CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
  • 2024年第32卷第10期文章目次
    全 选
    显示方式: |
    • >专题导言
    • 专题导言:含能材料微结构设计、制备及性能

      2024, 32(10):1008-1008.

      摘要 (94) HTML (20) PDF 1.14 M (181) 评论 (0) 收藏

      摘要:

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
    • >含能快递
    • 含能快递-2024第10期

      2024, 32(10):1009-1010.

      摘要 (57) HTML (16) PDF 957.93 K (201) 评论 (0) 收藏

      摘要:

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
    • >观点
    • 含能材料的多尺度结构及其研究意义

      2024, 32(10):1011-1013. DOI: 10.11943/CJEM2024226

      摘要 (137) HTML (43) PDF 445.50 K (532) 评论 (0) 收藏

      摘要:

    • >制备与性能
    • 分子钙钛矿含能材料氯酸铵三乙烯二铵的合成、结构与性能

      2024, 32(10):1014-1019. DOI: 10.11943/CJEM2024166

      摘要 (83) HTML (14) PDF 968.57 K (353) 评论 (0) 收藏

      摘要:分子钙钛矿含能材料作为一种新概念单质含能材料,可通过改变其离子组分而调控性能,为设计适用不同领域的实用火炸药提供新途径。氯酸铵具有强氧化性而常用作氧化剂,但其高吸湿性极大限制其应用范围。研究通过混合氯酸钠、氨水和三乙烯二胺(dabco)后进行酸化,获得了新的分子钙钛矿含能材料(H2dabco)(NH4)(ClO33(简称DAC-4)。X射线单晶衍射分析表明,DAC-4具有ABX3型钙钛矿结构,属于立方Pmm空间群,晶体学密度为1.86 g·cm-3。DAC-4有较优异的理论爆轰性能,其爆热、爆速和爆压分别4.91 kJ·g-1、8.43 km·s-1和32.6 GPa。差热分析表明,DAC-4分解峰值温度为106 ℃,显著高于氯酸铵(75 ℃)。吸湿性实验表明,在相对湿度小于86%条件下存放近2个月,DAC-4基本不吸湿,最高增重仅0.18%,远低于氯酸铵(增重30%)。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
    • 八面体形细粒度高品质RDX晶体的制备及生长机理

      2024, 32(10):1020-1030. DOI: 10.11943/CJEM2024095

      摘要 (65) HTML (15) PDF 5.12 M (375) 评论 (0) 收藏

      摘要:采用溶剂-反溶剂法,在二甲基亚砜(DMSO)-乙二醇(EG)体系中,以1-乙基-3-甲基咪唑醋酸盐(EmimOAc)离子液体为添加剂,制备了平均粒径为9.35 μm的八面体环三亚甲基三硝胺晶体(O-RDX)。系统研究了溶剂体系、溶液浓度、结晶温度、添加剂、搅拌速率等结晶参数对RDX晶体生长行为的影响规律,发现过饱和度是决定RDX晶体生长方式的主要因素,随着过饱和度的逐渐减小,RDX晶体经历了粗糙生长-二维生长-螺旋生长的变化过程,RDX晶体形态由树枝状逐渐演化为八面体形状。与原料RDX相比,O-RDX的晶型未发生改变,为常用的α晶型;O-RDX晶体密度增加,内部缺陷减少;分解温度提高5 ℃;撞击感度和摩擦感度分别降低60%和50%。为揭示O-RDX的形成原因,采用附着能AE模型,分子动力学(MD)方法,预测了RDX在真空下和EmimOAc作用下的晶体模型。预测结果表明,真空条件下RDX具有6个重要的生长面:(1 1 1)、(2 0 0)、(1 0 2)、(0 2 0)、(2 1 0)、(0 2 1),EmimOAc则使RDX主要晶面的生长速率趋于一致,导致八面体RDX晶体的形成,理论模拟与实验结果基本一致。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
      • 120+1
      • 121+1
      • 122+1
      • 123+1
      • 124+1
      • 125+1
      • 126+1
      • 127+1
      • 128+1
      • 129+1
      • 130+1
      • 131+1
      • 132+1
      • 133+1
      • 134+1
      • 135+1
      • 136+1
      • 137+1
      • 138+1
      • 139+1
      • 140+1
      • 141+1
      • 142+1
      • 143+1
      • 144+1
      • 145+1
      • 146+1
      • 147+1
      • 148+1
      • 149+1
      • 150+1
      • 151+1
      • 152+1
      • 153+1
      • 154+1
      • 155+1
      • 156+1
      • 157+1
      • 158+1
      • 159+1
      • 160+1
      • 161+1
      • 162+1
      • 163+1
      • 164+1
      • 165+1
      • 166+1
      • 167+1
      • 168+1
      • 169+1
      • 170+1
      • 171+1
      • 172+1
      • 173+1
      • 174+1
      • 175+1
    • 三维网络结构CL-20/Al@Co/NBC复合物的制备与性能

