摘要
陶瓷‑超高分子量聚乙烯(UHMWPE)复合结构具有优异的防弹性能,但是其在弹击载荷下的背面变形规律仍不清晰。研究建立定量描述弹击载荷下陶瓷‑UHMWPE复合结构背面变形的理论模型,分析了相同面密度下陶瓷与UHMWPE层厚度比对背面变形的影响机制。结果表明,相同弹击速度和面密度条件下,厚度比值越大,单位厚度的UHMWPE层储存的能量越大,导致背面变形越大。
图文摘要
陶瓷‑UHMWPE复合结构以其高强、轻质的特点被广泛应用于冲击防护领
弹道极限速度是评估陶瓷‑UHMWPE复合结构的防弹性能的重要指标之
在防护装备的弹道极限速度达到防护要求的情况下,未被击穿的防弹装备发生的剧烈变形也会对人体造成强烈的钝性冲击作用,对局部脏器造成钝性挫
为此,本研究建立了弹击作用下陶瓷‑UHMWPE复合结构背面变形的理论模型,定量揭示了相同面密度下厚度比对背面变形的影响规律,并针对背面变形指标对陶瓷复合结构防弹设计提出了建议,以期为进一步研究提供参考。
本研究基于弹击载荷下陶瓷‑UHMWPE复合结构的主要机制建立计算结构背面变形的理论模型,并开展弹击实验对模型结果进行定性验证。
高速冲击下陶瓷复合结构的变形过程可简化为如

a. initial state

b. first stage

c. second stage‑unpenetrated case
图1 弹击载荷下陶瓷‑UHMWPE复合结构力学模型
Fig.1 Mechanical modeling of ceramic composite structures under high‑speed impact
(1)子弹被视为理想刚塑性的圆柱体,半径为,仅受到陶瓷层的侵蚀。材料的屈服应力为。
(2)仅考虑陶瓷层中陶瓷锥的形成,其大小与背板中的UHMWPE层无关。同时,忽略其他裂纹的影响。
(3)UHMWPE层合板的变形模式主要表现为薄膜拉
(4)不考虑界面能量耗散以及界面间相互作用对背面变形的影响。
对于第一阶段,Den Reije
(1) |
式中,为子弹的速度,m·
(2) |
式中,为子弹的密度,kg·
陶瓷锥完全形成后进入第二阶段,子弹将和陶瓷锥达到相同速度,视为一个等效子弹共同作用在UHMWPE层合板上,使其发生鼓包变形,等效质量为:
(3) |
式中,为陶瓷锥的质量,t。
陶瓷锥形成时,锥体与陶瓷材料已经完全分离,等效速度可由动量守恒确定:
(4) |
在后续的作用过程中,等效子弹将始终与UHMWPE层合板保持接触,并与UHMWPE层的背面变形顶点保持相同的速度运动。此时,子弹和陶瓷锥与UHMWPE层合板相互作用的问题转化为等效子弹以给定质量和初始速度冲击UHMWPE层合板发生背面变形的问题。根据之前对于UHMWPE层合板冲击变形的研究工
(5) |
式中,为UHMWPE层合板材料的密度,kg·
将移行铰的匀速运动描述为:,其中为移行铰的移动速度,m·
(6) |
对
(7) |
至此获得了未穿透情况下陶瓷复合结构的背面顶点位移。通过数值结果拟合,式中参数值分别为: ,,[
为了验证模型结果,本研究对浙江立泰复合材料股份公司制备的3种不同厚度比的B4C/UHMWPE平板复合结构试样开展弹击实验。复合结构的面密度均约为37.58 kg·
specimen number | specimen description | areal density / kg· |
---|---|---|
1# |
9 mm B4C+15 kg· | 37.59 |
2# |
10 mm B4C+12.5 kg· | 37.6 |
3# |
12 mm B4C+7.5 kg· | 37.62 |

a. schematic diagram of device arrangement

b. type 53 7.62 mm armor‑piercing incendiary projectile

c. ceramic composite structure specimen

d. experimental device arrangement
图2 弹击实验布置
Fig.2 Ballistic experimental arrangement
通过调整相机曝光度可以清晰的记录弹击过程中陶瓷复合结构的背面变形过程。以3#靶板弹击过程为例,其背面动态变形过程如

图3 高速摄像机拍摄的3#靶板背面动态变形过程
Fig.3 Dynamic backface deformation of 3# target plate captured by high‑speed camera
specimen number | max apex displacement / mm | final apex displacement / mm |
---|---|---|
1# | 23.9 | 17.9 |
2# | 29.6 | 22.3 |
3# | 39.5 | 28.8 |
对与弹击实验相同面密度的B4C/UHMWPE平板开展理论计算。
parameter | / g | / kg· | / m· |
---|---|---|---|
value | 5.5 | 7850 | 950 |
parameter | / mm | / MPa |
/ m· |
value | 3.06 | 1540 | 9657 |
Note: M0 is the initial mass of the projectile. is the density of bullet. is the impact velocity. is the radius of the bullet. is the yield strength of bullet. is the longitudinal wave speed of Al2O3.

