CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
  • 2021年第29卷第6期文章目次
    全 选
    显示方式: |
    • >含能快递
    • 含能快递--2021No6 (1)

      2021, 29(6):471-471.

      摘要 (450) HTML (262) PDF 3.63 M (4038) 评论 (0) 收藏

      摘要:

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
    • 含能快递--2021No6 (2)

      2021, 29(6):472-472.

      摘要 (320) HTML (197) PDF 1.03 M (3857) 评论 (0) 收藏

      摘要:

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
    • >计算与模拟
    • 直链取代五唑共价化合物的稳定性和热解机理理论研究

      2021, 29(6):473-481. DOI: 10.11943/CJEM2020277

      摘要 (561) HTML (395) PDF 4.36 M (3499) 评论 (0) 收藏

      摘要:五唑离子化合物是当前新型含能材料的一个研究热点,其制备通常以五唑共价化合物为前体实现。多数情况下,五唑共价化合物的稳定性对能否成功制备五唑离子化合物有很大影响。采用密度泛函理论B3LYP/6-31G**方法重点研究了18个直链取代五唑共价化合物(R—N5或N5—R—N5)的侧链化学键的解离能EBD和N5环的分解能垒Ea,分析了侧链对其稳定性和热解机理的影响。发现当R为羟基或氨基时,侧链容易断裂,N5环也容易破裂,难以得到N5-;当R为烷基时,N5环裂解的Ea相对较大,更可能得到N5-,且侧链C—N键和N5环的稳定性受烷基链长短影响不大;在双环分子中,两个N5环的裂解是先后发生的,后一个环的裂解能垒比前者高,裂解生成氮气和叠氮化物;分子侧链上的C—C键会先于C—N键断裂,从而可能使C—N键的EBD明显降低而对N5环的Ea影响不大,因此,在由五唑共价化合物制备五唑盐的过程中,先切断C—C键可能更利于得到N5-

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
      • 117+1
      • 118+1
      • 119+1
      • 120+1
      • 121+1
      • 122+1
      • 123+1
      • 124+1
      • 125+1
      • 126+1
      • 127+1
      • 128+1
      • 129+1
      • 130+1
      • 131+1
      • 132+1
      • 133+1
      • 134+1
      • 135+1
      • 136+1
      • 137+1
      • 138+1
      • 139+1
      • 140+1
      • 141+1
      • 142+1
      • 143+1
      • 144+1
      • 145+1
      • 146+1
      • 147+1
      • 148+1
      • 149+1
      • 150+1
      • 151+1
      • 152+1
      • 153+1
      • 154+1
      • 155+1
      • 156+1
      • 157+1
      • 158+1
      • 159+1
      • 160+1
      • 161+1
      • 162+1
      • 163+1
      • 164+1
      • 165+1
      • 166+1
      • 167+1
      • 168+1
      • 169+1
      • 170+1
      • 171+1
      • 172+1
      • 173+1
      • 174+1
      • 175+1
      • 176+1
      • 177+1
      • 178+1
      • 179+1
      • 180+1
      • 181+1
      • 182+1
      • 183+1
      • 184+1
      • 185+1
      • 186+1
      • 187+1
      • 188+1
      • 189+1
      • 190+1
      • 191+1
      • 192+1
      • 193+1
      • 194+1
      • 195+1
      • 196+1
      • 197+1
      • 198+1
      • 199+1
      • 200+1
      • 201+1
      • 202+1
      • 203+1
      • 204+1
      • 205+1
      • 206+1
      • 207+1
      • 208+1
      • 209+1
      • 210+1
      • 211+1
      • 212+1
      • 213+1
      • 214+1
      • 215+1
      • 216+1
      • 217+1
      • 218+1
      • 219+1
      • 220+1
      • 221+1
      • 222+1
      • 223+1
      • 224+1
      • 225+1
      • 226+1
      • 227+1
      • 228+1
      • 229+1
      • 230+1
      • 231+1
      • 232+1
      • 233+1
      • 234+1
      • 235+1
      • 236+1
      • 237+1
      • 238+1
      • 239+1
      • 240+1
      • 241+1
      • 242+1
      • 243+1
      • 244+1
      • 245+1
      • 246+1
      • 247+1
      • 248+1
      • 249+1
      • 250+1
      • 251+1
      • 252+1
      • 253+1
      • 254+1
    • 高温下含缺陷CL-20初始化学反应的分子动力学模拟

