CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
  • 2022年第30卷第1期文章目次
    全 选
    显示方式: |
    • >含能快递
    • 含能快递--2022No1

      2022, 30(1):1-1.

      摘要 (487) HTML (183) PDF 826.16 K (5250) 评论 (0) 收藏

      摘要:

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
    • >计算与模拟
    • α-CL-20和CL-20/H2O2中溶剂分子的扩散特性及其对共晶分解影响的分子动力学模拟

      2022, 30(1):2-11. DOI: 10.11943/CJEM2021066

      摘要 (533) HTML (285) PDF 2.68 M (6148) 评论 (0) 收藏

      摘要:为了研究H2O和H2O2溶剂分子对含能共晶热稳定性的影响机制,采用分子动力学(MD)模拟方法对α-CL-20和CL-20/H2O2(正交、单斜)中溶剂分子的扩散行为及其热解机理进行了研究。结果表明,H2O和H2O2都会随着温度的升高从晶胞中扩散出来,其中H2O分子扩散得更快;温度低于500 K时单斜晶型CL-20/H2O2晶格框架具有阻碍溶剂分子H2O2扩散的作用,而温度高于500 K时,这种阻碍作用将不复存在。热分解过程中,α-CL-20释能最慢,且其中CL-20的分解也是最慢的;温度低于1500 K时,溶剂分子对含能组分热解呈现出一定的稳定化作用,但此作用随着温度的升高而消失。此外,溶剂的存在能明显增加晶格能。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
    • 吸电子基取代五唑化合物的热稳定性理论研究

      2022, 30(1):12-19. DOI: 10.11943/CJEM2021192

      摘要 (410) HTML (212) PDF 2.05 M (4968) 评论 (0) 收藏

      摘要:五唑化合物是当前含能材料领域的一个研究热点,但现有五唑化合物的稳定性普遍偏低。为研发性能更优的新型五唑化合物,基于对已有结构的分析,设计了五唑的系列非芳环吸电子基取代衍生物(N5(CH2x-1R,R=—NO2,—CF3,—CN,—CHO,—COOH,x=1,2,3,4),采用密度泛函理论方法,计算了与N5环直接相连的侧链化学键的解离能EBD和N5环的分解能垒Ea,并与部分供电子基取代物的结果进行比较,分析讨论了取代基与相关的键长、键级、键临界点电子密度、N5环的电荷和氧平衡对EBDEa的影响规律。结果表明,所有分子的Ea均远小于EBD,表明N5环的稳定性是决定五唑分子稳定性的关键因素。对于R与N5直接相连的分子(x=1,即N5R),R为吸电子基时的Ea小于R为供电子基或H时的Ea随N5环破裂键键长减小、键级增大及临界点电子密度的增大,Ea总体呈增大趋势。N5环是强吸电子基,直接连接强吸电子或强供电子基会使N5环上的负电荷过少或过多,因而都不利于N5环稳定。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
    • TKX-55与二氧六环热解机理的分子动力学

      2022, 30(1):20-33. DOI: 10.11943/CJEM2021067

      摘要 (606) HTML (290) PDF 3.20 M (7156) 评论 (0) 收藏

      摘要:为探究含能共晶TKX-55的热解机制及溶剂组分二氧六环(1,4-Dioxane,DIO)对含能组分5,5´-双(2,4,6-三硝基苯基)-2,2´-双(1,3,4-噁二唑)(BTNPBO)热解的影响,基于反应力场(ReaxFF-lg, Reactive Force Field-Low Gradients)开展了TKX-55和纯溶剂组分DIO的分子动力学模拟研究。结果表明,TKX-55的初始分解反应包括了含能分子的二聚反应、含能组分和溶剂组分之间的氢转移、含能组分中1,3,4-噁二唑的开环反应以及硝基解离。二聚反应为后续团簇的快速生长提供了条件,团簇的大量生成限制了热量的释放和稳定小分子产物的释放,这是TKX-55高耐热性的本质原因。纯溶剂组分体系低温下放热量较小,且不易形成团簇,在较高温度下放热量以及团簇的体积和数量明显增加。DIO分子在TKX-55中的主要作用是吸附活性小分子产物(如OH、NO、NO2等),间接抑制BTNPBO的分解进程。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
      • 120+1
      • 121+1
      • 122+1
      • 123+1
      • 124+1
      • 125+1
      • 126+1
      • 127+1
      • 128+1
      • 129+1
      • 130+1
      • 131+1
      • 132+1
      • 133+1
      • 134+1
      • 135+1
      • 136+1
      • 137+1
      • 138+1
      • 139+1
      • 140+1
      • 141+1
      • 142+1
      • 143+1
      • 144+1
      • 145+1
      • 146+1
      • 147+1
      • 148+1
      • 149+1
      • 150+1
      • 151+1
      • 152+1
      • 153+1
      • 154+1
      • 155+1
      • 156+1
      • 157+1
      • 158+1
      • 159+1
      • 160+1
      • 161+1
      • 162+1
      • 163+1
      • 164+1
      • 165+1
      • 166+1
      • 167+1
      • 168+1
      • 169+1
      • 170+1
      • 171+1
      • 172+1
      • 173+1
      • 174+1
      • 175+1
      • 176+1
      • 177+1
      • 178+1
      • 179+1
      • 180+1
      • 181+1
      • 182+1
      • 183+1
      • 184+1
      • 185+1
      • 186+1
      • 187+1
      • 188+1
      • 189+1
      • 190+1
      • 191+1
      • 192+1
      • 193+1
      • 194+1
      • 195+1
      • 196+1
      • 197+1
      • 198+1
      • 199+1
      • 200+1
      • 201+1
      • 202+1
      • 203+1
      • 204+1
      • 205+1
      • 206+1
      • 207+1
      • 208+1
      • 209+1
      • 210+1
      • 211+1
      • 212+1
      • 213+1
      • 214+1
      • 215+1
      • 216+1
      • 217+1
      • 218+1
    • 数值模拟在含能材料焚烧炉设计中的应用

