Abstract:To explore the exploding mechanism of composite multilayers, the properties of Ni/Cu multilayer exploding foil were studied. Ni/Cu composite multilayers (modulation period 200 nm/300 nm and 300 nm/400 nm, respectively), pure Cu and Ni films with the same thickness were prepared by electrochemical deposition. The plasma emission spectroscopy was measured. Under different discharge current conditions, the electron temperature of electrically exploded plasma of Ni/Cu composite multilayers with different structures, pure Cu and Ni films was calculated, respectively. After matching barrels and flyers with exploding foils, the velocity of flyer driven by different exploding foils was measured by PDV method. The performance of the exploding foils driving flyer under different discharge current conditions were obtained. The results show the plasma emission spectroscopy intensity and electron temperature of (Ni200Cu300)8 and (Ni300Cu400)5Ni300 is higher than pure Cu and Ni at discharge current of 2.5 kA, indicating the Ni/Cu composites have higher electrically exploding energy density at the same condition. The Ni in Ni/Cu composites promotes the plasma to push flyer forward, resulting in the accelerating time and final velocity of flyer driven by (Ni200Cu300)8 and (Ni300Cu400)5Ni300 are both higher than those of flyer driven by pure Cu.