片。图8a显示4#点火桥可以点燃B/KNO3并且能自持燃烧,图8b中SCB不能成功点燃B/KNO3,说明了V型RuO2点火桥较SCB具有更高的点火能力。SCB未能成功点燃B/KNO3点火药的原因主要有:桥区面积小,对B/KNO3点火药的传热面积小,不利于点火;作用时间短,不利于热量的积累;与4#点火桥相比输出能量小。

    html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F005.jpg

    a. SCB igniter

    html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F006.jpg

    b. RuO2 igniter

    图7 两种点火桥点火特征曲线

    Fig.7 Characteristic curves of ignition for two kinds of igniters

    html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F007.jpg

    a. RuO2 bridge‑B/KNO3

    html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F008.jpg

    b. SCB‑B/KNO3

    图8 两种点火桥对B/KNO3点火对比

    Fig.8 Comparison of the B/KNO3 ignition by two kinds of igniters

  • 4 结 论

    4

    (1)桥区最窄处宽度为100 μm的V型RuO2点火桥电爆所需输入能量小于桥区最窄处宽度为200 μm的V型RuO2点火桥;最窄处宽度为100 μm,夹角相同的桥型,电爆所需输入能量随长宽比的减小而减小;最窄处宽度为100 μm,长宽比为0.43,夹角为60°的V型RuO2点火桥电爆及点火性能最好,可以点燃B/KNO3

    (2) V型点火桥的设计更有利于能量的集中,响应速度明显快于“蛇形”设计;V型RuO2点火桥的电爆输出能量大于用于对比的SCB。

  • 参考文献

    • 1

      Rossi C, Briand D, Dumonteuil M, et al. Matrix of 10×10 addressed solid propellant microthrusters:Review of the technologies[J]. Sensors and Actuators A, 2006, 126(1): 241-252.

    • 2

      Lewis D H, Janson S W, Cohen R B, et al. Digital micropropulsion[J]. Sensors and Actuators A‑Physical, 2000, 80(2): 143-154.

    • 3

      ZHANG K, CHOU S,Angb S. A solid propellant microthruster with metal igniter[J]. Proceeding of Powermems,2004,28(1):129-132.

    • 4

      叶迎华. 火工品技术[M]. 北京:国防工业出版社,2014:181-184.

      YE Ying‑hua. Pyrotechnics Technology[M].Beijing: National Defense Industry Press, 2014: 181-184.

    • 5

      XU Jian‑bing, TAI Yu, RU Cheng‑bo, et al. Tuning the ignition performance of a microchip initiator by integrating various Al/MoO3 reactive multilayer films on a semiconductor bridge[J].ACS Appl Mater Interfaces, 2017, 9(6): 5580-5589.

    • 6

      ZHU Peng, SHEN Rui‑qi, YE Ying‑hua, et al. Energetic semiconductor bridge device incorporating Al/MoOx multilayer nanofilms and negative temperature coefficient thermistor chip[J]. J Appl Phys, 2014, 115(19): 194502.

    • 7

      ZHANG Dai‑xiong, XIANG Qing, FAN Xing, et al. Electrophoretic assembly of B‑Ti nanoenergetic coating for micro‑ignitorapplication[J]. Chemical Engineering Journal, 2016, 301(1):58-64.

    • 8

      陆冬梅, 王要东, 王大林, 等.用于片式电阻浆料的二氧化钌粉的制备[J]. 微电子学, 2014, 44(5): 696-700.

      LU Dong‑mei, WANG Yao‑dong, WANG Da‑lin, et al. Preparation of ruthenium dioxide powder for chip resistor slurry[J]. Microelectronics, 2014, 44(5): 696-700.

    • 9

      ZHANG K, CHOU S, Angb S. Development of a low‑temperature co‑fired ceramic solid propellant microthruster[J]. J Micromech Microeng, 2005, 15(5): 944-952.

    • 10

      周彬,毛国强,秦志春,等.半导体桥上尖角、圆孔对其电爆性能的影响(英)[J].含能材料, 2009, 17(3): 349-352.