      2021, 29(6):482-491. DOI: 10.11943/CJEM2020245

      摘要 (729) HTML (372) PDF 2.28 M (3815) 评论 (0) 收藏

      摘要:为研究晶体缺陷对六硝基六氮杂异伍兹烷(CL-20)初始化学反应影响规律,采用分子动力学方法和ReaxFF-lg反应性力场,对1500~3500 K高温下含空位缺陷CL-20的初始反应路径、热分解产物和反应动力学进行了研究。结果表明,1500~3500 K时,含空位缺陷CL-20的初始分解路径与完美晶体基本相同,首先N—NO2键断裂生成NO2。空位缺陷增大了CL-20开环反应频次、增加了NO2的生成量。比较完美晶体CL-20可见,空位缺陷可降低CL-20活化能,加速CL-20的热分解进程。2000 K和3000 K时含16.7%空位CL-20反应速率常数分别是完美CL-20的1.7倍和1.4倍。空位缺陷其周围的CL-20分子更容易发生热分解反应,导致CL-20的感度提高。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
    • 多孔发射药冲击受力模拟仿真

      2021, 29(6):492-500. DOI: 10.11943/CJEM2020236

      摘要 (456) HTML (325) PDF 1.84 M (3614) 评论 (0) 收藏

      摘要:为研究多孔发射药受冲击载荷的力学响应过程及几何参数变化对药粒力学性能的影响,采用ANSYS/LS-DYNA有限元软件建立了七孔、十九孔发射药计算模型,模拟药粒在冲击载荷下的受力情况,然后建立单孔发射药模型,长径比为1∶1、2∶1的七孔、十九孔发射药和花边形七孔、十九孔发射药模型,研究孔数、长径比和外形对药粒应力的影响。结果表明,药粒被压缩后发生回弹,与落锤接触面的应力从圆心到边界逐渐增加,药粒中部发生膨胀;受孔处应力集中的影响,孔数的增加改变了端面应力分布连续性,和单孔药相比,七孔药的受力时间和最大压缩位移分别增长了3.39%和3.76%,十九孔药的受力时间和最大压缩位移分别增长了10.17%和15.05%;当孔数不变,长径比从1:1增加到2:1时,应力峰值减小而压缩位移峰值增大;花边形药粒比圆柱形药粒更易在花边凹陷处出现应力集中。对发射药应力响应过程及影响因素的研究为发射药力学性能研究提供了基础数据。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
      • 99+1
      • 100+1
      • 101+1
      • 102+1
      • 103+1
      • 104+1
      • 105+1
      • 106+1
      • 107+1
      • 108+1
      • 109+1
      • 110+1
      • 111+1
      • 112+1
      • 113+1
      • 114+1
      • 115+1
      • 116+1
    • >制备与性能
    • 含能配合物[Cu(MIM)2(AIM)2](DCA)2的合成、结构及对AP热分解的催化

      2021, 29(6):501-508. DOI: 10.11943/CJEM2021016

      摘要 (751) HTML (420) PDF 1.56 M (4545) 评论 (0) 收藏

      摘要:为探索固体推进剂燃烧催化剂,以1-甲基咪唑(MIM)、1-烯丙基咪唑(AIM)、硝酸铜和二氰胺钠(NaDCA)为原料,合成了一种新型双配体含能配合物[Cu(MIM)2(AIM)2](DCA)2,并通过红外光谱、X射线单晶衍射和粉末衍射对其结构进行了表征。采用差示扫描量热法(DSC)、热重分析法(TGA)对该含能配合物的热分解过程进行了分析,在40~500 ℃的温度范围内,DSC曲线中有一个吸热熔化峰(峰值温度:93.5 ℃)和一个放热分解峰(峰值温度:199.4 ℃)。对配合物进行了感度测试,其摩擦感度为240 N,撞击感度>40 J。对比研究了双配体的[Cu(MIM)2(AIM)2](DCA)2与单配体的[Cu(MIM)4](DCA)2、[Cu(AIM)4](DCA)2对高氯酸铵(Ammonium Perchlorate,AP)热分解的催化作用,结果表明双配体的含能配合物具有更好的催化效果,使AP的分解峰值温度提前到285.6 ℃,放热量升高到2458 J·g-1,热分解活化能降低到81.5 kJ·mol-1,表现出作为复合推进剂催化剂的潜力。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
    • 4-氨基-3,7-二硝基-1,2,4-三唑并[5,1-c] 1,2,4-三嗪(TTX)合成机理与性能

