Abstract:In order to analyze the cutting force response laws and cutting characteristics during PBX cutting process, the low-speed orthogonal cutting experiments, combined with the microphotography, 3D dynamometer and 3D surface profiler, were used to analyze the characteristics of instantaneous cutting force of PBX explosive simulants, and to study the cutting force response laws and key influencing factors in the cutting process of PBX explosive simulants. Results show that the dynamic cutting forces of PBX explosive simulants with different cutting depths are different. When cutting depth equals to 0.1 mm, the variation of peak cutting force is mainly caused by particles chip with curled up jet, and the cutting force curve exhibits subtle jagged variation. However, when the cutting depth equals to 0.3 mm or 0.5 mm, the peak cutting force mainly comes from the extension of material brittle fracture crack, the cutting force curve shows periodic large saw-tooth shape, and the zero point of fz is at the over-cutting dent. The standard deviation of fx shows significant variation at the cutting depth of 0.4 mm, which reflects the transition from continuous removal to brittle removal in the cutting state of explosive simulated materials. In low speed orthogonal cutting process, the influence of cutting width on cutting force is greater than that of cutting speed, and the cutting speed has little effect on cutting force.