      ZHOU Bin, MAO Guo‑qiang, QIN Zhi‑chun, et al. Effect of V‑type angle and hole of semiconductor bridge on electro‑explosive performance[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(3): 349-352.

    • 11

      周彬, 秦志春, 毛国强.半导体桥长宽比对其发火性能的影响[J].南京理工大学学报, 2009, 33(2): 235-237.

      ZHOU Bin, QIN Zhi‑chun, MAO Guo‑qiang. Influence of ratio of length to width of semiconductor bridge on its firing performance[J]. Journal of Nanjing University of Science and Technology(Nature Science), 2009, 33(2): 235-237.

    • 12

      胡剑书, 焦清介.恒流作用下V型半导体桥电热特性研究[J]. 煤矿爆破, 2005, 4(71): 4-6.

      HU Jian‑shu, JIAO Qing‑jie. A Study on the galvanothermy of V‑Type semiconductor bridge under constant current[J].Chinese Journal of Coal Mine Blasting, 2005, 4(71): 4-6.

    • 13

      杨贵丽, 焦清介.双V型半导体桥电阻计算方法研究[J].火工品, 2009, 6(3): 1-5.

      YANG Gui‑li, JIAO Qing‑jie. A study on calculation method for resistance of double V‑shaped semiconductor bridge[J]. Initiator and Pyrotechnics, 2009, 6(3): 1-5.

    • 14

      MIL‑STD‑1901A. Munition rocket and missile motor ignition system design, safety criteria for[S]. Department of Defense Design Criteria Standard, 2002.

    • 15

      RU Cheng‑bo, DAI Ji, XU Jian‑bin, et al. Design and optimization of micro‑semiconductor bridge used for solid propellant microthrusters array[J].European Physical Journal Applied Physics, 2016, 74(3): 301103.

    • 16

      DAI Ji, XU Jian‑bing, WANG Fei, et al. Facile formation of nitrocellulose‑coated Al/Bi2O3, nanothermites with excellent energy output and improved electrostatic discharge safety[J]. Materials & Design,2018, 143(1): 93-103.

    • 17

      XU Jian‑bing, TAI Yu, RU Cheng‑bo, et al. Characteristic of energetic semiconductor bridge based on Al/MoOx energetic multilayer nanofilms with different modulation periods[J].Journal of Applied Physics, 2017, 21 (11):113301.

    • 18

      付帅, 朱朋, 叶迎华, 等.基于Al/MoOx纳米复合含能薄膜的含能半导体桥研究[J].爆破器材, 2013, 6(1): 1-6.

      FU Shuai, ZHU Peng, YE Ying‑hua, et al. Characterization of energetic semiconductor bridge realized by integrating Al/MoOxnano multilayer films[J]. Explosive Materials, 2013, 6(1): 1-6.

