CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
GAP基固体推进剂喷管结构约束下的烤燃响应
作者:
作者单位:

北京理工大学 宇航学院, 北京 100081

作者简介:

通讯作者:

基金项目:

国家自然科学基金(U2341288)


Cook-off Response Process of GAP-based Solid Propellants Under Nozzle Structural Constraints
Author:
Affiliation:

School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Fund Project:

Grant support: National Natural Science Foundation of China (No. U2341288)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    固体火箭发动机的喷管结构约束对推进剂在烤燃刺激下的响应过程具有显著影响。为研究喷管喉径对GAP基固体推进剂烤燃响应过程的影响规律,设计搭建了喷管结构试验件的热载荷加载与控制系统,基于激光高速纹影成像技术,观测了发动机喷管结构约束下GAP基推进剂烤燃响应的完整过程,同时测量了烤燃过程中的试验件温度和点火响应产生的冲击波超压。结果表明:含喷管约束的GAP基固体推进剂试件的烤燃响应可分为点火前推进剂软化膨胀,点火后燃烧火焰加速、燃烧转爆轰、壳体失效、爆燃过程。点火后响应过程仅持续0.5~2毫秒。燃烧火焰加速阶段压力缓慢增长,当喷管喉径较小时,流动易发生壅塞,使压力和燃速快速增长并相互促进,导致发生燃烧转爆轰;而喷管喉径较大时,试验件内压力的快速增长无法发生或者维持,降低了燃烧转爆轰的可能性,试验件结构完整性得以保持。

    Abstract:

    The nozzle structural constraints of solid rocket motors significantly affect the response process of propellants under cook-off stimuli. To study the influence of nozzle throat diameter on the cook-off response of GAP-based solid propellants, a thermal load loading and control system for nozzle structural test pieces was designed and constructed. Using high-speed laser schlieren imaging technology, the entire cook-off response process of GAP-based propellants under the constraints of motor nozzle structures was observed. Additionally, the temperature of test pieces and the shock wave overpressure generated upon the ignition response were measured. The results indicate that the cook-off response of GAP-based solid propellant specimens with nozzle constraints can be divided into the following stages: softening and expansion of the propellant before ignition, and flame acceleration, deflagration-to-detonation transition (DDT), casing failure, and deflagration process after ignition. The post-ignition response lasts only 0.5-2 milliseconds. From the pressure curve, it is evident that during the flame acceleration phase, the pressure grows slowly. When the nozzle throat diameter is relatively small, flow choking is more likely to occur. Once choking occurs, pressure and burning rate rapidly increase and reinforce each other, ultimately leading to deflagration-to-detonation transition. In contrast, for test pieces with large nozzle throat diameters, the rapid pressure rise cannot occur or be sustained, reducing the likelihood of deflagration-to-detonation transition and maintaining the structural integrity of test pieces.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

杨钧森,金丰凯,吉康语,等. GAP基固体推进剂喷管结构约束下的烤燃响应[J].含能材料, 2025, 33(1):32-38. DOI:10.11943/CJEM2024191.
YANG Jun-sen, JIN Feng-kai, JI Kang-yu, et al. Cook-off Response Process of GAP-based Solid Propellants Under Nozzle Structural Constraints[J]. Chinese Journal of Energetic Materials, 2025, 33(1):32-38. DOI:10.11943/CJEM2024191.

复制
历史
  • 收稿日期: 2024-07-17
  • 最后修改日期: 2024-12-11
  • 录用日期: 2024-11-29
  • 在线发布日期: 2024-12-10
  • 出版日期: 2025-01-25