CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
  • 2024年第0卷第6期文章目次
    全 选
    显示方式: |
    • >专题导言
    • 专题导言:富氮杂环含能化合物的创制

      2024, 32(6):570-570.

      摘要 (248) HTML (98) PDF 1.06 M (1083) 评论 (0) 收藏

      摘要:

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
    • >含能快递
    • 含能快递--2024年第6期

      2024, 32(6):571-572.

      摘要 (231) HTML (68) PDF 1.12 M (1420) 评论 (0) 收藏

      摘要:

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
    • >制备与性能
    • 机器学习辅助的[5,6]稠环含能化合物高通量设计

      2024, 32(6):573-583. DOI: 10.11943/CJEM2024055

      摘要 (300) HTML (99) PDF 1.94 M (1088) 评论 (0) 收藏

      摘要:与经验和计算指导的研发模式相比,机器学习辅助的含能分子高通量虚拟筛选技术,在分子设计效率及构效关系定量分析方面都展现出明显优势。鉴于富氮稠环含能化合物较好的能量-稳定平衡特性,研究利用机器学习辅助的高通量虚拟技术对[5,6]富氮稠环类含能分子的化学空间进行了探索研究,基于[5,6]全碳骨架,通过组合枚举和芳香性筛选得到142689个[5,6]稠环类化合物,同时采用核岭回归算法建立并优化了6个含能分子性能预测模型(密度,分解温度,爆速,爆压,撞感和生成焓),分析了稠环上的氮氧原子以及分子上官能团对含能化合物性能的影响。结果发现,所生成稠环化合物的构效关系与含能化合物能量与稳定性相关性的一般规律相符,验证模型的合理性。以爆速和分解温度作为能量和热稳定性的标准,研究进而筛选获得了5个综合性质较为突出的分子,利用DFT等量子化学计算的结果与本研究模型预测结果符合良好,进一步验证了预测模型的精度。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
    • 3-(1H-四唑)-7-(三氟甲基)-1,2,4-三唑[5,1-c]-1,2,4-三嗪-4-氨基的制备及性能

      2024, 32(6):584-590. DOI: 10.11943/CJEM2024053

      摘要 (237) HTML (78) PDF 1.09 M (1203) 评论 (0) 收藏

      摘要:以5-(三氟甲基)-1,2,4-三唑-3-胺为原料,两步合成了一种含氟稠环含能化合物3-(1H-四唑)-7-(三氟甲基)-1,2,4-三唑[5,1-c]-1,2,4-三嗪-4-氨基(2)。采用X射线单晶体衍射仪确定了目标化合物的晶体结构,通过核磁共振、傅里叶红外光谱、差示扫描量热仪对其进行了结构测试与性能表征,通过EXPLO5预测了爆轰性能,采用BAM标准方法进行了感度测定。结果表明,合成过程高效、无毒、简单,所得目标化合物的晶体2·DMF属于三斜晶系,Pī空间群,晶胞参数a=4.9035(10) Å,b=10.219(2) Å,c=15.194(3) Å,V=720.4(3) Å3α=107.163(6)°,β=92.486(7)°,γ=96.4438(7)°,Z=2;其理论爆速爆压分别为6933 m·s-1和17.1 GPa,撞击感度>40 J,摩擦感度>360 N。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
    • 含四唑多环自组装含能化合物的合成、晶体结构及性能

      2024, 32(6):591-600. DOI: 10.11943/CJEM2024006

      摘要 (249) HTML (115) PDF 2.40 M (1194) 评论 (0) 收藏

      摘要:多环富氮含能化合物因其在构建低机械感度、良好热稳定性和高密度新型含能分子方面的独特优势,而备受国内外研究人员关注。研究将四唑环接入稠环中构建新型多环富氮骨架,利用其作为高能有机燃料和氢键供体,进一步与富有氢键受体的氧化性结构单元HClO4通过非共价键自组装,合成了3种不含结晶水的新型多环自组装含能化合物——7-氨基-6-(2H-四唑-5-基)-吡唑并[1,5-a]嘧啶高氯酸盐(1),7-氨基-6-(2H-四唑-5-基)-[1,2,4]三唑并[1,5-a]嘧啶高氯酸盐(2)和2,7-二氨基-6-(2H-四唑-5-基)-[1,2,4]三唑并[1,5-a]嘧啶高氯酸盐(3采用核磁共振谱(H NMR)、X-射线单晶衍射(XRD)分析对其结构进行表征,利用差示扫描量热仪-热重联用(DSC-TG)和BAM法测试其热稳定性和机械感度,并运用Gaussian 09程序和EXPLO5 V6.05.02预测其爆轰性能。结果表明,3种化合物均有较高的晶体密度(密度ρ: 1.75~1.86 g·cm-3)、良好的热稳定性(热分解起始温度Td: 184~260 ℃)和爆轰性能(爆速v: 7343~7570 m·s-1; 爆压p: 21.1~22.8 GPa),优于传统炸药三硝基甲苯(TNT)。其中化合物1(撞击感度IS>40 J,摩擦感度FS=216 N)和化合物3IS=25 J,FS=240 N)展现出低的机械感度。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
    • 3,5,7-三氨基-[1,2,4]三唑并[4,3-a][1,3,5]三嗪五唑盐的合成与性能

      2024, 32(6):601-607. DOI: 10.11943/CJEM2024028

      摘要 (311) HTML (131) PDF 1.47 M (1416) 评论 (0) 收藏

      摘要:以五唑银为原料与3,5,7-三氨基-[1,2,4]三唑并[4,3-a][1,3,5]三嗪盐酸盐通过复分解反应合成了一种新型非金属五唑盐——3,5,7-三氨基-[1,2,4]三唑并[4,3-a][1,3,5]三嗪五唑盐(4)。通过X-射线单晶衍射、红外光谱(IR)、元素分析(EA)、核磁共振(NMR)对合成的新型五唑盐进行了结构表征,并采用热重分析(TG)和差示扫描量热分析(DSC)测试其热分解行为。使用原子化法计算了化合物4的生成焓,使用EXPLO5预测了爆轰性能,并采用BAM方法测试其撞击感度和摩擦感度。测试结果显示,化合物4的晶体密度为1.644 g·cm-3,属单斜晶系,P21/n空间群,氮含量77%,热分解温度113.8 ℃,生成焓491.5 kJ·mol-1,爆速7913 m·s-1,爆压19.6 GPa,撞击感度>40 J,摩擦感度>360 N。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
    • 5-氨基-2H-吡唑-3,4-双酮-3-肟-4-腙及其含能离子盐的合成与性能调控

      2024, 32(6):608-614. DOI: 10.11943/CJEM2023270

      摘要 (141) HTML (63) PDF 852.81 K (1009) 评论 (0) 收藏

      摘要:以4-氯-3,5-二硝基-1H-吡唑为原料,经胺化及取代/还原反应得到5-氨基-2H-吡唑-3,4-双酮-3-肟-4-腙(3),并制备了3种含能离子盐——高氯酸盐(4)、硝酸盐(5)和5,5΄-二硝氨基-3,3΄-偶氮-1,2,4-噁二唑盐(6)。通过溶剂挥发法得到了化合物34的单晶,并通过X-射线单晶衍射法对其进行表征。通过核磁共振波谱、红外光谱等方法对含能化合物3~6的结构进行表征;通过真密度仪、差示扫描量热仪、撞击感度仪、摩擦感度仪等对其性能进行测试;同时理论计算了其生成焓和爆轰性能。结果表明,化合物3为平面构型,酮肟和酮腙具有显著的双键特征,降低了吡唑环的共轭性,使其易于成盐。成盐后不同阴离子对中性化合物的性能有着多方面的影响。其中高氯酸根阴离子不但改善了化合物的氧平衡,还提高了化合物的密度,使得高氯酸盐4的爆速和爆压(8499 m·s-1,30.2 GPa)相比中性化合物3(8072 m·s-1,22.5 GPa)有一定程度提升;另外5,5΄-二硝氨基-3,3΄-偶氮-1,2,4-噁二唑显著提高了中性化合物3的分解温度,由135 ℃上升至285 ℃。结果表明通过阴阳离子的合理搭配,可以有效调控目标含能化合物的性能。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
    • 两种富氮稠环型1,2,5-噁二唑类含能盐的合成及性能

      2024, 32(6):615-622. DOI: 10.11943/CJEM2024039

      摘要 (163) HTML (72) PDF 1.42 M (1045) 评论 (0) 收藏

      摘要:以5,6-二肼基-[1,2,5]噁二唑并[3,4-b]吡嗪(1)为原料合成了5,5''-(肼-1,2-二亚基亚胺)双(5,7-2H-[1,2,5]噁二唑并[3,4-e][1,2,4]三唑并[4,3-a]吡嗪-8(4H)-亚胺)高氯酸盐(2)和5,5''-(二氮烯-1,2-二亚基)双([1,2,5]噁二唑并[3,4-e][1,2,4]三唑并[4,3-a]吡嗪-8(7H)-亚胺)硝酸盐(3)两种富氮含能盐。采用核磁共振(NMR)、傅里叶红外光谱(FT-IR)、元素分析(EA)、X-射线单晶衍射(XRD)等多种手段对含能离子盐23的结构进行了表征,利用差示扫描量热法(DSC)研究其热分解行为,运用BAM标准测试方法获得摩擦感度和撞击感度,同时基于等键反应方程与EXPLO5软件预测其爆轰性能。结果表明,化合物23的晶体均属于单斜晶系,分别属于PnP21/n空间群,二者的晶体结构中阳离子部分具有良好的平面性,晶体堆积图中观察到了大量氢键。化合物23的热分解温度分别为154 ℃和130 ℃,理论爆速分别为7722 m·s-1和8008 m·s-1,理论爆压分别为26.3 GPa和28.4 GPa,摩擦感度均为360 N,撞击感度均大于40 J。化合物23在爆轰性能、摩擦感度、撞击感度性能上均优于传统炸药TNT。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
    • 富氮多环含能离子盐的合成和性能