徐威

机 构:南京理工大学 化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

邮 箱:xuwei@njust.edu.cn

作者简介:徐威(1994-),男,硕士研究生,主要从事微点火研究。e‑mail:xuwei@njust.edu.cn

代骥

机 构:南京理工大学 化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

许建兵

机 构:南京理工大学 化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

沈云

机 构:南京理工大学 化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

叶迎华

机 构:南京理工大学 化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

角 色:通讯作者

Role:Corresponding author

邮 箱:yyinghua@njust.edu.cn

作者简介:叶迎华(1962-),女,研究员,主要从事先进火工品研究。e‑mail:yyinghua@njust.edu.cn

沈瑞琪

机 构:南京理工大学 化工学院, 江苏 南京 210094

Affiliation:School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F009.jpg
dn / μmθ /(°)ωl / µmw / µml2 / µmRj / ΩRc / Ω
1001501.93-2.30400.0-600.0207.2-260.8029.71-41.6232.3-41.7
1201.21-1.34400.0-600.0330.9-446.4026.11-36.8527.8-35.7
900.75-0.83300.0-500.0400.0-600.050.018.79-29.2717.0-27.3
600.43-0.48173.2-288.7400.0-600.0113.4-155.714.24-19.9414.6-20.8
300.20-0.2380.4-137.9400.0-600.0159.8-233.010.36-14.3710.6-15.2
1501.30-1.66400.0-600.0307.2-360.8016.52-23.3415.4-23.3
1200.87-1.10346.4-600.0400.0-546.40-26.813.69-20.5213.2-22.1
200900.5-0.67200.0-400.0400.0-600.0100.010.42-15.1810.4-15.1
600.29-0.38115.5-230.9400.0-600.0142.3-184.58.87-11.468.7-10.7
300.13-0.1853.6-107.2400.0-600.0173.2-246.48.00-9.127.8-10.1
html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F001.jpg
html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F002.jpg
html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F003.jpg
html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F004.jpg
html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F010.jpg
html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F005.jpg
html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F006.jpg
html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F007.jpg
html/hncl/CJEM2018112/alternativeImage/106e4b4e-bb85-409e-9b31-eff404fd7f46-F008.jpg

图1 V型RuO2点火桥结构示意图

Fig.1 Schematic diagram of the V‑type RuO2 ignition bridge structure

表1 V型RuO2点火桥的设计参数

Table 1 Design parameters of the V‑type RuO2 ignition bridges

图2 V型RuO2点火桥制作流程图

Fig.2 Flow chart of fabricating the V‑type RuO2 ignition bridge

图3 实验装置示意图

Fig.3 Schematic diagram of the experimental device

图4 V型RuO2点火桥电爆过程特征曲线

Fig.4 Characteristic curves of the electro‑explosion process for the V‑type RuO2 ignition bridge(te is the electro‑explosion delay time. tc is the plasmduration time.)

图5 输入能量随桥型变化趋势

Fig.5 The change trend of input energy with bridge type

图6 不同夹角V型RuO2点火桥电爆过程高速摄影图

Fig.6 High‑speed photographic maps of the electro‑explosion process for V‑type RuO2 ignition bridges with different angles

图7 两种点火桥点火特征曲线 -- a. SCB igniter

Fig.7 Characteristic curves of ignition for two kinds of igniters -- a. SCB igniter

图7 两种点火桥点火特征曲线 -- b. RuO2 igniter

Fig.7 Characteristic curves of ignition for two kinds of igniters -- b. RuO2 igniter

图8 两种点火桥对B/KNO3点火对比 -- a. RuO2 bridge‑B/KNO3

Fig.8 Comparison of the B/KNO3 ignition by two kinds of igniters -- a. RuO2 bridge‑B/KNO3

图8 两种点火桥对B/KNO3点火对比 -- b. SCB‑B/KNO3

Fig.8 Comparison of the B/KNO3 ignition by two kinds of igniters -- b. SCB‑B/KNO3

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Rossi C, Briand D, Dumonteuil M, et al. Matrix of 10×10 addressed solid propellant microthrusters:Review of the technologies[J]. Sensors and Actuators A, 2006, 126(1): 241-252.

    • 2

      Lewis D H, Janson S W, Cohen R B, et al. Digital micropropulsion[J]. Sensors and Actuators A‑Physical, 2000, 80(2): 143-154.

    • 3

      ZHANG K, CHOU S,Angb S. A solid propellant microthruster with metal igniter[J]. Proceeding of Powermems,2004,28(1):129-132.

    • 4

      叶迎华. 火工品技术[M]. 北京:国防工业出版社,2014:181-184.

      YE Ying‑hua. Pyrotechnics Technology[M].Beijing: National Defense Industry Press, 2014: 181-184.

    • 5

      XU Jian‑bing, TAI Yu, RU Cheng‑bo, et al. Tuning the ignition performance of a microchip initiator by integrating various Al/MoO3 reactive multilayer films on a semiconductor bridge[J].ACS Appl Mater Interfaces, 2017, 9(6): 5580-5589.

    • 6

      ZHU Peng, SHEN Rui‑qi, YE Ying‑hua, et al. Energetic semiconductor bridge device incorporating Al/MoOx multilayer nanofilms and negative temperature coefficient thermistor chip[J]. J Appl Phys, 2014, 115(19): 194502.

    • 7

      ZHANG Dai‑xiong, XIANG Qing, FAN Xing, et al. Electrophoretic assembly of B‑Ti nanoenergetic coating for micro‑ignitorapplication[J]. Chemical Engineering Journal, 2016, 301(1):58-64.

    • 8

      陆冬梅, 王要东, 王大林, 等.用于片式电阻浆料的二氧化钌粉的制备[J]. 微电子学, 2014, 44(5): 696-700.

      LU Dong‑mei, WANG Yao‑dong, WANG Da‑lin, et al. Preparation of ruthenium dioxide powder for chip resistor slurry[J]. Microelectronics, 2014, 44(5): 696-700.

    • 9

      ZHANG K, CHOU S, Angb S. Development of a low‑temperature co‑fired ceramic solid propellant microthruster[J]. J Micromech Microeng, 2005, 15(5): 944-952.

    • 10

      周彬,毛国强,秦志春,等.半导体桥上尖角、圆孔对其电爆性能的影响(英)[J].含能材料, 2009, 17(3): 349-352.

      ZHOU Bin, MAO Guo‑qiang, QIN Zhi‑chun, et al. Effect of V‑type angle and hole of semiconductor bridge on electro‑explosive performance[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009, 17(3): 349-352.

    • 11

      周彬, 秦志春, 毛国强.半导体桥长宽比对其发火性能的影响[J].南京理工大学学报, 2009, 33(2): 235-237.

      ZHOU Bin, QIN Zhi‑chun, MAO Guo‑qiang. Influence of ratio of length to width of semiconductor bridge on its firing performance[J]. Journal of Nanjing University of Science and Technology(Nature Science), 2009, 33(2): 235-237.

    • 12

      胡剑书, 焦清介.恒流作用下V型半导体桥电热特性研究[J]. 煤矿爆破, 2005, 4(71): 4-6.

      HU Jian‑shu, JIAO Qing‑jie. A Study on the galvanothermy of V‑Type semiconductor bridge under constant current[J].Chinese Journal of Coal Mine Blasting, 2005, 4(71): 4-6.

    • 13

      杨贵丽, 焦清介.双V型半导体桥电阻计算方法研究[J].火工品, 2009, 6(3): 1-5.

      YANG Gui‑li, JIAO Qing‑jie. A study on calculation method for resistance of double V‑shaped semiconductor bridge[J]. Initiator and Pyrotechnics, 2009, 6(3): 1-5.

    • 14

      MIL‑STD‑1901A. Munition rocket and missile motor ignition system design, safety criteria for[S]. Department of Defense Design Criteria Standard, 2002.

    • 15

      RU Cheng‑bo, DAI Ji, XU Jian‑bin, et al. Design and optimization of micro‑semiconductor bridge used for solid propellant microthrusters array[J].European Physical Journal Applied Physics, 2016, 74(3): 301103.

    • 16

      DAI Ji, XU Jian‑bing, WANG Fei, et al. Facile formation of nitrocellulose‑coated Al/Bi2O3, nanothermites with excellent energy output and improved electrostatic discharge safety[J]. Materials & Design,2018, 143(1): 93-103.

    • 17

      XU Jian‑bing, TAI Yu, RU Cheng‑bo, et al. Characteristic of energetic semiconductor bridge based on Al/MoOx energetic multilayer nanofilms with different modulation periods[J].Journal of Applied Physics, 2017, 21 (11):113301.

    • 18

      付帅, 朱朋, 叶迎华, 等.基于Al/MoOx纳米复合含能薄膜的含能半导体桥研究[J].爆破器材, 2013, 6(1): 1-6.

      FU Shuai, ZHU Peng, YE Ying‑hua, et al. Characterization of energetic semiconductor bridge realized by integrating Al/MoOxnano multilayer films[J]. Explosive Materials, 2013, 6(1): 1-6.