      2022, 30(1):34-42. DOI: 10.11943/CJEM2021159

      摘要 (415) HTML (192) PDF 1.53 M (2390) 评论 (0) 收藏

      摘要:为保证焚烧过程的安全,焚烧炉必须能够承受废弃含能材料在焚烧过程中意外爆炸产生的冲击作用。依据抗爆要求,分别采用动力系数法和英国原子能武器机构(Atomic Weapons Establishment)提出的方法(AWE方法)对废弃含能材料立式焚烧炉壳体进行了设计,通过AUTODYN软件对设计的焚烧炉在含能材料爆轰情况下壳体受力情况等进行了三维数值模拟,对烟气出口大小、出口位置和含能材料爆炸位置对焚烧炉抗爆性能的影响进行了分析。数值模拟结果表明:烟气出口的存在破坏了壳体的连续性,在出口附近出现应力集中,最大应力出现在出口上边缘;随着出口直径增大、出口圆心位置距壳体封盖越近、含能材料爆炸位置距出口越近,出口上边缘的应力集中越严重;当含能材料与焚烧炉壳体距离较近时,爆炸会使壳体产生塑性变形。因此,在烟气出口直径确定的情况下,采取出口圆心位置尽量远离封盖、出口处设置补强圈、含能材料与壳体保持一定的距离等措施保证焚烧过程的安全性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
    • BP-GA算法确定未反应炸药的JWL状态方程参数

      2022, 30(1):43-49. DOI: 10.11943/CJEM2021133

      摘要 (473) HTML (223) PDF 1005.25 K (3934) 评论 (0) 收藏

      摘要:为了确定未反应炸药的JWL状态方程参数,提出了一种利用BP神经网络-遗传算法(BP-GA算法)和冲击Hugoniot关系确定JWL参数的方法。此方法首先训练BP神经网络,使其可以拟合由不同的JWL参数组合组成的非线性系统,随后采用遗传算法搜寻适应度值最大的一组JWL参数。结果表明:已知某种炸药的初始密度、爆速、Hugoniot系数C0S,便可利用BP-GA算法确定其JWL参数;BP-GA算法确定的8种未反应炸药的p-v曲线和由试验数据确定的p-v曲线相吻合,且8条p-v曲线的R2均不低于0.9995,证明了BP-GA算法的高精度。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
    • >爆炸与毁伤
    • 结构参数对复合装药战斗部破片特性的影响

      2022, 30(1):50-57. DOI: 10.11943/CJEM2021184

      摘要 (473) HTML (282) PDF 2.38 M (2606) 评论 (0) 收藏

      摘要:为了研究结构参数对复合装药战斗部破片特性的影响,采用AUTODYN-3D有限元计算软件,比较分析了复合装药战斗部在中心单点和内外同时两种起爆方式下爆轰波传播与壳体破碎过程,获得了壳体壁厚与中心装药直径对复合装药战斗部破片平均质量、破片速度等参数的影响规律。计算结果表明,随着壳体壁厚的增加或者中心装药直径的减小,单点起爆下破片平均质量相对于内外同时起爆下提高的倍数越来越大,战斗部在不同起爆方式下威力输出差异越来越明显;静爆试验结果表明,内外同时起爆下的破片平均速度、冲击波超压和验证靶冲孔数较单点起爆下分别提高了27.1%、31.4%和39.3%,试验结果与仿真计算结果吻合较好。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
    • 不同海拔高度下破片速度衰减模型的修正方法

      2022, 30(1):58-63. DOI: 10.11943/CJEM2021150

      摘要 (429) HTML (291) PDF 1.38 M (3953) 评论 (0) 收藏

      摘要:采用流体力学软件FLUENT研究了不同初始速度(≤2500 m·s-1)和海拔高度(≤20 km)下破片阻力系数,对不同海拔高度下破片速度衰减模型进行修正,并开展相应的低气压破片速度衰减特性试验,验证了修正模型的准确性。结果表明:初速700 m·s-1的球型破片和初速1000 m·s-1的长方体破片使用修正后速度衰减模型计算结果与试验结果吻合度较高,误差均小于5%,且修正后的速度衰减模型计算精度比修正前的模型提高了10%左右。该修正后的破片速度衰减模型可用于计算阻力系数随海拔高度变化对破片速度衰减系数的影响,提高破片速度的计算精度,从而进一步提升破片战斗部威力评估的准确性。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
    • 十氢十硼酸双四乙基铵在冲击作用下的反应特性

      2022, 30(1):64-69. DOI: 10.11943/CJEM2021083

      摘要 (402) HTML (196) PDF 1.17 M (3871) 评论 (0) 收藏

      摘要:为研究十氢十硼酸双四乙基铵((C2 H54N]2B10H10,BHN-10)在爆炸冲击作用下的反应特性,采用电爆炸等离子体冲击和炸药爆炸冲击两种方法,对BHN-10在冲击作用下的反应历程及分解产物进行了研究。结果表明,BHN-10在电爆炸等离子体冲击下的气体分解产物为碳烷烃、烯烃、炔烃等有机可燃气体。BHN-10对于炸药爆炸冲击作用具有较好的安定性,25 GPa以上炸药爆炸冲击波无法使BHN-10燃料发生分解,爆炸热作用是BHN-10发生反应的主要因素。BHN-10在炸药爆炸冲击下,8 ms后发生燃烧反应,燃烧反应从中心位置出现,持续时间达到200 ms以上。HMX与BHN-10的混合物,在爆炸冲击作用下火球的扩散速度加快,燃烧时间与BHN-10燃料相当。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
    • >综述
    • 含氮杂环碳氢键碘代方法的研究进展

      2022, 30(1):70-77. DOI: 10.11943/CJEM2021114

      摘要 (576) HTML (306) PDF 747.12 K (4433) 评论 (0) 收藏

      摘要:多碘含能化合物是近年来发展起来的一类新型杀菌材料,其通过含能组分在受激发后释放出能量或气体驱动其产生的碘基杀菌剂,实现对环境病菌的高效快速洗消,具有响应时间短,灵活性好,杀菌效率高,适应复杂环境需要等优点。本综述总结归纳了通过I2/KI,I2/氧化剂,N-碘代琥珀酰亚胺(NIS),氯化碘(ICl)等用于制备多碘代五元或六元氮杂环的方法,比较分析了不同碘化方法的适用范围和优缺点。指出了未来多碘含能化合物制备重点应围绕提高碘的原子经济性和绿色友好的合成工艺来展开,可为新型多碘含能化合物的设计与合成及规模化制备提供一定的参考。

      • 0+1
      • 1+1
    • 微起爆系统用MEMS安全保险装置研究现状与展望

      2022, 30(1):78-94. DOI: 10.11943/CJEM2021084

      摘要 (631) HTML (349) PDF 3.60 M (5235) 评论 (0) 收藏

      摘要:火工品是武器系统的首发元件,火工品的安全性和可靠性直接影响着武器系统的安全性和可靠性。为了满足弹药微型化、集成化的发展要求,需要将引信与火工品进一步融合,形成具有高安全性、高可靠性、多功能一体化集成特点的微起爆系统,微机电系统(Micro-Electro-Mechanical System,MEMS)安全与解除保险装置是其中的关键技术之一。总结了近年来微小型引信与微起爆系统中MEMS安全与解除保险装置的发展概况,从装置材料、装置尺寸、驱动原理、驱动条件、输出效能、应用平台等多个方面进行对比分析,并结合火工品起爆系统结构、尺寸情况,提出“内置MEMS安保装置的微起爆系统”的作用原理。这种具有内置安全保险装置的MEMS火工品符合下一代火工品的发展要求,也是火工品未来的主要发展方向之一。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1

发射药与装药设计

年第卷第

当期目录


文章目录

过刊浏览

刊期浏览
本期排行

PDF下载排行

HTML阅读排行

摘要点击排行

引用排行