      2024, 32(10):1031-1039. DOI: 10.11943/CJEM2024172

      摘要 (91) HTML (29) PDF 2.18 M (265) 评论 (0) 收藏

      摘要:为了改善Al粉在混合炸药中的释能特性,综合微结构设计和Al颗粒表面改性优势,构筑了三维网状六硝基六氮杂异伍兹(CL-20)/Al@Co/硝化细菌纤维素(NBC)复合物。首先采用置换法在Al粉表面包覆Co,形成核壳结构Al@Co粒子;再利用模板法将Al@Co和CL-20沉积在NBC的三维网状结构中,得到三维网状CL-20/Al@Co/NBC复合物。采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和傅里叶变换红外光谱(FT-IR)进行形貌结构表征,并通过热分析、感度和燃烧测试进行性能分析。结果表明,Al@Co粒子为Co在Al表面形成一层厚度约32 nm包覆层。CL-20/Al@Co/NBC复合物呈三维网状结构,与相应的NBC+CL-20+Al混合物及CL-20/Al/NBC复合物相比,Al的高温热分解峰温分别提前123.7 ℃和99.5 ℃,放热量分别增加5.93 kJ·g-1和4.50 kJ·g-1。且CL-20/Al@Co/NBC的点火延迟时间更短、燃烧速率更快;撞击感度(30 J)和摩擦感度(192 N)均有所降低。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
    • CL-20@PCHA复合粒子的制备及性能

      2024, 32(10):1040-1048. DOI: 10.11943/CJEM2023200

      摘要 (48) HTML (9) PDF 1.77 M (289) 评论 (0) 收藏

      摘要:多晶型六硝基六氮杂异伍兹烷(CL-20)在推进剂体系中因与添加剂接触或环境条件(温度或压力)改变,晶型易发生转变形成混合晶型,导致推进剂结构损伤,性能降低。为阻止溶剂与CL-20的接触,抑制CL-20晶型转变,研究将基于己二胺(HMDA)与邻苯二酚(CCh)氧化自聚合反应生成聚酚胺(PCHA)薄膜,采用水悬浮法在温和的条件下对CL-20炸药晶体进行表面修饰,通过扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、拉曼光谱仪(RAMAN)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)等对表面改性颗粒的形貌结构、包覆物含量、热稳定性及其在乙二醇溶液中的稳定性进行研究。结果表明,HMDA与CCh在温和条件下可对CL-20晶体表面进行修饰,并形成一层致密的PCHA包覆层;溶解称重法和高效液相色谱法(HPLC)测得PCHA包覆物含量约为1%;PCHA包覆将晶型转变温度和热分解温度分别提升了16 ℃和7 ℃,通过Kissinger法计算不同升温速率下的热分解活化能Ea发现CL-20@PCHA的活化能较CL-20提高了约8 kJ·mol-1,热稳定性得到较大提升;XRD测试结果表明PCHA薄膜可以有效阻隔溶剂与CL-20的接触,减缓CL-20在溶剂中的溶解速率,可有效抑制CL-20的晶型转变。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
    • Al@TiO2/KClO4含能药剂的制备及反应性能

      2024, 32(10):1049-1057. DOI: 10.11943/CJEM2024149

      摘要 (34) HTML (4) PDF 2.52 M (203) 评论 (0) 收藏

      摘要:为了提高Al/KClO4烟火药的反应性能,减小点火器输出压力散差,采用原位置换法制备了核壳结构Al@TiO2含能粒子,并用湿混造粒的方法制备了Al@TiO2/KClO4烟火药。分别采用扫描电镜(SEM)、X射线衍射仪(XRD)、差热-热重联用仪(TG-DSC)、量热仪研究了Al@TiO2/KClO4药剂的微观形貌、成分组成、热分解性能与燃烧性能。采用密闭爆发器分别测试了Al/KClO4及Al@TiO2/KClO4药剂的输出压力,并对输出压力均值和标准差进行了对比。结果表明,采用原位置换法成功制备了核壳结构Al@TiO2复合颗粒,基于该颗粒制备的Al@TiO2/KClO4药剂表观活化能降低18%,燃烧热略低于Al/KClO4,TiO2壳层的存在提升了Al和KClO4的反应性能,Al@TiO2/KClO4药剂的输出压力标准差为0.13,较Al/KClO4药剂的输出压力标准差0.28显著降低。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
    • AP/KP复合型氧化剂的设计、制备及燃烧性能

      2024, 32(10):1058-1067. DOI: 10.11943/CJEM2024049

      摘要 (58) HTML (5) PDF 2.24 M (283) 评论 (0) 收藏

      摘要:为了解决现有混合炸药用氧化剂高氯酸铵(AP)密度和有效氧含量低的问题,将密度和有效氧含量更高的氧化剂高氯酸钾(KP)与AP复合,使用分子动力学方法确定了AP/KP复合型氧化剂的最佳配比,使用物理混合法和溶剂蒸发法分别制备了新型AP/KP高密度高释氧复合型氧化剂,并采用电感耦合等离子光谱发生仪(ICP)、扫描电子显微镜(SEM)、X射线粉末衍射仪(XRD)、热分析仪(DSC-TG)对其元素组成、形貌、结构、成分和热性能等进行表征。结果表明:使用溶剂蒸发法制备的AP/KP复合型氧化剂的元素分布合理,粒度分布均匀;XRD晶型未发生变化,晶型较为完整;AP和KP的热分解峰温分解分别下降了11.25 ℃和13.87 ℃,更有利于热分解过程的进行。此外,将物理混合法和溶剂蒸发法制备的复合型氧化剂引入典型金属可燃剂Al粉中,对比研究了不同制备方法的样品和Al粉的点火和燃烧性能。结果表明,使用溶剂蒸发法制备的AP/KP复合型氧化剂和Al粉混合时燃烧热值达到12.228 MJ·kg-1,增压速率达到5.21 MPa·s-1,激光点火试验表明AP燃烧反应速率慢和KP点火困难的缺点均被大幅度改善。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
      • 120+1
      • 121+1
      • 122+1
      • 123+1
      • 124+1
    • 高燃烧效率含卤氧化剂包覆硼粉的制备及性能

      2024, 32(10):1068-1079. DOI: 10.11943/CJEM2024062

      摘要 (59) HTML (7) PDF 3.31 M (308) 评论 (0) 收藏

      摘要:为了提升硼粉的点火燃烧性能,采用高能球磨与喷雾干燥相结合的技术制备了4种微纳米B-Fe-Bi2O3@AP/PVDF复合物,根据其高热值和高燃烧效率的特点将四种复合物命名为μBHHc、μBHCe、nBHHc及nBHCe,并对其形貌结构、热反应性、点火延迟、质量燃速和凝聚相产物进行了表征分析。结果表明,μBHHc和μBHCe复合物在氩气中最大热值达9.7 kJ·g-1,最高燃烧效率达66.2%;在氧气中最大热值达14.6 kJ·g-1,最高燃烧效率达93.3%,空气中氧化峰温在750~760 ℃之间。nBHHc和nBHCe复合物在氩气中最大热值达9.9 kJ·g-1,最高燃烧效率达68.9%;在氧气中最大热值达14.8 kJ·g-1,最高燃烧效率达97.2%,空气中氧化峰温在595~600 ℃之间。各类复合物的最高燃烧温度达1954~2011 ℃,其中nBHHc复合物的点火延迟最短(26 ms),且质量燃速最高(1.84 g·s-1);μBHCe复合物的点火延迟最长(39 ms),质量燃速也最低(0.80 g·s-1)。各类复合物燃烧产物主要由B2O3、B4C及少量未完全燃烧的硼组成,形貌包含5~10 μm的球体及10~20 μm的片状物质。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
    • 密闭环境中压力对现场混装乳化炸药微观结构和热稳定性的影响

