Duncan Watt , Eric Deschambault , Patrick Touze
摘要:The development of Insensitive Munitions (IM) has been progressing for over three decades. Ever since the highly publicized US Navy aircraft carrier accidents in the 1960s to 1980s, there has been a growing recognition of the value of IM. Reminders of the need for IM have been provided all too often in the form of accidents, such as experienced by the US Army at Camp Doha and the prevalence of attacks on military installations around the world.The process for developing IM has improved over the years as technology for mitigating the consequences of accidental initiation has emerged. Early IM developments were based upon replacement of the traditional TNT-based explosives, with their high vulnerability, with reduced vulnerability PBXs. This led to significant improvements, such as that observed with the replacement of H-6 with PBXN-109 in the US Navy Mk82 GP bomb. From the early 1990s, the use of a complete systems approach was highlighted as the optimum method to achieve IM compliance while maintaining or enhancing operational performance. The use of a systems approach has resulted in the fielding of a number of munition systems with significant IM properties.The challenge for the future is to continue the development and fielding of improved performance IM munitions with limited funding for research and the high cost of introducing new ingredients into energetic formulations.A key development to allow continued progress to occur is the introduction of improved versions of current explosive ingredients. The attention focused in the past few years on forms of RDX with reduced shock sensitivity has highlighted the possibility of improving well-known materials. In the near future, the application of materials technology may provide improved versions of other important crystalline energetic materials currently in production or advanced development, including HMX, NTO, CL-20 and ADN and help advance the development of further explosive ingredients such as FOX-7 and LLM-105.Advances in the development and application of computer modeling must be made if we are to move forward from our current reliance on a limited number of canonical tests that are held to be representative of the hazards likely to be encountered. The availability of verified and validated models describing the response of energetic materials to various thermal and mechanical threats will enable us to perform parametric studies on systems. This will allow us to estimate their response to hazards that are characteristic of the specific environment experienced by that system, and so to tailor the materials and packaging to minimize risk and maximize performance.
摘要:为提高TATB对HMX的钝化效果,利用声化学合成方法,在HMX颗粒表面原位生成了TATB,制备了HMX/TATB复合物。并与混合法制备的样品进行了比较。SEM观察表明,原位包覆法TATB对HMX的包覆效果比混合法的包覆效果更好。DSC分析表明,原位包覆法样品中HMX的热分解温度更高。机械感度测试结果表明,在TATB含量相当的情况下,原位包覆法样品具有更低的机械感度,在TATB含量为10%时,撞击感度为24%,摩擦感度为0%。