      2021, 29(6):509-514. DOI: 10.11943/CJEM2020063

      摘要 (572) HTML (325) PDF 760.09 K (2880) 评论 (0) 收藏

      摘要:为研究4-氨基-唑并[5,1-c] 1,2,4-三嗪化合物的合成机理与性能,以TTX为例,采用密度泛函理论(DFT)研究了1,2,4-三唑并[5,1-c]1,2,4-三嗪类稠环可能的环化机理,研究了体系pH值对环化过程的影响;采用差示扫描量热法研究了TTX的热性能、热分解动力学,并采用BAM撞击感度测试仪测试了TTX的撞击感度。结果表明:5-氨基-3-硝基-1,2,4-三唑(ANTA)的重氮盐与硝基乙腈钠盐偶合中间体的类吡咯氮原子对氰基亲核加成,然后通过芳构化重排得到1,2,4-三唑并[5,1-c]1,2,4-三嗪;TTX的热分解峰温为281.8 ℃,表观活化能为356.7 kJ·mol-1,高于TATB;撞击感度为60 J,低于RDX。同时研究了TTX与HMX、RDX、Al粉、硝化棉(NC)的相容性,结果表明TTX与Al相容,与HMX有一定相互作用,轻微敏感;RDX、NC会明显促进TTX热分解,混合体系较为敏感,应避免混合使用。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
    • 含能空芯球形壳体制备工艺

      2021, 29(6):515-520. DOI: 10.11943/CJEM2020208

      摘要 (431) HTML (280) PDF 5.80 M (2858) 评论 (0) 收藏

      摘要:为扩大液体发射药的使用范围,适应现有武器装备的需要,使液体发射药能应用于现有的各项武器系统中,设计了一种可以用来封装液体发射药的硝化棉基含能空芯球形壳体,以内溶法制备球形发射药为基础,利用双重乳化的原理,使用W/O型Pickering乳化剂活性磷酸钙与O/W型乳化剂羧甲基纤维素钠将含硝化纤维素的乳液乳化成单分散型W/O/W型乳状液,随后蒸发溶剂得到壳体。使用接触角测量仪测量活性磷酸钙三相接触角验证其作为W/O型pickering乳化剂的可行性,使用超景深电子显微系统对其基本形貌和粒径进行表征,使用质量体积法对其堆积密度进行表征。结果表明:活性磷酸钙的三相接触角为121.80°;该壳体内部具有较大的空腔结构,粒径为0.7~1.1 mm,堆积密度为0.1~0.2 g·mL-1,微观上以白色纤维结构为主,且纤维上嵌有白色微粒;羧甲基纤维素钠与活性磷酸钙加入质量比例以1∶1~1.25∶1,且活性磷酸钙与硝化纤维素加入质量比以0.16∶1~0.24∶1为宜。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
    • 基于超声辅助等静压成型含能材料致密度的提升

      2021, 29(6):521-529. DOI: 10.11943/CJEM2021023

      摘要 (472) HTML (267) PDF 15.06 M (1637) 评论 (0) 收藏

      摘要:为了进一步提高含能材料等静压成型的致密度,提出了一种超声辅助的等静压成型方法,设计了试验样机。利用COMSOL对单个超声振子和整个超声辅助成型系统激发的声场进行了分析,研究了包套厚度、10 MPa预压力和超声电源电压幅值对声场分布的影响。仿真结果表明了超声辅助等静压成型的可行性。在有无施加超声、有无10 MPa预压力的条件下进行了高聚物粘结炸药代用材料的成型实验,利用计算机断层扫描和扫描电镜分别对实验样件进行了测试分析,结果表明:施加了超声和10 MPa预压力的材料内部的均匀性和致密度优于未加超声、未加预压力和仅施加超声的材料,并且其内部晶粒更细、分布更均匀。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
      • 70+1
      • 71+1
      • 72+1
      • 73+1
      • 74+1
      • 75+1
      • 76+1
      • 77+1
      • 78+1
      • 79+1
      • 80+1
      • 81+1
      • 82+1
      • 83+1
      • 84+1
      • 85+1
      • 86+1
      • 87+1
      • 88+1
      • 89+1
      • 90+1
      • 91+1
      • 92+1
      • 93+1
      • 94+1
      • 95+1
      • 96+1
      • 97+1
      • 98+1
    • 基于挤出沉积技术的发射药3D打印机设计及制备

      2021, 29(6):530-534. DOI: 10.11943/CJEM2020202

      摘要 (588) HTML (428) PDF 2.27 M (4877) 评论 (0) 收藏

      摘要:以挤出沉积技术为核心、针对发射药黏度高、不能高温加热的性质,设计了发射药挤出沉积快速成型系统,并搭建了完整样机。以硝化棉为主的某ZY发射药为原料,制备出27.3%、33.3%、38.5%、42.9%、46.7%、50%等不同浓度物料,通过3D打印挤出实验,发现针头内径与物料浓度之间存在多项式函数关系,确定了填充速度范围为2~4 mm·s-1、填充率范围为70%~90%、底板温度范围为25~45 ℃;在此基础上,使用发射药3D打印机打印发射药,并进行压缩实验,结果表明发射药压缩强度最高可达为230 MPa。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
    • >火工品技术
    • 节流孔对分离螺母火工冲击的影响

      2021, 29(6):535-542. DOI: 10.11943/CJEM2020129

      摘要 (475) HTML (271) PDF 1.76 M (3338) 评论 (0) 收藏

      摘要:为避免航天器因受到火工分离螺母作用时的高冲击载荷而发生故障,采用节流孔来抑制分离螺母分离作用时的冲击响应。研究在分离螺母燃气通道上设置了Φ2、Φ4 mm和Φ6 mm三种孔径的节流孔,同步测试不同节流孔的分离螺母在分离过程中的压力、加速度和预紧力,分析分离螺母的作用过程。根据作用过程中的先后顺序将冲击载荷解耦为火药作用、预紧力释放和活塞撞击三类冲击源。将得到的时间-加速度(a-t)曲线转换为冲击响应谱,并计算每种冲击源的贡献,以获得节流孔孔径与冲击响应的关系。结果表明:采用三种节流孔时,在500~10000 Hz的频域内,火药作用激起的冲击响应的贡献为8.3%~11.0%;预紧力释放激起的冲击响应的贡献为44.0%~51.5%;活塞撞击激起的冲击响应的贡献为40.2%~45.0%。分离过程的最大冲击响应分别为:1416 g(Φ6 mm)、1251 g(Φ4 mm)和852 g(Φ2 mm)。可见,采用节流孔可以有效抑制分离螺母的冲击响应。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
    • PCB基密封并联平面触发火花隙开关的设计及性能

      2021, 29(6):543-551. DOI: 10.11943/CJEM2020305

      摘要 (582) HTML (357) PDF 7.41 M (3349) 评论 (0) 收藏

      摘要:为了提高爆炸箔起爆系统(exploding foil initiator system, EFIs)的作用可靠性,减小系统体积、降低系统成本,采用印制电路板( printed circuit board, PCB)工艺设计了一种密封并联平面触发火花隙开关(planar triggered spark-gap switch, PTS)。根据三电极的结构设计参数,采用PCB工艺批量制备了PTS,单只并联PCB-PTS的尺寸为13.5 mm(l)×7.5 mm(w)×2.5 mm(h)。基于显微计算机断层扫描重建了开关的立体和断面图像,结果显示PCB工艺满足开关的加工精度需求。开展了电极间隙的静电场分布仿真以解释开关的导通过程,并且据此计算了开关的理论自击穿电压(self-breakdown voltage, USB)。开关的电气性能测试表明:(1)并联PCB-PTS的USB略低于理论计算值,约为2000 V;(2)在大约50%~95%的USB范围内开关均能被可靠触发工作,并且电流上升时间稳定在约121.8 ns,峰值电流大于1500 A,满足EFIs的使用特性需求。最后,将该开关应用于爆炸箔起爆器(exploding foil initiator, EFI)进行发火实验,在0.22 μF/1400 V的放电条件下,成功起爆了HNS-Ⅳ炸药。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
      • 23+1
      • 24+1
      • 25+1
      • 26+1
      • 27+1
      • 28+1
      • 29+1
      • 30+1
      • 31+1
      • 32+1
      • 33+1
      • 34+1
      • 35+1
      • 36+1
      • 37+1
      • 38+1
      • 39+1
      • 40+1
      • 41+1
      • 42+1
      • 43+1
      • 44+1
      • 45+1
      • 46+1
      • 47+1
      • 48+1
      • 49+1
      • 50+1
      • 51+1
      • 52+1
      • 53+1
      • 54+1
      • 55+1
      • 56+1
      • 57+1
      • 58+1
      • 59+1
      • 60+1
      • 61+1
      • 62+1
      • 63+1
      • 64+1
      • 65+1
      • 66+1
      • 67+1
      • 68+1
      • 69+1
    • >环境友好技术
    • 采用高温烧结资源化技术修复TNT红水污染土壤

      2021, 29(6):552-556. DOI: 10.11943/CJEM2020296

      摘要 (459) HTML (380) PDF 475.25 K (3186) 评论 (0) 收藏

      摘要:为筛选最佳治理技术以解决火炸药行业TNT红水污染土壤问题,研发了高温烧结资源化修复技术。将污染土壤与粘土按体积比(4∶6)混配后在隧道窑烘干段利用焙烧余热烘干26 h,再进入焙烧段焙烧24 h,烧结温度1100 ℃左右。隧道窑烟气经脱硫脱硝设施处理后由43 m排气筒排入大气。成品砖出窑后自然降温。土壤中的特征污染物-二硝基甲苯磺酸盐完全氧化分解,烧结烟气达标排放,资源化产品符合建材砖的质量标准且无特征污染物残留,满足土壤修复目标值(二硝基甲苯磺酸钠含量100 mg·kg-1)的要求。工程应用证明了高温烧结资源化技术修复TNT红水污染土壤的可行性和有效性。

      • 0+1
      • 1+1
      • 2+1
    • >综述
    • 起爆药研究最新进展

      2021, 29(6):557-566. DOI: 10.11943/CJEM2020264

      摘要 (1242) HTML (1161) PDF 2.35 M (4555) 评论 (0) 收藏

      摘要:叠氮化铅和斯蒂芬酸铅作为最常用的起爆药,在军事和民用方面具有广泛应用,但对环境和人体有严重危害。因此,开发新型绿色起爆药是重要的发展趋势。本研究围绕四唑、呋咱、稠环、配位化合物、叠氮化铜以及纳米铝热剂六类新型起爆药的合成和性能等进行了综述,分析了六类起爆药的优点以及存在的问题:四唑类爆轰性能优异但安全性能较低;呋咱类具有较高的密度,同时氧平衡较好;稠环类化合物的热稳定性高感度低,安全性好;配位化合物通过改变金属离子,配体以及阴离子能够实现感度与能量的调控;叠氮化铜起爆能力很强,但静电感度极高;纳米铝热剂能量密度高,合成简单,绿色环保,但难以实现快速燃烧转爆轰;除叠氮化铜和纳米铝热剂外,其余四类起爆药合成工艺复杂,产率较低。因此,在确保起爆能力强的前提下,降低感度和简化工艺是起爆药下一步工作的重点。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
      • 21+1
      • 22+1
    • 富氮稠环类氮氧化物的研究进展

      2021, 29(6):567-578. DOI: 10.11943/CJEM2020228

      摘要 (668) HTML (417) PDF 1.13 M (3030) 评论 (0) 收藏

      摘要:富氮稠环类氮氧化物由于其平面共轭的分子骨架结构和共价氮氧键官能团,通常具有密度高、爆轰性能优异及感度适中等优点,因此,这类化合物已逐渐成为含能材料领域的研究热点。本研究综述了近十年来合成的20种富氮稠环类氮氧化物的分子结构、合成方法及理化性能等,比较了富氮稠环分子氮氧化前后的主要理化性能参数,为其合成及性能研究提供一定的参考。

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1

云爆 /温压含能材料

年第卷第

当期目录


文章目录

过刊浏览

刊期浏览
本期排行

PDF下载排行

HTML阅读排行

摘要点击排行

引用排行