      2024, 32(10):1080-1090. DOI: 10.11943/CJEM2023219

      摘要 (29) HTML (3) PDF 2.18 M (235) 评论 (0) 收藏

      摘要:为研究螺杆泵送和中深孔装药时伴随的高压作用对现场混装乳化炸药基质微观结构和热稳定性的影响,采用光学显微镜、激光粒度仪、水溶性实验、热重与微商热重联用技术、Kissinger法和Ozawa法、Coats-Redfern法和Šatava法,对常压、高压环境下基质的微观结构、粒径分布、析晶含量、热分解过程、热分解反应活化能、热分解机理函数和速率方程进行了研究。结果表明,从常压到高压,基质内相液滴出现聚合、破乳、析晶现象,粒径由3.717 μm增大为4.474 μm,硝酸铵晶体的析出量由0.0530 g增大为0.0640 g,乳液体系均一性减弱;基质的平均热分解起始温度Tonset由157.4 ℃升高为184.0 ℃,平均一阶微商热重峰温Tp由262.6 ℃升高为281.8 ℃,平均质量损失平均速率由0.1454 %·s-1升高为0.1476 %·s-1,反应活化能由108.49 kJ·mol-1降低为84.74 kJ·mol-1,高压下蒸发破乳释放的游离水可能造成了TonsetTp上升,热分解反应更容易发生;Ozawa法计算的活化能随着转化率增大的变化趋势不同,热分解反应的机理函数从Valensi方程变为反Jander方程,其速率方程也发生了变化。高压作用促进了基质内相液滴聚合、破乳、析晶过程,降低了热分解反应发生的活化能,减弱了体系均一性、热稳定性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
    • HMX基高聚物粘结炸药界面增强的粒径效应

      2024, 32(10):1091-1098. DOI: 10.11943/CJEM2024013

      摘要 (48) HTML (12) PDF 1.87 M (265) 评论 (0) 收藏

      摘要:为研究炸药晶体粒径对高聚物粘结炸药(PBX)力学性能及界面增强效果的影响规律,以4种不同粒径HMX(160 µm,60 µm,25 µm和150 nm)为主体炸药,氟树脂为粘结剂,中性聚合物键合剂为界面增强剂,制备了8种HMX基PBX。采用压缩应力应变试验、巴西试验分别获得8种PBX在常温(20 ℃)和高温下(60 ℃)的压缩和拉伸力学性能,采用动态热机械分析仪的三点弯曲模式获得储能模量和力学损耗因子,采用扫描电镜对PBX断面进行表征。结果表明,PBX的压缩强度和拉伸强度随HMX粒径的减小而增大,纳米HMX在力学增强方面具有很好的效果。20 ℃以纳米HMX为基的PBX-nano压缩强度和拉伸强度可分别达到61.3 MPa和5.7 MPa,较以160 µm HMX为基的PBX-L可分别提高73.1%和63.5%。添加中性聚合物键合剂后,不同粒径的HMX基PBX压缩力学强度和拉伸力学强度均得到提高,纳米HMX的增强效应尤其显著,PBX-nano-M在20 ℃和60 ℃下的拉伸强度分别可达10.4 MPa和5.8 MPa,较PBX-nano可分别提高82.6%和101.4%。当HMX平均粒径从百微米减小至百纳米,炸药件发生界面脱粘/损伤乃至断裂所需的断裂功越大,拉伸力学强度提升幅度越大。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
      • 120+1
      • 121+1
      • 122+1
      • 123+1
      • 124+1
      • 125+1
      • 126+1
      • 127+1
      • 128+1
      • 129+1
      • 130+1
      • 131+1
      • 132+1
      • 133+1
      • 134+1
      • 135+1
      • 136+1
      • 137+1
      • 138+1
      • 139+1
      • 140+1
      • 141+1
      • 142+1
      • 143+1
      • 144+1
      • 145+1
      • 146+1
      • 147+1
      • 148+1
      • 149+1
      • 150+1
      • 151+1
      • 152+1
      • 153+1
      • 154+1
    • >计算与模拟
    • 基于Noradamantane的高能量密度富氮笼型含能分子设计与性能预估