摘要:通过原位聚合法用蜜胺甲醛树脂包覆六硝基六氮杂异伍兹烷(HNIW)。以三聚氰胺、甲醛为原料,聚乙烯醇为增韧剂,碳酸钠为催化剂,制成预聚物溶液,与ε-HNIW共混滴加氯化铵溶液使预聚物固化成壳包覆HNIW。用FTIR、光学显微镜及机械撞击感度验证了钝感包覆效果。结果表明包覆较好,特性落高H50比原料提高了10.3 cm。根据ε-HNIW的晶型热稳定性及蜜胺甲醛树脂的制备方法,讨论了包覆的最佳工艺条件。在蜜胺和甲醛之比是1∶2.5,预聚体形成阶段反应pH值为8~9,原位聚合包覆阶段pH值为4~5,反应温度为70 ℃时可使ε-HNIW得到较好的包覆。
摘要:采用丙酮回流法合成了乳化能力较好、硬段含量为45%的水性聚氨酯,用FTIR表征了所得产物,用激光粒度分析仪测试了乳液粒径分布范围为0.2~2.3 μm, 属于部分水溶性的胶态分散液。DSC测试显示该水性聚氨酯树脂在227 ℃开始分解,263、379 ℃出现双分解吸热峰,分别隶属于硬段和软段的分解。将合成水性聚氨酯包覆CL-20用FT Raman光谱和SEM表征证明包覆成功,且包覆后的CL-20的撞击感度H50提高近40%。
摘要:以3,6-对(3,5-二甲基吡唑)-1,2-二氢-1,2,4,5-四嗪(BDT)为起始物,经两步反应得到了30克级3,6-二氨基-1,2,4,5-四嗪-1,4-二氧化物(DATZO2),总产率46.8%。其中,以用氧气取代氮氧化物为氧化剂获得了合成四嗪类高氮含能材料的重要中间体3,6-对(3,5-二甲基吡唑)-1,2,4,5-四嗪(BT)。对不同合成条件和重结晶条件下获得产物的微观结构进行了表征,并对其感度进行了测试。对产物的热分解性能进行了研究,获得了DATZO2的热分解动力学参数和机理函数。
摘要:介绍了六氮杂异伍兹烷(HNIW)衍生物——四硝基-二(3,5-二硝基-4-氯苯甲酰基)六氮杂异伍兹烷的合成: 在钯催化下将四乙酰基二苄基六氮杂异伍兹烷(TADBIW)氢解为四乙酰基六氮杂异伍兹烷(TAIW),再与对氯苯甲酰氯反应,得中间产物四乙酰基-二(对氯苯甲酰基)六氮杂异伍兹烷(TABIW),90 ℃下TABIW经发烟硫酸(w(SO3)=20%)与发烟硝酸(w(HNO3)=98%)硝化4 h,即得到目标化合物四乙酰基-二(3,5-二硝基-4-氯苯甲酰基)六氮杂异伍兹烷TNBIW,其熔点242~244 ℃,总收率57.2%; 通过红外光谱、核磁共振、质谱及元素分析表征了目标产物、TABIW、TAIW的结构。
摘要:在82.48%~88.89%硝酸中,将四乙酰基二甲酰基六氮杂异伍兹烷(TADFIW)硝解为γ-六硝基六氮杂异伍兹烷(HNIW),得率88%以上,纯度99.4%以上。该方法最佳硝酸浓度为86.66%,此时HNIW得率94.0%,纯度99.51%。所得HNIW中所含的主要杂质为五硝基一乙酰基六氮杂异伍兹烷(PNMAIW),与TADFIW在硝硫混酸中硝解所得主要杂质五硝基一甲酰基六氮杂异伍兹烷(PNMFIW)不同,说明TADFIW在硝酸中硝解与在硝硫混酸中硝解的反应历程不同。
摘要:以咪唑为原料,混酸为硝化剂,通氮气条件下,采用正加法、二次加料的方式:先滴加混酸(发烟硫酸20%和硝酸98%),硝化硫酸咪唑盐; 再在反应液中滴加硝酸98%反应,合成出4,5-二硝基咪唑。对第二次反应所用的硝酸(98%)量、反应温度和反应时间进行了试验,得到了较佳的实验条件: 第二次硝酸滴加量为1.6 mol (咪唑为1 mol),反应温度为90~95 ℃,反应时间为5~5.5 h。
摘要:利用对二甲氨基苯胺盐酸盐和亚硝酸钠反应得到对二甲氨基苯基重氮盐,低温下与叠氮化钠反应制得1-(对二甲氨基苯基)五唑。采用低温核磁共振氢谱( 1H NMR)对目标化合物进行了表征,利用程序升温核磁共振分析了温度变化时目标化合物在溶剂体系中的稳定性,并对五唑衍生物的生成及分解机理进行了讨论。
Svatopluk ZEMAN , Michal ROHAC
摘要:The paper is focused on 2,4,6,4′,6′,2″,4″,6″-octanitro[1,1′,3′,1″]-terphenyl (ONT), 2,2′,2″,4,4′,4″,6,6′,6″-nonanitro[1,1′,3′,1″]-terphenyl (NONA), 2,4,6-tris(2,4,6-trinitrophenyl)-1,3,5-triazine (TPT), N,N-bis(2,4-dinitrophenyl)-2,4,6-trinitroaniline (NTFA), 2,2′,4,4′,6,6′-hexanitrobiphenyl (HNB), 1,3-dinitrobenzene (1,3-DNB) and 1,3,5-trinitrobenzene (TNB). The initiation reactivity of these substances has been studied by means of the data obtained from non-isothermal differential thermal analysis (DTA), their ignition temperatures, impact sensitivity, the data obtained from the Russian manometric method and the detonation characteristics. For comparison, also the data published about 2,2′,2″,2,4,4′,4″,4,6,6′,6″,6-dodecanitro-[1,3′,1′,1″]quaterphenyl (DODECA) have been included. The paper specifies and discusses the relationships between the results of various methods used, inclusive of the forms of modified Evans-Polanyi-Semenov relationship. It has been stated that the technologically most attractive substances, out of those studied, can be ordered in the sequence ONT-TPT-NONA-NTFA according to their increasing thermal reactivity.