图4 面密度为37.58 kg·
Fig.4 Theoretical results of apex displacement of Al2O3/UHMWPE flat plate with a face density of 37.58 kg·
基于前述理论模型,本研究首先从能量的角度分析了相同面密度下陶瓷‑UHMWPE复合结构厚度比对背面变形的影响,进而讨论了相同面密度下复合结构的厚度比设计。
目前常用的陶瓷复合结构通常由8 mm厚的陶瓷层和10 mm厚的UHMWPE层组成。以氧化铝陶瓷为例,组成的陶瓷复合结构面密度为40.75 kg·
/ mm | / mm | thickness ratio of hc/hb |
---|---|---|
6 | 17.9 | 0.34 |
7 | 13.9 | 0.50 |
8 | 10.0 | 0.80 |
9 | 6.1 | 1.49 |
10 | 2.1 | 4.75 |
Note: hc is thickness of ceramic, hb is thickness of UHMWPE.
相同面密度下,随着陶瓷层与UHMWPE层厚度比的增加,陶瓷复合结构的背面变形不断变大,且呈现非线性变化趋势(
在第一阶段,子弹撞击陶瓷层,子弹被陶瓷层侵蚀。同时,在第二阶段开始,子弹与陶瓷锥发生剧烈相互作用,陶瓷碎片被加速与子弹共同作用背面的UHMWPE层合板。根据模型假设,在这一阶段陶瓷层起主要作用,使子弹发生失效、塑性变形。因此陶瓷层的贡献可被定义为形成等效子弹后对子弹动能造成的损耗:
(8) |
式中,,和分别表示子弹的初始质量,被陶瓷侵蚀后的剩余质量及陶瓷层产生陶瓷锥的质量,t;而和分别表示子弹的初始速度和被陶瓷侵蚀后的速度,mm·
(9) |
式中,表示第二阶段UHMWPE层背面顶点的速度,mm·
(10) |
在
对于不同厚度比的情况,陶瓷复合结构对子弹动能的消耗如

图5 陶瓷层与UHMWPE层厚度比对陶瓷层和UHMWPE层消耗子弹动能的影响
Fig.5 Effect of ceramic to UHMWPE layer thickness ratio on the kinetic energy of bullets consumed by ceramic and UHMWPE layers
在第二阶段,随着UHMWPE层合板厚度降低(陶瓷复合结构厚度比增加),背板层对子弹动能的消耗能力也在下降(
thickness ratio of hc/hb | / mm | / J· |
---|---|---|
0.34 | 17.9 | 13232 |
0.50 | 13.9 | 12879 |
0.80 | 10.0 | 13473 |
1.49 | 6.1 | 16559 |
4.75 | 2.1 | 33507 |
Note: ψ is kinetic energy consumed per unit thickness.
根据标准要

图6 陶瓷层与UHMWPE层厚度比对陶瓷复合结构背面变形影响
Fig.6 Effect of thickness ratio of ceramic layer to UHMWPE layer on backface deformation of ceramic composite structures
本研究建立陶瓷‑UHMWPE复合结构防弹性能理论模型,研究高速冲击下复合结构厚度对其弹道速度和背面变形的影响,主要结论如下:
(1)建立了陶瓷‑UHMWPE复合结构背面变形理论模型,模型可以定量求解复合结构在高速冲击下的背面变形;
(2)发现相同面密度下陶瓷与UHMWPE层厚度比越大,弹击过程中单位厚度的UHMWPE层储存的能量越大,从而使背面变形越大;
(3)在背板层发生膜拉伸主导变形的情况下,陶瓷复合结构以背面变形为指标的设计要求相同面密度下选择更小的陶瓷层厚度。
参考文献
DA LUZ F S, GARCIA FILHO F D C, OLIVEIRA M S, et al. Composites with natural fibers and conventional materials applied in a hard armor: A comparison[J]. Polymers, 2020, 12(9): 1920. [百度学术]
LEIGH PHOENIX S, PORWAL P K. A new membrane model for the ballistic impact response and V50 performance of multi‑ply fibrous systems[J]. International Journal of Solids and Structures, 2003, 40(24): 6723-6765. [百度学术]
XU D, HUANG Z, CHEN G, et al. Experimental investigation on the ballistic performance of B4C/Aramid/UHMWPE composite armors against API projectile under different temperatures[J]. Thin‑Walled Structures, 2024, 196: 111553. [百度学术]
O'MASTA M, DESHPANDE V, WADLEY H. Mechanisms of projectile penetration in Dyneema® encapsulated aluminum structures[J]. International Journal of Impact Engineering, 2014, 74: 16-35. [百度学术]
LANGSTON T. An analytical model for the ballistic performance of ultra‑high molecular weight polyethylene composites[J]. Composite Structures, 2017, 179: 245-57. [百度学术]
HU P, YANG H, ZHANG P, et al. Experimental and numerical investigations into the ballistic performance of ultra‑high molecular weight polyethylene fiber‑reinforced laminates[J]. Composite Structures, 2022, 290: 115499. [百度学术]
MELISSA R. Effects of autoclaving on the ballistic performance of ultra high molecular weight polyethylene composites[D]. Worcester Polytechnic Institute, 2021. [百度学术]
RUYS A J. Alumina in lightweight body armor[M]. Alumina Ceramics: Biomedical and Clinical Applications. 2019: 321‑68. [百度学术]
RAHBEK D B, SIMONS J W, JOHNSEN B B, et al. Effect of composite covering on ballistic fracture damage development in ceramic plates[J]. International Journal of Impact Engineering, 2017, 99: 58-68. [百度学术]
RAHBEK D B, JOHNSEN B B. Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles[J]. International Journal of Impact Engineering, 2019, 133. [百度学术]
GUO G, ALAM S, PEEL L D. An investigation of the effect of a Kevlar‑29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles[J]. International Journal of Impact Engineering, 2021, 157. [百度学术]
REN W, GAO G, PIAO C, et al. Experimental study of ballistic performance for boron carbide ceramic composite targets[J]. Chinese Journal of High Pressure Physics, 2019, 33(4). [百度学术]
HU D, ZHANG Y, SHEN Z, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems[J]. Ceramics International, 2017, 43(13): 10368-10376. [百度学术]
NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite [J]. International Journal of Impact Engineering, 2015, 75: 174-183. [百度学术]
LIN J, LI Y, LIU S, et al. Numerical investigation of the high‑velocity impact performance of body armor panels[J]. Thin‑Walled Structures, 2023, 189: 110909. [百度学术]
NIJ.Standard NIJ. 0101.04: Ballistic Resistance of Personal Body Armor[S]. Washington DC, USA, 2000. [百度学术]
ZHANG B, WANG Y, DU S, et al. Influence of backing plate support conditions on armor ceramic protection efficiency[J]. Materials, 2020, 13(15):3427. [百度学术]
ZHANG Y, CUI B, DONG H, et al. Analysis of the influence of different constraints on the ballistic performance of B4C/C/UHMWPE composite armor[J]. Ceramics International, 2022, 48(18): 26758-26771. [百度学术]
TEPEDUZU B, KARAKUZU R. Ballistic performance of ceramic/composite structures[J]. Ceramics International, 2019, 45(2): 1651-1660. [百度学术]
GILSON L, RABET L, IMAD A, et al. Ballistic impact response of a fluid/structure coupling‑based modification of human thorax modelling[J]. Journal of the mechanical behavior of biomedical materials, 2021, 119: 104493. [百度学术]
DE LANGE J, BURROWS L, BINETTE J‑S, et al. Behind shield blunt trauma: Characterizing the back‑face deformation of shields with a focus on upper limb loading[J]. Annals of Biomedical Engineering, 2023: 1-12. [百度学术]
GUO G, ALAM S, PEEL L D. An investigation of deformation and failure mechanisms of fiber‑reinforced composites in layered composite armor[J]. Composite Structures, 2022, 281:115125. [百度学术]
SHEN Z, HU D, YANG G, et al. Ballistic reliability study on SiC/UHMWPE composite armor against armor‑piercing bullet [J]. Composite Structures, 2019, 213: 209-219. [百度学术]
ZHANG Y, DONG H, LIANG K, et al. Impact simulation and ballistic analysis of B4C composite armour based on target plate tests[J]. Ceramics International, 2021, 47(7): 10035-10049. [百度学术]
YANG S, YAN Z, GAO Y, et al. Numerical and theoretical modeling of the elastic‑plastic bulging deformation of UHMWPE composite laminate under high‑speed impact[J]. International Journal of Impact Engineering, 2023, 182: 104771. [百度学术]
REIJER P C D. Impact on ceramic faced armour, F, 1991[C]. [百度学术]
TATE A. A theory for the deceleration of long rods after impact[J]. Journal of the Mechanics and Physics of Solids, 1967, 15(6): 387-399. [百度学术]
BENLOULO I C, SANCHEZ‑GALVEZ V. A new analytical model to simulate impact onto ceramic/composite armors[J]. International Journal of Impact Engineering, 1998, 21(6): 461-471. [百度学术]
FLORENCE A L. Interaction of projectiles and composite armor. Part II[J]. Report AMMRCCR‑69‑15Stanford Research Institute, 1969. [百度学术]
JOHNSON G R, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures[J]. Journal of Applied Physics, 1999, 85(12): 8060-8073. [百度学术]
SEAGRAVES A, RADOVITZKY R. Large‑scale 3D modeling of projectile impact damage in brittle plates[J]. Journal of the Mechanics and Physics of Solids, 2015, 83: 48-71. [百度学术]