      2024, 32(10):1099-1109. DOI: 10.11943/CJEM2024111

      摘要 (52) HTML (10) PDF 2.04 M (303) 评论 (0) 收藏

      摘要:研究提出一种通过化学键键能差进行能量密度快速估算的方法,和一种利用拉普拉斯键级和分子片段键离解能相结合快速判断笼型结构稳定性的方法。通过穷举法构建了基于Noradamantane的所有富氮骨架及其435种硝基衍生物,应用上述计算方法筛选兼具高能量密度和稳定性的分子结构,并采用量子化学能量计算和过渡态反应势垒计算验证筛选结果的可靠性。计算发现了两种兼顾高能量密度和结构稳定性的硝基化合物,其爆热、爆速、爆压和金属加速能力的理论计算最大值分别达到7.77 kJ·g-1、10.1 km·s-1、47 GPa和1.14倍HMX的金属加速能力,且结构分解反应势垒≥96 kJ·mol-1。本研究所建立的含能分子能量密度和稳定性快速筛选方法,可为高能稳定的含能分子设计提供参考。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
    • 炸药爆轰环境中铝粉非等温燃烧模型

      2024, 32(10):1110-1117. DOI: 10.11943/CJEM2024117

      摘要 (76) HTML (10) PDF 1.06 M (308) 评论 (0) 收藏

      摘要:为研究铝粉在爆轰环境中的燃烧特性,基于爆轰环境中铝粉燃烧模型,综合考虑了爆轰产物气体组分和爆轰环境体系温度对铝粉燃烧释能过程的影响,建立了爆轰环境中铝粉非等温燃烧模型,提出了包括铝粉燃烧过程、爆轰产物气体组分和爆轰环境体系温度在内的爆轰环境铝粉非等温燃烧控制方程,并通过激光诱导击穿光谱实验进行了验证。结果表明,铝粉非等温燃烧模型控制方程的计算值与激光诱导击穿光谱实验值的偏差在12%以内,验证了理论模型计算的准确性,获得了铝粉粒度和铝氧比对炸药中铝粉燃烧特性的影响规律。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
    • >综述
    • 金属氧化物催化剂表界面效应对AP热分解性能影响进展

      2024, 32(10):1118-1135. DOI: 10.11943/CJEM2024037

      摘要 (51) HTML (7) PDF 2.59 M (327) 评论 (0) 收藏

      摘要:高氯酸铵(AP)作为固体推进剂中重要的氧化剂,其热分解性能直接影响固体推进剂的燃烧特性。使用燃烧催化剂能够降低AP的分解温度并提高其分解速率。研究总结了应用于AP热分解的纳米燃烧催化剂微观结构调控的不同手段,分析了晶面、缺陷和复合界面等微结构调控方式对其在AP热分解反应中催化活性和催化机理的影响,并探究能获得最佳催化性能的催化剂特征。结果表明,通过调整暴露晶面、元素掺杂和构建复合界面结构可以提高纳米金属氧化物燃烧催化剂的催化活性;过渡金属氧化物纳米催化剂能通过暴露指定晶面实现催化活性的提升,元素掺杂能通过产生缺陷从而提升催化效果,构建复合界面结构能够利用界面效应调控催化位点的活性,从而有效提升催化性能。过渡金属氧化物纳米催化剂在提升AP热分解性能方面表现出了良好的催化活性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1

《含能材料》编辑部

年第卷第

当期目录


文章目录

过刊浏览

刊期浏览
本期排行

PDF下载排行

HTML阅读排行

摘要点击排行

引用排行