Abstract:To study the influence of wide temperature range on the detonation wave front curvature rate for insensitive explosives, pseudo-steady-state detonation wave velocities and wave front shapes were obtained for JB-9014 with three different grain diameters(10,15,30 mm)at the temperature -55, 11 ℃ and 70 ℃ by using high speed streak camera technique and electric pins velocimetry. Results show that at the same temperature, the pseudo-steady-state detonation wave velocity is concave down for small-diameter grain but it is concave up for large-diameter grain. At the same grain diameter, the velocity of pseudo-steady-state detonation wave velocities of JB-9014 decreases linearly as the ambient temperature increases and the decrease of slope is related to the diameter of the grain. When the variation of detonation wave velocity of JB-9014 with grain diameter and ambient temperature is fitted by polynomial, the fitting results are in good agreement with the experimental data. For JB-9014 with three kinds of grain diameters, the pseudo-steady-state detonation wave front shape becomes flatter with the increase of the ambient temperature. When the experimental results of three kinds of grain diameters are fitted by genetic arithmetic method, the Dn(κ) parameters of JB-9014 over a wide temperature range are obtained. When the local curvature is less than 0.16, the Dn(κ) relation decrease with the increase of temperature, while the result is the opposite when the local curvature is greater than 0.26. When the detonation shock dynamics (DSD) method is used to calculate the non-ideal propagation process of detonation wave of grains with three kinds of diameters, the calculated results are in good agreement with the experimental values.