      2024, 32(6):623-630. DOI: 10.11943/CJEM2024056

      摘要 (229) HTML (58) PDF 1.11 M (1098) 评论 (0) 收藏

      摘要:以多氨基稠环化合物6,7-二氨基-3亚氨基-[1,2,4]三唑并[1,2,4]三唑连四唑(TATOT-T)为原料,经过高锰酸钾氧化偶联和高氯酸成盐等步骤,合成了一种偶氮桥联的富氮多环含能化合物2,2′-二四唑基-3,6-二氨基-7,7′-偶氮基-[1,2,4]三唑并[1,2,4]三唑高氯酸盐(2)。采用傅里叶红外光谱、核磁共振、元素分析、X-射线单晶衍射技术,以及差示扫描量热法(DSC)和热重分析(TG)对化合物2进行结构表征和热性能分析,结合高斯软件计算的生成焓,使用EXPLO5软件计算了其爆轰性能。结果表明,所得化合物2晶体属于单斜晶系,晶体密度为1.750 g·cm-3,每个晶胞中包含4个分子,起始热分解温度为232.6 ℃,理论爆速为8373 m∙s-1,爆压为29.05 GPa,撞击感度为40 J,摩擦感度为360 N,对外界机械刺激钝感,具有良好综合性能。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
    • 基于乌洛托品笼状结构阳离子的五唑盐合成

      2024, 32(6):631-640. DOI: 10.11943/CJEM2024091

      摘要 (189) HTML (69) PDF 1.87 M (907) 评论 (0) 收藏

      摘要:基于两种乌洛托品笼状阳离子结构,合成了两种新的五唑盐——乌洛托品五唑盐(C6H13N91)和甲基化乌洛托品五唑盐(C7H15N92)。通过X-射线单晶衍射、红外光谱(IR)、质谱(MS)和核磁共振(NMR)对合成的五唑盐进行了结构表征,并采用热重分析(TG)和差示扫描量热分析(DSC)测试其热分解行为。使用原子化法计算了化合物12的生成焓,使用EXPLO5预测了爆轰性能,并采用BAM方法测试其撞击感度和摩擦感度。测试结果显示,化合物1属于单斜晶系(P21/c),晶胞参数为a=13.6795(2) Å,b=11.6892(1) Å,c=12.5941(2) Å,V=1937.53(5) Å3α=γ=90°,β=105.822(1)°,Z=8,Dc=1.448 g·cm-3,化合物2属于单斜晶系(P21/m),晶胞参数为a=6.9025(5) Å,b=7.6042(5) Å,c=10.6808(9) Å,V=538.50(7) Å3α=γ=90°,β=106.148(8)°,Z=2,Dc=1.389 g·cm-3。化合物12的热分解温度分别为90.0 ℃和82.8 ℃,理论爆速爆压分别为8291 m·s-1,20.33 GPa和7862 m·s-1,17.41 GPa。测得化合物12的撞击感度和摩擦感度分别为5 J,288 N和3 J,86 N。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
    • 奇特氟效应:一个有效构筑不敏感含能材料的重要因素(英)

      2024, 32(6):641-650. DOI: 10.11943/CJEM2024061

      摘要 (240) HTML (64) PDF 1.57 M (922) 评论 (0) 收藏

      摘要:研究设计、合成并表征了化合物5,7-二(三氟甲基)-2-(二硝甲基)-[1,2,4]三唑[1,5-a]嘧啶(1)。采用差示扫描量热仪、高斯03及EXPLO5 v6.05软件分别测试或计算了其热性能、生成焓和爆轰性能,并通过Hirschfeld表面分析、2D指纹图谱、静电势(ESP)对化合物1和已报道的偕二硝甲基含能化合物进行了对比研究。结果表明,化合物1具有较低的机械感度,其撞击感度>40 J, 摩擦感度>360 N,这与已报道的CHON型偕二硝甲基含能化合物的敏感性有很大不同。单晶堆积及分子间作用力的计算结果表明化合物1中的卤键(C—F…X)能够有效打断分子之间O…O相互作用的生成。此外,由于三氟甲基的存在,化合物1展示出较为优越的静电势值和静电势偏移值,从而使其比其它偕二硝甲基含能化合物更加稳定。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
    • 端羟基叠氮呋咱醚氧杂丁烷-HTPE嵌段共聚物合成及内增塑性能

      2024, 32(6):651-659. DOI: 10.11943/CJEM2024022

      摘要 (131) HTML (64) PDF 1.52 M (933) 评论 (0) 收藏

      摘要:针对增塑剂易迁移、渗出进而严重影响聚合物基复合材料物化性能和机械性能的问题,研究通过3-硝基-4-羟基呋咱与3,3-二溴甲基氧杂丁环(BBMO)偶联合成2种新单体3-(4-硝基呋咱-3-氧甲基)-3-溴甲基氧杂环丁烷(BrNFMO)、3,3-二(4-硝基呋咱-3-氧甲基)氧杂环丁烷(BNFMO),以端羟基聚醚(HTPE)为大分子引发剂,在三氟化硼乙醚催化下分别与BrNFMO、BNFMO以及对照组BBMO共聚后叠氮化,制备得到三种内增塑嵌段共聚物,对其进行结构、热分解行为、内增塑性能测试,并对所设计目标共聚单元进行量化计算以评估其爆轰性能。最后对共聚工艺进行了优化,通过“假活性”聚合策略对引入嵌段的程度进行控制。结果表明,该系列新型含能共聚单元具有优于现有叠氮基氧杂环丁烷单体的能量水平。与直接将叠氮基团引入聚合物相比,通过呋咱醚桥联结构将叠氮基团进行引入能够通过内增塑策略获得具有更低玻璃化转变温度Tg与黏度的含能共聚物(Tg可降低5.27 ℃,黏度可降低4.90 Pa·s),其热稳定性也得到了提高(Td可提高7.3 ℃)。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
    • >综述
    • 基于数据驱动的氮杂多环含能化合物的开发研究进展

      2024, 32(6):660-671. DOI: 10.11943/CJEM2024088

      摘要 (221) HTML (60) PDF 4.12 M (1642) 评论 (0) 收藏

      摘要:含能材料的开发面临诸多挑战,传统“试错法”的研发模式会导致研发周期长,效率低。随着数据科学与人工智能技术的发展,基于数据驱动的研发模式为含能材料的发展开辟了新的路径。多环含能化合物是当前含能材料学科的研究热点,其中氮杂多环骨架由于存在π电子的离域共振和较多的可修饰位点,分子结构的稳定性得到提高,同时能量基团的存在保证了分子的能量水平,使得能量与稳定性之间的固有矛盾得到很好的平衡。研究简要介绍了数据驱动开发新型含能材料的工作流程,概述了数据驱动方法用于氮杂多环含能化合物开发的最新研究进展,最后对数据驱动的方法用于新型含能材料的开发提出展望。未来的发展方向应考虑通过数据增强、治理等手段补充数据量,以提高模型预测的准确性及泛化能力;可通过建立化学反应条件和合成路径筛选的机器学习模型预测分子的可合成性,从而加速新型氮杂多环含能化合物的开发。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
    • 电化学合成偶氮桥连富氮杂环含能化合物的研究进展

      2024, 32(6):672-682. DOI: 10.11943/CJEM2024031

      摘要 (215) HTML (72) PDF 1.52 M (1673) 评论 (0) 收藏

      摘要:偶氮桥连富氮杂环含能化合物在含能材料领域应用广泛。传统构建偶氮桥连化合物通常采用氧化偶联法,存在安全风险高和环境污染严重等问题。电化学合成方法由于其高效、可控和环境友好等优点备受研究者青睐。本文围绕近年来呋咱、吡唑、三唑、四唑等偶氮桥连富氮杂环含能材料的电化学合成研究,介绍了电解质和电极等条件对反应的影响,总结了不同偶氮桥连富氮杂环含能化合物的电化学合成机理,提出了未来的研究方向,如采用电化学制备传统方法无法合成的含能分子,利用电化学方法实现氮-氮单键、碳-氮单键、分子内偶氮键等化学键的构建,和探索稠环以及连环等复杂含能材料的电化学合成以及电化学合成方法的工程化放大研究等,为电化学合成偶氮桥连富氮含能分子的研究和采用电化学方法制备含能材料提供参考。未来研究中可以通过电化学方法实现已知含能材料的绿色合成,并且定制化生产和开发传统有机合成方法无法制备的高性能新含能材料。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1

含能材料微结构设计、制备及性能

年第卷第

当期目录


文章目录

过刊浏览

刊期浏览
本期排行

PDF下载排行

HTML阅读排行

摘要点击排行

引用排行