摘要:为了寻找新的多硝基茋耐热炸药,采用脑文格缩合反应制备得到了1,4-对二(2,4,6-三硝基苯乙烯基)苯,并采用自然挥发溶剂法在N,N-二甲基甲酰胺(DMF)溶液中培养了单晶。用X-射线单晶衍射法测定了它的晶体结构,结果表明:该晶体属于三斜晶系,P-1空间群,有一个对称中心。通过元素分析、FT-IR、 1H NMR、13C NMR、MS对化合物的结构作了进一步的表征,结果表明得到的化合物为目标化合物。采用Gaussian 98程序在DFT-B3LYP/6-31G*,6-311G**水平下对化合物分子进行了几何优化和振动分析。计算结果无虚频,而且计算结果和试验结果一致,证明所得化合物结构相对稳定。通过差示扫描量热法(DSC)和热失重法(TG-DTG),在10 ℃·min-1的升温速率下研究了化合物的热分解性能,此化合物有较高的熔点(302 ℃)和热分解温度(311 ℃),结果表明该化合物有较高的耐热性能。
摘要:在丙酮中培养出了3,4-二(硝基呋咱基)氧化呋咱(BNFF)的单晶。用单晶X射线衍射、元素分析、红外、质谱和13C核磁共振谱对其结构进行了表征。测试结果表明: BNFF晶体属正交晶系,空间群P212121。主要晶体学参数为: a=0.6794 (3) nm, b=1.0755 (5) nm, c=1.5137 (4) nm, V= 1.1060 (7) nm3, Mr=312.14,Z = 4, Dx=1.874 g·cm-3 , Dc=1.875 g·cm-3, F(000)=624, μ(MoKα)=0.176 mm-1, R1=0.0757, wR2=0.1206。BNFF分子中三个五员呋咱环分别处于3个不同的面中,在空间呈椅型结构,三环面扭曲,面间夹角为62.16 (0.29)° 和25.67 (0.36)°
摘要:以5-氨基四唑(5-AT)为起始物,经两步反应得到了数种偶氮四唑非金属盐类高氮含能化合物,包括偶氮四唑的胍盐(GZT)、氨基胍盐(AGZT)、二氨基胍盐(DAGZT)及三氨基胍盐(TAGZT)等; 对合成产物和偶氮四唑肼盐(HZT)、铵盐(AZT)的基本理化性能和爆炸性能进行了研究。研究表明: 此类高氮含能材料生成焓高、产气量大、热稳定性较好、分解放热量大,有望作为新型气体发生剂、低特征信号推进剂、低烟或无烟烟火以及高性能炸药的重要组成。
摘要:采用DSC (升温速率分别为2.5,5,10,20 ℃·min-1)、TG、VST和热爆炸等方法研究了3,3′-二氨基-4,4′-偶氮呋咱(DAAzF)F和3,3′-二氨基-4,4′-氧化偶氮呋咱(DAAF)的热性能,应用kissenger法和Ozawa法两种方法计算得到DAAzF和DAAF的平均活化能分别为333.3,219.3 kJ·mol-1, 指前因子(lnA) 为67.535,49.230 s-1; DAAzF的热性能参数: VST为0.26 mL·g-1/100 ℃/48 h, 0.73 mL·g-1/120 ℃/48 h,失重百分比: 0.08%/100 ℃/48 h, 0.26%/120 ℃/48 h,5 s爆发点为375 ℃,临界温度为279.5 ℃, DAAF的热性能参数: VST为1.95 mL·g-1/100 ℃/48 h, 失重百分比: 0.47%/100 ℃/48 h, 3.26%/120 ℃/48 h,5 s爆发点为220 ℃,临界温度为222.5 ℃。结果表明,DAAzF具有良好的热安定性,而DAAF的热安定性稍差于DAAzF。感度测试表明DAAzF和DAAF对撞击钝感,对摩擦和静电火花不敏感。
摘要:通过接触角、Young-Good-Girifalco-Fowke方程测定研究了FOX-7的表面能以及氟聚合物溶液对FOX-7的润湿性能。理论计算表明FOX-7的表面能及其与氟聚合物的界面作用力均与TATB相当,氟聚合物可对FOX-7、TATB形成良好的润湿与包覆,且对TATB效果略好于FOX-7; 在界面间酸碱作用中,FOX-7分子的碱性作用较大,给电子能力强。实际包覆结果显示,氟聚合物对FOX-7、TATB的包覆性能基本属于同一水平。
摘要:制备了六硝基六氮杂异伍兹烷(HNIW),对其主要杂质五硝基一乙酰基六氮杂异伍兹烷(PNMAIW)进行了分离鉴定。以乙酸乙酯/氯仿溶剂体系对所得HNIW进行了转晶。结果表明,转晶操作可降低HNIW中PNMAIW的含量,但降幅不大于1%,且转晶完成时间受PNMAIW含量的影响。
摘要:乙二醛和苄胺在酸的催化作用下发生醛胺缩合反应,可以合成高张力笼形氮杂环化合物六苄基六氮杂异伍兹烷(HBIW),但产物中含有少量副产物。采用柱色谱将其分离,通过FT-IR、1HNMR、ESI-MS、元素分析测定一种杂质为N,N′-二苄基乙二酰胺。用苄胺和草酰氯在甲苯和吡啶的混合溶剂中合成出N,N′-二苄基乙二酰胺,并利用光谱分析对合成的目标化合物的结构进行了表征,与柱色谱分离得到物质的谱图相一致,进一步说明HBIW合成反应的副产物就是N,N′-二苄基乙二酰胺。
摘要:运用酸碱滴定法测定了硝酸直接转晶、乙酸乙酯-氯仿转晶得到的六硝基六氮杂异伍兹烷(HNIW)的酸值。通过对比发现,对于硝酸直接转晶得到的HNIW的酸值测定,可采用80 mL丙酮作溶剂,以中性红-亚甲基兰作酸碱指示剂;对于乙酸乙酯-氯仿转晶得到的HNIW,可采用50 mL丙酮作溶剂,以树脂酚兰作酸碱指示剂。
摘要:
技术支持:北京勤云科技发展有限公司 ICP:蜀ICP备10207813号-5
今日访问量: 总访问量: