摘要
DIANP发射药作为一种新型发射药,具有能量高,爆温低,燃烧洁净性好,烟焰残渣少等特点。研究介绍了DIANP合成与材料特性,DIANP发射药配方及性能,DIANP发射药制备工艺、表面处理、装药应用和测试方法等方面的研究进展。指出了DIANP发射药在燃烧分解机理和相互作用机制等基础理论研究方面存在的不足;提出了应开展适用于DIANP发射药的温度系数控制技术研究、环境适应性研究和DIANP合成的绿色工艺研究;并认为DIANP发射药的改进需将理论研究和实际应用相结合,以此推进高能低烧蚀特征材料在行业内的发展。
图文摘要
发射药是一类具有特殊用途的复合含能材料,是身管武器进行打击的主要能量来源。随着武器装备的不断发展,高能低烧蚀成为发射药主要发展趋势之
叠氮增塑剂因具有高氮含量、低凝固点和与粘接剂良好的相容性而受到国内外研究者的广泛关
DIANP具有高能、高燃速、低爆温、低感度、产气量大和燃气分子量小等特
DIANP发射药的火药力高,范围可调,爆温比同能量水平的其他发射药低200~300 K。并且,叠氮基燃烧分解产物为无毒无害气
1983年,Flanagaw
姬月萍

图1 DIANP合成原
Fig.1 Synthesis principle of DIAN
2010年,国内科研人员开展了DIANP高效纯化技术研究,汪伟
为了进一步对DIANP合成路线进行优化,高福磊
随后,薛金强

图2 DIANP合成路线
Fig.2 DIANP synthetic metho
发展至今,DIANP的合成工艺取得了较大的进步,产物得率和反应效率均有大幅提升。但是反应涉及的废液处理,循环利用等问题并未引起广泛关注。
DIANP为淡黄色透明油状液体,可溶于二氯甲烷、丙酮、乙酸乙酯、二甲基亚砜(DMSO)、N,N‑二甲基甲酰胺(DMF)等溶剂中,不溶于水、乙醇等溶剂,理化性能和安全性能见
parameters | value |
---|---|
refraction index | 1.5275±0.0005 |
density / g·c | 1.3370±0.002 |
viscosity / mPa·s | 19.5(rotary viscosity, 25 ℃) |
freezing point / ℃ | -7 |
alkalinity / % | 0-0.003% (by Na2CO3) |
volatility / % |
0.08 (4 h), 0.12 (16 h), 0.15 (24 h); condition: 0.8 g, (50±1) ℃ |
parameters | remark |
---|---|
deflation volume (vacuum invariability) / mL |
2.80 (sample (5 g) heated at 100 ℃ uninterruptedly for 48 h) |
break out point / ℃ | 283 |
temperature of the most exothermic peak (DSC) / ℃ | 245.68 |
enthalpy of formation / kJ·mo | 1419.41 |
combustion heat / kJ·k | 16585.2 |
detonation heat / J· | 3549 (according to GJB772A‑97‑701.1) |
detonator sensitivity |
detonation(sample was encased in Ф50 mm×65 mm glass beakerand initiated by electricity detonator) |
flame sensitivity | no reaction (according to GJB772A‑97‑604.1) |
time / pressure |
no reaction (according to referenc |
在含能材料领域中,材料之间的相容性是一个十分重要的指标。研究表明,DIANP与发射药常用含能组份(如硝化棉、硝化甘油、硝基胍(NGU)、黑索今等),安定剂,钝感剂(如NA等)均有较好的相容性(
component | net increase in reaction gas release | result |
---|---|---|
DIANP/NC/NG/DGU/C2 | R<3.0 mL | compatible |
DIANP/NC/NG/RDX/NA | R<3.0 mL | compatible |
Note: according to GJB772A‑97‑501.1. 1) R<3.0 mL: compatibility: compatible. 2) R=3.0-5.0 mL: moderate response. 3) R>5.0 mL: incompatible. 4) R is the net increase in gas release from the reaction.
含能增塑剂的增塑性能,也是关键特性之一。增塑性好的体系有利于应力的传递,表现出更好的力学性能,并且增塑效率高,不产生离析、渗出现象,使用寿命

a. NC(13.0%N)+DIANP

b. NC(12.6%N)+DIANP

c. NC(12.6%N)+NG
图3 发射药的SEM
Fig.3 SEM photographs of gun propellant
杨俊清
N % | δ / MP | Δδ (NG-NC) | Δδ (DIANP-NC) | |
---|---|---|---|---|
NC1 | 7.22 | 23.03 | 2.39 | 0.01 |
NC2 | 9.50 | 22.86 | 2.56 | 0.18 |
NC3 | 10.46 | 22.32 | 3.10 | 0.72 |
NC4 | 12.04 | 20.06 | 5.36 | 2.98 |
NG | 25.42 | |||
DIANP | 23.04 |
可见,DIANP与硝化棉和发射药常用含能组份具有良好的相容性,并且DIANP对硝化棉的塑化效果优于NG。可以推断,DIANP在以硝化棉为粘结剂的体系中是非常有竞争力的含能增塑剂。
硝化棉基发射药具有综合性能好,力学性能强,被广泛应用于弹药系统,与现有系统和制造工艺具有良好的兼容性与适配
根据国外专利的报
composition | burning rate / mm· | burn temperature / K | heat of combustion / J· |
---|---|---|---|
NC+1% stabilizer | 126 | 3053 | 3977 |
NC+1% stab+40% DIANP | 298 | 2854 | 3475 |
NC+1% stab+40% NG | 257 | 3850 | 5234 |
NC+40% DINA | 208 | 3334 | 4534 |
NC+20% DINA+20% DIANP | 244 | 3108 | 4007 |
NC+40% Me‑NENA | 186 | 3087 | 4157 |
NC+20% Me‑NENA+20% DIANP | 234 | 2971 | 3818 |
NC+40% RDX | 181 | 3436 | 4576 |
NC+20%RDX+20% DIANP | 249 | 3162 | 4028 |
composition | gas / MW | burn temperature / K | impetus / kJ·k |
---|---|---|---|
(60∶40) NG/NC | 27.2 | 3774 | 1154 |
(50∶50) RDX/NC | 24.7 | 3621 | 1218 |
(50∶50) Me‑NENA/NC | 22.5 | 3162 | 1166 |
(50∶50) TAGN/RDX | 21.2 | 3330 | 1304 |
(60∶40) TAGN/NC | 20.6 | 2771 | 1114 |
(50∶50) DIANP/RDX | 19.9 | 3442 | 1434 |
(60∶40) DIANP/NC | 19.5 | 3853 | 1215 |
(50∶50) DIANP/Me‑NENA | 18.5 | 2983 | 1336 |
(30∶70) DIANP/Et‑NENA | 17.8 | 2523 | 1175 |
(50∶50) DIANP/TAGN | 17.7 | 2665 | 1250 |
国内现役常规双基药配方的主要含能组分为硝化棉和硝化甘油,特点是威力高,烧蚀大。为提升常规双基药的综合性能,胡睿
崔鹏腾
item | density / g·c | C(H2O) / % | internal volatile matter / % | detonation heat / J· | 2e / mm |
---|---|---|---|---|---|
before storage | 1.55 | 0.35 | 0.64 | 3658 | 0.64 |
after storage | 1.55 | 0.36 | 0.53 | 3672 | 0.64 |
rate / % | 0 | 2.8 | -17 | 0.3 | 0 |
Note: C is the mass ratio. e is half of web size.
item | p / MPa | v / m· | ||||
---|---|---|---|---|---|---|
20 ℃ | -40 ℃ | 50 ℃ | 20 ℃ | -40 ℃ | 50 ℃ | |
before storage | 277.3 | 235.2 | 322.8 | 967.6 | 894.3 | 1014.1 |
after storage | 277.6 | 241.4 | 318.7 | 964.1 | 874.1 | 988.4 |
rate / % | 0.1 | 2.6 | -1.3 | -0.4 | -2.2 | -2.5 |

a. 0

b. 12.5%

c. 20%
图4 枪口焰叠加照
Fig.4 Superposed graphs of the muzzle flash of different gun propellant sample
用DIANP替代配方中的部分NG,能够在保持能量水平的情况下有效降低燃气温度,抑制枪口火焰,并且均质DIANP发射药具有较好的贮存稳定性,能够满足实际中的应用需求。然而,DIANP为负氧平衡材料,含量太多会导致燃气中的可燃气体含能升高。因此,DIANP在配方中存在最佳含量,在特定的配方中需要进一步研究。
常规三基发射药的含能组份主要由硝化棉,硝化甘油和硝基胍组成,是成熟度较高的一类配方。Joshi M M
NC | NG | DIANP | RDX | NGU | ref. |
---|---|---|---|---|---|
60 | 5-40 | 5-40 | - | - |
[ |
28 | 22.5 | 5-20 | - | 28-48 |
[ |
30-50 | - | 10-18 | - | 30-40 |
[ |
35-45 | 8-12 | 6-8 | - | 25-40 |
[ |
35-45 | 8-12 | 10-20 | 0-25 | - |
[ |
R S Dams
魏学涛
propellant | powder impetus / J· | explosive heat / J· | explosive temperature / K | specific volume / c | heat capacity ratio | average gas molecular weight |
---|---|---|---|---|---|---|
DANQ | 1080 | 3668.9 | 2850 | 1015.1 | 1.2522 | 22.07 |
M3 | 1088 | 4082 | 3040 | 965.9 | 1.2385 | 23.2 |
propellant | compressive strength / MPa | compression rate / % | impact strength / kJ· | ||||||
---|---|---|---|---|---|---|---|---|---|
50 ℃ | 20 ℃ | -40 ℃ | 50 ℃ | 20 ℃ | -40 ℃ | 50 ℃ | 20 ℃ | -40 ℃ | |
DANQ | 23.2 | 35.5 | 150.3 | 51.8 | 44.3 | 23.2 | no broken | 34.6 | 8.31 |
M3 | 18.85 | 40.5 | 137.9 | 19.0 | 14.9 | 8.2 | 10.6 | 8.46 | 5.39 |
贾林
力学性能是发射药的一项重要指
sample | compressive strength / MPa | compression ratio / % | impact strength / kJ· | |||
---|---|---|---|---|---|---|
20 ℃ | -40 ℃ | 20 ℃ | -40 ℃ | 20 ℃ | -40 ℃ | |
DA(13.0 N%) | 58.7 | 157.6 | 64.2 | 57.4 | no broken | 10.96 |
DA(12.6 N%) | 72.9 | 178.5 | 63.7 | 54.9 | no broken | 18.1 |
另外,因为同为硝化棉基发射药,影响三基DIANP发射药贮存稳定性的因素与常规三基发射药类
可以发现,加入DIANP有助于提高配方的力学性能、热稳定性、线性燃烧速率和贮存寿命,并且降低配方摩擦感度。同时,DIANP与配方中的NGU存在协同效应,能够减小膛内的压力波动。但是,发射药燃速提升所带来的优劣势需要进一步研究。
均质DIANP发射药(主要成分为NC/NG/DIANP)有力学性能好,燃烧稳定等特点,但是由于DIANP燃速高,空白药初始燃气生成速率大,容易产生轴向压力波,严重时甚至导致低温膛压异常。为解决这一问题,研究人
石先锐
高能三基DIANP发射药的摩擦静电起电特性主要与RDX含量有
由上可以看出,含DIANP的发射药力学性能好、点火正常、燃烧稳定、爆温低。DIANP在双基药配方、三基药配方和高能药配方中均有较好的适配性,涵盖范围广泛。并且RDX的熔融吸热特性能够改善均质DIANP发射药配方起始燃速快的特点,提高了配方的燃烧渐增性和装药安全性。
工艺是使原材料转变为成品的关键,发射药的质量可靠性与工艺过程息息相关。新配方研究往往也伴随着工艺适配性研究和工艺流程优化。主要包括球形药制备工艺和粒状药制备工艺。
DIANP双基球形药制备工艺主要采用内溶法。内溶法是指在搅拌的作用下,利用物质自身的表面张力收缩成球,再通过脱水、蒸溶等流程制成成品的过
随后,冯昌林
item | mass / % | force constant / J· | explosive heat / J· | explosive temperature / K | |||
---|---|---|---|---|---|---|---|
NC | NG | DIANP | C2 | ||||
1 | 58.5 | 27 | 13 | 1.5 | 1188 | 4541 | 3494 |
2 | 58.5 | 40 | 0 | 1.5 | 1175 | 4992 | 3777 |
3 | 63.5 | 35 | 0 | 1.5 | 1165 | 4895 | 3712 |
number | electrostatic spark sensitivity | mechanical sensitivity | shockwave sensitivity | ||||||
---|---|---|---|---|---|---|---|---|---|
U / kV | Q / J | H50 / cm | P / % | D / mm | Δ / g·c | L / mm | |||
P | N | P | N | ||||||
1 | 3.27 | 3.10 | 1.18 | 1.06 | 14.8 | 4 | 0.52 | 0.96 | 37.0 |
2 | 2.30 | 2.00 | 0.68 | 0.64 | 14.1 | 20 | 0.48 | 1.02 | 43.0 |
3 | 2.71 | 2.70 | 0.81 | 0.80 | 14.8 | 8 | 0.56 | 0.98 | 32.8 |
Note: U is 50 % ignition voltage, Q is 50 % of the firing energy, D is the particle size of spherical propellant, Δ is packing density, L is the thickness of the partition board
球形发射药装药密度高且易于钝感,广泛应用于轻武器装药。DIANP球形药比常规双基球形药具有更高的线性燃速,能够解决短管武器存在的燃尽性问题,十分具有应用潜力。
吸收是三基药常用的一种药料混合方式,具有均一性好、安全度高、可控性强等特点。由于DIANP对硝化棉具有较好的溶塑性,因此,采用吸收的方式对物料进行预混合是一种有效的途径。为了保证吸收药料在贮存和运输过程中的安全性,需要提高吸收药的含水量。在样品试制前,需将药料中的大部分水分驱除出来。吸收药的烘干驱水效果是影响后续工艺质量的重要环节。
DIANP具有较高的热分解温度,能够提升NC/NG吸收药体系的热稳定性。基于这一特点,贾林
三基DIANP发射药和高能三基DIANP发射药使用DIANP和NG作为混合增塑剂,可采用半溶剂法进行制备,具有工艺助剂加入量少,驱溶工艺相对简单的特点。半溶剂法成型工艺包括油压成型、螺杆挤出成型等工艺类型。目前小粒和大粒三基、高能三基DIANP发射药半溶剂法试制广泛采用油压成型工艺,工艺过
总的来说,DIANP发射药的球形药制备工艺和粒状药制备工艺与现有成熟工艺的适配性较好,可以通过借鉴、优化等方法实现工业化生产。
为改善发射药的燃烧特性和内弹道性能,一般需要对发射药进行表面钝感处理,通过在发射药表层渗入一定浓度梯度分布的阻燃性或低燃性物质,达到提高燃烧渐增性,降低温度系数等目的。或采用与发射药基体同质的材料进行表面包覆,以此提升发射药增面燃烧的比例,提高能量利用率;DIANP发射药表面钝感形式主要包括湿法钝感、干法钝感和组合钝感等。湿法钝感是将发射药和钝感剂溶液在水介质中进行吸附和渗透,具有均一性好,安全性高,可控性强等特点;干法钝感一般采用专用的转鼓式设备进行,具有适用范围广,工艺周期短等特点;组合钝感则是对现有技术的整合,能够发挥各自优势,提高发射药的综合性能。部分研究者对适用于DIANP发射药的表面钝感技术进行了研究。
包覆技术是通过包覆层的作用控制火药基药内控燃面的起始燃烧时间,从而改变装药的燃面变化规律,达到降低装药内弹道温度系数,提高弹丸初速的目
特种聚合物钝感剂NA,作为一种新型的高分子钝感剂,具有含氧量高、燃烧烟雾小,抗迁移性强等特
sample | explosive heat / J· | charge weight / g | maximum pressure / MPa | pressure difference / MPa | muzzle velocity / m· | speed difference / m· | remarks |
---|---|---|---|---|---|---|---|
before storage | 3891 | 1.72 | 274.2 | 7.4 | 916.4 | 8.7 | |
after storage | 3868 | 1.72 | 268.9 | 7.5 | 909.1 | 7.8 |
storage conditions: 70 ℃, 130 d |
1963年,Huisgen

图5 叠氮基和端炔基化合物的反应通
Fig.5 azido‑ and reaction general formula for terminal acetylenyl compoun
并且,宋亚苹
Sample | La / MPa· | Lm / MPa· | Bm | Lm/La | Pi |
---|---|---|---|---|---|
DA‑DBP | 2.795 | 3.328 | 0.639 | 1.191 | 0.761 |
DA‑DBP‑2 | 4.086 | 3.625 | 0.100 | 0.887 | 0.089 |
DA‑PPA | 2.288 | 3.631 | 0.604 | 1.587 | 0.959 |
DA‑PPA‑6 | 3.514 | 3.402 | 0.100 | 0.968 | 0.097 |
DA‑TPTM | 2.597 | 3.789 | 0.550 | 1.459 | 0.802 |
DA‑TPTM‑6 | 2.368 | 3.594 | 0.582 | 1.518 | 0.883 |
可见,行业内较为成熟的包覆、阻燃、堵孔技术在DIANP发射药上有良好的适配性。并且,NA,TPTM等高分子钝感材料的抗迁移性能较好,适用于增塑剂含量较高的DIANP发射药体系。但是,钝感材料的可靠性、工艺性、环保性等方面仍需进一步验证。
为解决某警用转轮手枪在降低弹丸初速后存在的烟焰大,初速跳动大、有剩药等问题,并满足穿透余能小的要求。在弹道诸元不改变的情况下,某研究所针对该武器平台研制了一种小弧厚、低堆积密度且燃速较高的新型发射
随后,魏学涛
weapon | sample | charge weight / g | pressure / MPa | muzzle velocity / m· | muzzle velocity probable error / m· |
---|---|---|---|---|---|
35 mm |
reference sample | 2.62 | 98.0 | 190.0 | 1.50 |
DA‑11 | 2.85 | 66.8 | 207.9 | 1.63 | |
DA‑11 | 3.50 | 67.0 | 236.0 | / | |
DA‑11 | 4.00 | 109.4 | 263.0 | / | |
20 mm | DA‑15 | 1.6 | 86.5 | 212.6 | 2.5 |
QDA8‑45 | 1.4 | 82.7 | 196.6 | / | |
QDA8‑45 | 1.5 | 89.5 | 211.3 | / |
同时,陈洪
在警用转轮手枪上的成功应用凸显了DIANP作为含能增塑剂所带来的优势,并且在中口径武器上的模拟验证也显示出了DIANP作为含能增塑剂的潜在应用价值。
2011年,为了解决叠氮基与硝基共存时干扰滴定的问题,梁忆
同年,樊永惠
快速溶剂萃取(ASE)方法是一种在提高温度和压力的条件下,用有机溶剂萃取的自动化方法,具有有机溶剂用量少、快速、基质影响小、回收率高和重现性好等优点。贾林
聚酯NA已验证是一种与DIANP发射药具有良好适配性的钝感材料,并被用于许多关于DIANP发射药的研究当中。在实验室中,NA含量检测主要采用气相色谱
显微红外光谱技术也能够用于测量钝感剂浓度分
式中,A为吸光度,K为吸光度系数,L为光程长,c为样品中某组分的含量。
在显微扫描前,需要先用切片机对发射药进行切片,然后以连续移动的方式对切片进行扫描,采集红外光谱图数据,数据处理后可得到钝感剂浓度分布曲线。
显微红外光谱技术的优点是非破坏性,灵敏度高,可进行微区分析;但要求被测样品的透光性要好,对于痕量物质的灵敏度有所限
以上可以看出,DIANP合成与DIANP发射药具备了较为完善的测试系统。同时,先进分析技术在钝感剂浓度分布测试中的成功应用也为其他表面处理研究提供了一些参考。
DIANP发射药作为一种新型发射药,具有能量高,爆温低,燃烧洁净性好,烟焰残渣少等特点。DIANP与常规发射药配方体系具有良好的相容性,能够改善发射药的加工性,柔韧性。与硝化甘油相比,在能量水平相差不大的情况下,DIANP发射药的感度更低,凝固点更低,热稳定性更好。在目前火炸药行业的高能量低烧蚀发展趋势下,DIANP是最有希望替代硝化甘油的含能增塑剂之一。为促进DIANP发射药进一步的开发与应用,仍有一部分研究有待开展。
(1)深入研究DIANP燃烧分解机理和膛内作用机制,揭示DIANP高能低烧蚀特征的本质原因;研究DIANP发射药组分特点,结构特点与应用性能间的关系,如线性燃速变化,组分之间的协同效应和燃气释放规律等,提升现有DIANP发射药的性能,实现发射药能量、烧蚀、力学性能、感度、氧平衡之间的平衡;探索DIANP发射药体系中增塑剂,粘结剂,氧化剂在制造,贮存,燃烧等不同过程中的相互作用理论模型,提高DIANP发射药设计能力和应用水平。
(2)开展DIANP发射药温度系数控制技术研究,如正文中提到的NA,TPTM等高分子钝感技术的应用潜力开发和堵孔钝感工艺优化。加强极端环境条件下DIANP发射药适应性研究,针对高温、高湿和超低温等特殊应用场景,探索DIANP发射药的适用范围。
(3)借鉴国内外优秀合成案例与经验,开发绿色、安全环保、低成本的DIANP合成方法及工艺。对于现有较成熟的工艺,应开展DIANP合成工艺放大技术研究、尺寸效应研究。并且,需要关注到反应涉及的废液处理,循环利用等问题,这是实现降本增效,推进工业化应用的重要方面之一。
参考文献
王泽山,何卫东,徐复铭. 火炮发射装药设计原理与技术[M]. 北京: 北京理工大学出版社,2014. [百度学术]
WANG Ze‑shan, HE Wei‑dong, XU Fu‑ming. Principle and technique for gun propellant charge design[M]. Beijing:Beijing Institute of Technology Press, 2014. [百度学术]
王泽山. 含能材料概论[M]. 哈尔滨:哈尔滨工业大学出版社,2006. [百度学术]
WANG Ze‑shan. Introduction to energetic materials[M]. Harbin :Harbin Institute of Technology Press, 2006. [百度学术]
蔺向阳,郑文芳. 火药学[M]. 北京:化学工业出版社,2020. [百度学术]
LIN Xiang‑yang, ZHENG Wen‑fang. HUO YAO XUE[M].Beijing: Chemical Industry, 2020. [百度学术]
彭翠枝,范夕萍,任晓雪,等. 国外火炸药技术发展新动向分析[J]. 火炸药学报,2013, 36 (3): 1-5. [百度学术]
PENG Cui‑zhi, FAN Xi‑ping, REN Xiao‑xue, et al. Analysis on recent trends of foreign propellants and explosives technology development[J]. Chinese Journal of Explosives and Propellants, 2013, 36(3):1-5. [百度学术]
ANNIYAPPAN M, TALAWAR M B, SINHA R K. et al. Review on advanced energetic materials for insensitive munition formulations[J]. Combustion Explosion and Shock Waves, 2020, 56(5): 495-519. [百度学术]
薛金强,尚丙坤,王连心,等. 含能增塑剂的研究新进展[J]. 化学推进剂与高分子材料,2012, 10(6): 7-13. [百度学术]
XUE Jin‑qiang, SHANG Bing‑kun, WANG Lian‑xin, et al. New advance in research of energetic plasticizers[J]. Chemical Propellants and Polymeric Materials, 2012, 10(6): 7-13. [百度学术]
曹晓雪. 增塑剂/硝化棉性能的分子动力学模拟[D]. 太原:中北大学, 2022. [百度学术]
CAO Xiao‑xue. Molecular dynamics simulation of plasticizer/nitrocellulose properties[D]. Taiyuan: North University of China, 2022. [百度学术]
赵宝东,高福磊,汪营磊,等. 火药用叠氮含能增塑剂[J]. 化学进展,2019, 31(2/3):475-490. [百度学术]
ZHAO Bao‑dong, GAO Fu‑lei, WANG Ying‑lei, et al. Azido energetic plasticizers for gun and rocket propellants[J]. Progress in Chemistry, 2019, 31(2/3): 475-490. [百度学术]
BODAGHI A, SHAHIDZADEH M. Synthesis and characterization of new PGN based reactive oligomeric plasticizers for glycidyl azide polymer[J]. Propellants Explosives Pyrotechnics, 2018, 43(4): 364-370. [百度学术]
JAROSZ T,STOLARCZYK, A,WAWRZKIEWICZ‑JALOWIECKA. A. Glycidyl azide polymer and its derivatives‑versatile binders for explosives and pyrotechnics: Tutorial review of recent progress[J]. Molecules, 2019, 24: 4475. [百度学术]
ZHANG Heng, WANG Yong, REN Xiao‑ning, et al. Study on thermodynamic properties of several innovative azide plasticizers[J]. Chinese Journal of Explosives and Propellants, 2021, 44(5): 589-594. [百度学术]
SCHOCK M, BRÄSE S. Reactive & efficient: organic azides as cross‑linkers in material sciences[J]. Molecules, 2020, 25(4): 1009 . [百度学术]
LU A, LIAO X. Investigation of the properties of LOVA gun propellants: in the proceedings of the 24th international conference of ICT[C]//Karlsruhe, Germany, 1993. [百度学术]
SHEIBANI N, ZOHARI N, FAREGHI‑ALAMDARI R. Rational design, synthesis and evaluation of new azido‑ester structures as green energetic plasticizers[J]. Dalton Transactions, 2020, 49(36): 12695-12706. [百度学术]
ZOHARI N, SHEIBANI N. Link between density and molecular structures of energetic azido compounds as green plasticizers[J]. Z. Anorg. Allg. Chem, 2016, 642(24): 1472-1479 . [百度学术]
TURKER L. Azo‑bridged triazoles: Green energetic materials[J]. Defence Technology, 2016, 12(1): 1-15. [百度学术]
CONROY P J, LEVERITT C S, HIRVONEN J K, et al. The role of nitrogen in gun tube wear and erosion[R]. US Report, Army research laboratory, Weapons and materials research Directorate, Aberdeen proving ground, M.D.21005, Dec 2004. [百度学术]
FLANAGAN J E. 1,5‑Diazido‑3‑nitrazapentane and method of preparation thereof: US, 5013856[P]. 1991. [百度学术]
FLANAGAN J E. 1,3‑Diazido‑2‑nitrazapropane: US, 4085123[P]. 1978. [百度学术]
FRANKEL M B, WITUCKI E F. Process for preparing 1,5‑diazido‑3‑nitrazapentane, US, 4761250[P]. 1988. [百度学术]
高福磊,姬月萍,汪伟,等. 1,5‑二叠氮基‑3‑硝基氮杂戊烷合成反应动力学[J]. 火炸药学报,2011, 34: 12-14. [百度学术]
GAO Fu‑lei, JI Yue‑ping, WANG Wei, and et al. Synthesis reaction kinetics of 1,5‑diazido‑3‑nitrazapentane[J]. Chinese Journal of Explosives and Propellants, 2011, 34: 12-14. [百度学术]
肖凯,汪营磊,高福磊, 等. DIANP合成工艺优化及杂质对其性能的影响[J]. 化学推进剂与高分子材料, 2022, 20: 58-61. [百度学术]
XIAO Kai, WANG Ying‑lei, GAO Fu‑lei, et al. Optimization of synthesis process of DIANP and influence of impurities on its performance[J]. Chemical Propellant and Polymeric Materials, 2022, 20: 58-61. [百度学术]
姬月萍,兰英,李普瑞,等. 1.5‑二叠氮基‑3‑硝基氮杂戊烷的合成与表征[J]. 火炸药学报,2008, 31(3): 44-46. [百度学术]
JI Yue‑ping,LAN Ying,LI Pu‑rui, et al. Synthesis and characterization of 1,5‑diazido‑3‑nitrazapentane (DIANP)[J]. Chinese Journal of Explosives and Propellants, 2008, 31(3): 44-46. [百度学术]
SIMMONS R L. Azidonitramine: US, 4450110[P], 1984. [百度学术]
汪伟,丁峰,梁忆,等. DIANP纯度标准物质的制备及表征[J]. 火炸药学报,2010, 33(5): 52-55. [百度学术]
WANG Wei, DING Feng, LIANG Yi, et al. Preparation and characterization of DIANP certified reference material[J]. Chinese Journal of Explosives and Propellants, 2010, 33(5): 52-55. [百度学术]
高福磊,姬月萍,刘卫孝. 1,5‑二叠氮基‑3‑硝基氮杂戊烷合成方法改进[J]. 化学推进剂与高分子材料, 2014, 12(6): 79-80. [百度学术]
GAO Fu‑lei, JI Yue‑ping, LIU Wei‑xiao. Improvement on synthesis methods of 1,5‑diazido‑3‑nitrazapentane[J]. Chemical Propellant and Polymeric Materials, 2014, 12(6): 79-80. [百度学术]
肖凯. 叠氮硝胺的合成及杂质对其性能的影响研究[D]. 南京:南京理工大学, 2021. [百度学术]
XIAO Kai. Study on synthesis of DIANP and effect of impurities on its properties[D]. Nanjing:Nanjing University of Science and Technology, 2021. [百度学术]
薛金强,徐琰璐,韩世民,等. 1,5‑二叠氮基‑3‑硝基氮杂戊烷的合成新方法[J]. 化学推进剂与高分子材料, 2018, 16(3): 55-58. [百度学术]
XUE Jin‑qiang, XU Yan‑lu, HAN Shi‑min, et al. New method for synthesis of 1,5‑diazido‑3‑nitrazapentane[J]. Chemical Propellant and Polymeric Materials, 2018, 16(3): 55-58. [百度学术]
王建灵,姬月萍,高福磊,等. 叠氮硝胺安全性能参数的实验测定[J]. 含能材料,2011, 19(6): 693-696. [百度学术]
WANG Jian‑ling, JI Yue‑ping, GAO Fu‑lei, et al. Experimental measurement of safety parameters of DIANP[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2011, 19(6): 693-696. [百度学术]
徐琰璐,薛金强,王勃. 1,5‑二叠氮基‑3‑硝基氮杂戊烷含能增塑剂的合成与应用[J]. 化学推进剂与高分子材料, 2018, 16(5): 32-36. [百度学术]
XU Yan‑lu,XUE Jin‑qiang,WANG Bo.Synthesis and application of 1,5‑diazido‑3‑nitrazapentane energetic plasticizer[J]. Chemical Propellant and Polymeric Materials,2018,16(5): 32-36. [百度学术]
United Nations. Recommendations on the transport of dangerous goods‑Tests and criteria, ST/SG/AC. 10/11. United Nations Publication, New York, New York 10017. [百度学术]
杨钊飞,赵凤起,李鑫. 含能材料相容性评定方法研究进展[J]. 四川兵工学报, 2015, 36(3): 141-146. [百度学术]
YANG Zhao‑fei, ZHAO Feng‑qi, LI Xin. Research progress on methods of evaluating of energetic materials compatibility[J]. Sichuan Binggong Xuebao. 2015, 36(3): 141-146. [百度学术]
杨建兴,崔鹏腾,贾永杰,等. 1,5‑二叠氮基‑3‑硝基氮杂戊烷对硝化棉的溶塑作用[J]. 火炸药学报, 2011, 34(2): 84-90. [百度学术]
YANG Jian‑xing,CUI Peng‑teng,JIA Yong‑jie,et al. Plastication of 1,5‑diazido‑3‑nitrazapentane on nitrocellulose[J]. Chinese Journal of Explosives and Propellants, 2011, 34(2): 84-90. [百度学术]
杨俊清. 高能有机叠氮增塑剂的设计与计算研究[D]. 南京:南京理工大学, 2017. [百度学术]
YANG Jun‑qing. Design and computational study of energetic organic azidoplasticizers[D]. Nanjing:Nanjing University of Science and Technology, 2017. [百度学术]
GREENHALGH D J,WILLIAMS A C,TIMMINS P,et al.Solubility parameters as predictors of miscibility in solid dispersions[J]. Journal of Pharmaceutical Science,1999,88(11): 1182-1190. [百度学术]
YANG J, GONG X, WANG G, et al. Theoretical studies on the plasticizing effect of DIANP on NC with various esterification degrees[J]. Computational Materials Science, 2014, 95: 129-135. [百度学术]
LEE J N, PARK C, WHITESIDES G M. Solvent compatibility of poly (dimethylsiloxane) ‑ based microfluidic devices[J]. Analytical Chemistry, 2023, 75(23): 6544-6554. [百度学术]
PARASCHIV T, TIGANESCU T V, OVIDIU IORGA G, et al. Experimental and theoretical study on three combustion models for the determination of the performance parameters of nitrocellulose‑based propellants[J]. Revista de Chimie, 2020, 71(9): 87-97. [百度学术]
杜泽林. HMX与粘结剂界面作用力定性表征[D]. 太原:中北大学, 2023. [百度学术]
DU Ze‑lin. Qualitative characterization of interface forces between HMX and binder[D]. Taiyuan:North University of China, 2023. [百度学术]
秦伟华. 叠氮含能增塑剂/硝化纤维素的分子动力学研究[D]. 太原:中北大学, 2023. [百度学术]
QIN Wei‑hua. Molecular dynamics simulation on the performance of azido energetic plasticizers/nitrocellulose[D]. Taiyuan:North University of China, 2023. [百度学术]
SIMMONS R L, YONG H L.Azido nitramine: US, 4450110[P]. 1984 [百度学术]
LIU Y, WANG W, LI D. The research progress of the azidonitramine plasticizers: Synthesis, properties and applications[J]. FirePhysChem, 2024, 4(1): 10-20. [百度学术]
胡睿,杨伟涛,石先锐,等. 叠氮硝胺对发射药枪口焰的影响[J]. 火炸药学报, 2017, 40(4): 102-106. [百度学术]
HU Rui, YANG Wei‑tao, SHI Xian‑rui, et al. Effect of 1,5‑diazido‑3‑nitrazpent on the muzzle flash of gun propellants[J]. Chinese Journal of Explosives and Propellants, 2017, 40(4): 102-106. [百度学术]
崔鹏腾,焦旭英,贾永杰,等. 叠氮硝胺发射药的贮存性能研究[J]. 火工品, 2018, 3: 35-37. [百度学术]
CUI Peng‑teng, JIAO Xu‑ying, JIA Yong‑jie, et al. Study on the storage performance of azidonitramine gun propellant[J]. INITIATORS AND PYROTECHNICS, 2018, 3: 35-37. [百度学术]
JOSHI M M, DAYANANDAN C R, KOHADKAR M J. Study of energetic plasticizer DANPE in triple base gun propellant[C]//29th Intl Pyrotechnics Seminar. 2002, 14(19): 643-647. [百度学术]
DAMSE R S, AMARJIT Singh. Studies on the high‑energy gun propellant formulations based on 1,5‑diazido‑3‑nitrazapentane[J]. Journal of Hazardous Materials, 2009, 172: 1699-1702. [百度学术]
MULLAY John. Relationship between sensitivity and molecular electronic structure[J]. Propellants, Explosives, Pyrotechnics 1987, 12: 121-124. [百度学术]
DAMSE RS, SINGH A. Evaluation of energetic plasticisers for solid gun propellant[J]. Defence Science Journal, 2008, 58, 86-93. [百度学术]
魏学涛,赵颖,李乃琴,等. 新型硝基胍发射药研究[J]. 火炸药学报, 2001, 4: 34-38. [百度学术]
WEI Xue‑tao, ZHAO Ying, LI Nai‑qin, et al. The study on a new kind of nitroguanidine propellant[J]. Chinese Journal of Explosives and Propellants, 2001, 4: 34-38. [百度学术]
PEI J, WU Z, HU Y. Molecular dynamic simulations and experimental study on pBAMO‑b‑GAP copolymer/energetic plasticizer mixed systems[J]. FirePhysChem, 2022, 2(1): 67-71. [百度学术]
石先锐,闫光虎,贾永杰,等. RDX和NGU对叠氮硝胺发射药动态燃烧稳定性的影响[J]. 爆破器材, 2020, 49(5): 14-19. [百度学术]
SHI Xian‑rui, YAN Guang‑hu, JIA Yong‑jie, et al. Influence of RDX and NGU on the dynamic combustion stability of azidonitramine gun propellants[J]. Explosive Materials, 2020, 49(5): 14-19. [百度学术]
赵宝昌,马桂兰,何秀英,等. 硝基胍火药的中止燃烧研究[J]. 火炸药学报,1983, 1: 3-9. [百度学术]
ZHAO Bao‑chang, MA Gui‑lan, HE Xiu‑ying, et al. Study on stopping combustion of nitroguanidine powder[J]. Chinese Journal of Explosives and Propellants, 1983, 1: 3-9. [百度学术]
陆安舫,等. 国外火药性能手册[M]. 北京: 兵器工业出版社, 1991. [百度学术]
LU An‑fanget al. Foreign gunpowder properties manual[M]. Beijing: Ordnance Industry Press, 1991. [百度学术]
贾林,陆洪林,韩芳,等. 叠氮硝胺对硝基胍发射药热行为的影响[J]. 火炸药学报,2015, 38(3): 90-93. [百度学术]
JIA Lin, LU Hong‑lin, HAN Fang, et al. Influence of azidonitramine on the thermal behavior of the nitroguanidine‑base gun propellant[J]. Chinese Journal of Explosives and Propellants, 2015, 38(3): 90-93. [百度学术]
刘继华.火药物理化学性能[M].北京:北京理工大学出版社, 1997. [百度学术]
LIU Ji‑hua. Physical and chemical properties of gunpowder[M]. Beijing:Beijing Institute of Technology Press, 1997. [百度学术]
贾林,张林军,常海. 热应力下1,5‑二叠氮‑3‑硝基氮杂戊烷对发射药中硝化棉热行为的影响[J]. 火炸药学报,2018, 41(4): 414-419. [百度学术]
JIA Lin, ZHANG Lin‑jun, CHANG Hai. Influence of 1, 5‑diazido‑3‑nitrazapentane (DIANP) on the thermal behavior of NC in gun propellant under heat stress[J]. Chinese Journal of Explosives and Propellants, 2018, 41(4): 414-419. [百度学术]
LI Jing, JIN Shao‑hua, LAN Guan‑chao, et al. Molecular dynamics simulations on miscibility, glass transition temperature and mechanical properties of PMMA/DBP binary system[J]. Journal of Molecular Graphics and Modelling, 2018, 84: 182-188. [百度学术]
LU Y, SHU Y, LIU N, et al. Theoretical simulations on the glass transition temperatures and mechanical properties of modified glycidyl azide polymer[J]. Computational Materials Science, 2017, 139: 132-139. [百度学术]
郑林,李生惠,魏学涛,等. 硝化棉含氮量对叠氮硝胺发射药力学性能的影响[J]. 火炸药学报, 2003, 26(3): 47-50. [百度学术]
ZHENG Lin, LI Sheng‑hui, WEI Xue‑tao, et al. The influence of nitrogen content of nitrocellulose on the mechanical properties of the diazidonitrazapentane propellant[J]. Chinese Journal of Explosives and Propellants, 2003, 26(3): 47-50. [百度学术]
宋力骞,刘大斌,钱华,等. 某三基发射药的老化寿命评估[J]. 火炸药学报, 2018, 41(6): 627-631. [百度学术]
SONG Li‑qian, LIU Da‑bin, QIAN Hua, et al. Aging life evaluation of a tri‑base gun propellant[J]. Chinese Journal of Explosives and Propellants, 2018, 41(6): 627-631. [百度学术]
杨建兴,贾永杰,刘毅,等. 含RDX的叠氮硝胺发射药热分解与燃烧性能[J]. 含能材料, 2012, 20(2): 180-183. [百度学术]
YANG Jian‑xing, JIA Yong‑jie, LIU Yi, et al. Thermal decomposition and combustion performance of azidonitramine gun propellant containing RDX[J]. Chinese Journal of Energetic Materials, 2012, 20(2): 180-183. [百度学术]
杨建兴,贾永杰,刘国权,等. DAGR125发射药的燃烧特征[J]. 火炸药学报, 2010, 33(5): 69-72. [百度学术]
YANG Jian‑xing, JIA Yong‑jie, LIU Guo‑quan, et al. Combustion characteristics of DAGR125 gun propellant[J]. Chinese Journal of Explosives and Propellants, 2010, 33(5): 69-72. [百度学术]
石先锐,闫光虎,王勇,等. 新型高能叠氮硝胺发射药高压燃烧稳定性研究[J]. 火炸药学报, 2019, 44(2): 245-251. [百度学术]
SHI Xian‑rui, YAN Guang‑hu, WANG Yong, et al. Study on high pressure combustion stability of a new type of high energy azidonitramine gun propellant[J]. Chinese Journal of Explosives and Propellants, 2019, 44(2): 245-251. [百度学术]
石先锐,许灿啟,贾永杰,等. 典型高能硝胺发射药的摩擦静电起电特性[J]. 火炸药学报, 2022, 45(1): 109-114. [百度学术]
SHI Xian‑rui, XU Can‑qi, JIA Yong‑jie, et al. Frictional static electricity characteristics of typical high energy nitramine gun propellant[J]. Chinese Journal of Explosives and Propellants, 2022, 45(1): 109-114. [百度学术]
黄振亚,罗运军,赵省向. 火炸药成型加工工艺学[M]. 国防工业出版社, 2020. [百度学术]
HUANG Zhen‑ya, LUO Yun‑jun, ZHAO Sheng‑xiang. Processing technology of explosive forming[M]. National Defence Industry Press, 2020. [百度学术]
杨建兴,舒安民,张阔,等. 叠氮硝胺发射药内溶法成球工艺研究[J]. 火炸药学报, 2013, 36(3): 87-90. [百度学术]
YANG Jian‑xing, SHU An‑min, ZHANG Kuo, et al. Study on the inner dissolution manufacture process for conglobating of azidonitramine gun propellant[J]. Chinese Journal of Explosives and Propellants, 2013, 36(3): 87-90. [百度学术]
冯昌林,李小元,杨建兴,等. 球形叠氮硝胺发射药工艺安全性的实验研究[J]. 火炸药学报, 2015, 38(5): 95-98. [百度学术]
FENG Chang‑lin, LI Xiao‑yuan, YANG Jian‑xing, et al. Experimental study on the processing safety of spherical azidonitramine gun propellant[J]. Chinese Journal of Explosives and Propellants, 2015, 38(5): 95-98. [百度学术]
丁锋,兰英,汪伟,等. 1,5‑二叠氮基‑3‑硝基‑3‑氮杂戊烷(DIANP)的性能及应用[C]//2005年中国兵工学会青年学术年会暨陕西省兵工学会第八届青年学术交流会. 西安:陕西省兵工学会,2005: 129-131. [百度学术]
DING Feng, LAN Ying, WANG Wei, et al. Performance and application of 1, 5‑diazido‑3‑nitrazapentane (DIANP)[C]// The 8th Youth Academic Exchange meeting of Shaanxi Ordnance Engineering Society. Xi′an: Shaanxi ordnance Engineering Society. 2005: 129-131. [百度学术]
贾林,张皋,张林军,等. 压延烘干法制备用于定量分析的叠氮硝胺吸收药[J]. 火炸药学报,2016, 39(6): 94-97. [百度学术]
JIA Lin, ZHANG Gao, ZHANG Lin‑jun, et al. Azidonitramine intermediate sample preparation for quantitative analysis by calendering‑drying method[J]. Chinese Journal of Explosives and Propellants, 2016, 39(6): 94-97. [百度学术]
芮久后,黄辉,王泽山. 硝胺包覆火药工艺及弹道性能研究[J]. 含能材料, 2004, z1(12): 147-149. [百度学术]
RUI Jiu‑hou, HUANG Hui, WANG Ze‑shan. Study on the coating technology and ballistic performance of the coated nitramine propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2004, z1(12): 147-149. [百度学术]
魏学涛,卿辉,崔鹏腾,等. 叠氮硝胺发射药燃烧性能调控技术[J]. 火炸药学报, 2004, 27(4): 46-49. [百度学术]
WEI Xue‑tao, Qing Hui, CUI Peng‑teng, et al. Ajustment on the burning behaviors of the propellant containing diazidopenane[J]. Chinese Journal of Explosives and Propellants, 2004, 27(4): 46-49. [百度学术]
赵强,刘波,刘少武,等. 堵孔钝感高能叠氮硝胺发射药的性能[J]. 含能材料, 2020, 28(3): 242-247. [百度学术]
ZHAO Qiang, LIU Bo, LIU Shao‑wu, et al. Performance of plugged and insensitive high‑energy azidonitramine gun propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020, 28(3): 242-247. [百度学术]
LIU Bo, MA Fang‑sheng, BIAN Xiao‑yu. Research on the performance of deterred‑coating DIANP gun propellant[J]. Journal of Physics: Conference Series, 2023, 2478, 032006. [百度学术]
张勇. 钝感剂在贮存过程中的扩散行为及其对球扁药性能的影响[D]. 南京理工大学,2020. [百度学术]
ZHANG Yong. Migration phenomenon of deterrent during storage and their influence on the performance of double‑based oblate spherical propellant[D]. Nanjing University of Science and Technology, 2020. [百度学术]
刘少武,刘波,郑双,等. 高分子钝感剂在两种发射药中的迁移性能[J]. 含能材料, 2010, 18(6): 635-638. [百度学术]
LIU Shao‑wu, LIU Bo, ZHENG Shuang, et al. Migration of polymer deterrent in two kinds of propellants[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010, 18(6): 635-638. [百度学术]
HUISGEN R. Kinetics and mechanism of 1,3‑dipolar cycloadditions[J]. Angewandte Chemie International Edition, 1963, 2(11): 633-645. [百度学术]
力小安. 高增塑剂含量发射药表面处理技术[D]. 南京:南京理工大学, 2009. [百度学术]
LI Xiao‑an. Surface modification technology of high‑plasticizer‑concentration gun propellant[D]. Nanjing:Nanjing University of Science and Technology, 2009. [百度学术]
潘胜. 叠氮硝胺发射药表面钝感剂研究[D]. 南京:南京理工大学, 2018. [百度学术]
PAN Sheng. Research on surface deterrents of azidonitramine gun propellant[D]. Nanjing:Nanjing University of Science and Technology, 2018 [百度学术]
侯果文. 高能发射药新型表面钝感剂研究[D]. 南京南京理工大学, 2016. [百度学术]
HOU Guo‑wen. New surface deterrents of high‑energy gun propellant[D]. Nanjing: Nanjing University of Science and Technology, 2016. [百度学术]
范建芳. 高能发射药湿法钝感技术研究[D]. 南京:南京理工大学, 2013. [百度学术]
FAN Jian‑fang. Study on wet insensitive technology of high energy propellant[D]. Nanjing:Nanjing University of Science and Technology, 2016. [百度学术]
黄振亚,范建芳,陈余谦. 叠氮硝胺发射药表面钝感新技术[J]. 兵工学报, 2014, 35(2): 182-187. [百度学术]
HUANG Zhen‑ya, FAN Jian‑fang, CHEN Yu‑qian. A new deterring technique of azidonitramine propellant[J]. Acta Armamentarii, 2014, 35(2): 182-187. [百度学术]
扈艳红,仝钦宇,刘世领,等. 叠氮化合物与炔烃环加成聚合反应研究[C]//2003年全国高分子学术论文报告会. 杭州:中国化学会,2003:B45-B46. [百度学术]
HU Yan‑hong, TONG Qin‑yu, LIU Shi‑ling, et al. Study on cycloaddition polymerization of azides and alkynes[C]//2003 National polymer academic paper report. Hangzhou: Chinese Chemical Society, 2003: B45-B46. [百度学术]
凌剑,冯增国. 叠氮化物的固化反应特征研究[J]. 火炸药学报, 1999, 22(1): 19-21. [百度学术]
LING Jian, FENG Zeng‑guo. Study on curing reaction of azide[J]. Chinese Journal of Explosives and Propellants, 1999, 22(1): 19-21. [百度学术]
黄建智,万里强,田建军,等. 1,3‑二(炔丙基氧)苯与4,4′‑二叠氮甲基联苯的聚合反应及聚合物性能的研究[J]. 化学学报, 2007, 65(22): 2629-2634. [百度学术]
HUANG Jian‑zhi, WAN Li‑qiang, TIAN Jian‑jun, et al. Polymerization of 1,3‑di (propargyloxy) benzene with 4,4′‑diazido‑methylbiphenyl and properties of the formed polytriazole[J]. Acta Chimica Sinica, 2007, 65(22): 2629-2634. [百度学术]
扈艳红,刘世领,仝钦宇,等. 1,3‑偶极环加成反应合成1‑(取代苄基)‑1,2,3‑三唑类化合物[J]. 有机化学, 2004, 24(10): 1228-1232. [百度学术]
HU Yan‑hong, LIU Shi‑ling, TONG Qin‑yu, et al. Synthesis of 1‑(substituted benzyl)‑1,2,3‑triazoles by 1,3‑dipolar cycloaddition reaction[J]. Chinese Journal of Organic Chemistry, 2004, 24(10): 1228-1232. [百度学术]
宋亚苹,黄振亚,解德富,等. 钝感剂种类对叠氮硝胺发射药贮存稳定性的影响[J]. 火炸药学报, 2020, 43(5): 553-557. [百度学术]
SONG Ya‑ping, HUANG Zhen‑ya, XIE De‑fu, et al. Effect of deterrents on storage stability of azidonitramine gun propellants[J]. Chinese Journal of Explosives and Propellants, 2020, 45(5): 553-557. [百度学术]
余斌. 9 mm警用转轮手枪采用的新型发射药——叠氮硝胺[N]. 轻兵器, 2006,6: 29. [百度学术]
YU Bin. New propellant powder for 9mm police wheel pistol[N]. Small Arms, 2006, 6: 29. [百度学术]
魏学涛,卿辉. DIANP发射药用于榴弹发射器装药的内弹道性能分析[J]. 火炸药学报,2003, 26(1): 47-49. [百度学术]
WEI Xue‑tao, QING Hui. Feasibility analysis of DIANP propellant in bomb throwing gun charge[J]. Chinese Journal of Explosives and Propellants, 2003, 26(1): 47-49. [百度学术]
陈洪. DIANP发射装药的势平衡理论模拟[C]//2009年湖南国防科技论坛.湖南:湖南省兵工学会,2009: 182-185. [百度学术]
CHEN Hong. DIANP launching loading potential equilibrium theory simulation[C]//2009 Hunan National Defense Science and Technology Forum. Hunan: Hunan Society of Military Industry, 2009: 182-185. [百度学术]
梁忆,汪伟,王景荣,等. 电位滴定法测定标准物质DIANP的纯度[J]. 火炸药学报,2011, 34(3): 76-79. [百度学术]
LIANG Yi, WANG Wei, WANG Jing‑rong, et al. Determination of standard substance DIANP purity by electrode potential titration[J]. Chinese Journal of Explosives and Propellants, 2011, 34(3): 76-79. [百度学术]
樊永惠,赵铁柱,杨彩宁,等. 气相色谱法测定DIANP纯度标准物质中有机杂质[J]. 化学分析计量,2011, 20(6): 68-70. [百度学术]
FAN Yong‑hui, ZHAO Tie‑zhu, YANG Caining, et al. Determination of organic impurities in purity standard materialdianp by GC[J]. Chemical Analysis and Meterage. 2011, 20(6): 68-70. [百度学术]
贾林,张皋,胡玲,等. ASE‑HPLC检测某型号球形发射药中的叠氮硝胺、硝化甘油、Ⅱ号中定剂含量的研究[J]. 分析测试技术与仪器, 2008, 14(4): 222-225. [百度学术]
JIA Lin, ZHANG Gao, HU Ling, et al. Determination of the components in the globule gun‑propellant using accelerated solvent extraction(ASE) followed by HPLC[J]. Analysis and Testing Technology and Instruments, 2008, 14(4): 222-225. [百度学术]
杨彩宁,赵娟,陈曼,等. 反相高效液相色谱法测定含RDX的叠氮硝胺发射药中4种组份含量[J].火炸药学报,2018, 41(6): 617-620. [百度学术]
YANG Cai‑ning, ZHAO Juan, CHEN Man, et al. Determination of four components in azidonitramine gun propellant containing RDX by RP‑HPLC[J]. Chinese Journal of Explosives and Propellants, 2018, 41(6): 6170620. [百度学术]
刘波,王琼林,刘少武,等. 发射药钝感剂分布及迁移的研究进展[J]. 含能材料, 2010, 18(4): 447-452. [百度学术]
LIU Bo, WANG Qiong‑lin, LIU Shao‑wu, et al. Review on distribution and diffusion of deterrents in gun propellants[J]. Chinese Journal of Energetic Materials,2010,18(4): 447-452. [百度学术]
王雅婷,赵家有. 气相色谱法在化工分析中的技术应用[J]. 低温与特气, 2024, 42(2): 41-43. [百度学术]
WANG Ya‑ting, ZHAO Jia‑you. Technical application of gas chromatography in chemical analysis[J]. Low Temperature and Specialty Gases, 2024, 42(2): 41-43. [百度学术]
刘波,刘少武,郑双,等. 叠氮硝胺药中高分子钝感剂的迁移性能研究[C]//2010年火炸药技术学术研讨会. [百度学术]
LIU Bo, LIU Shao‑wu, ZHENG Shuang, et al. Transport performance study of polymericdeterrent in azidonitramine based propellant[C]//2010 Symposium on Explosive Technology. [百度学术]
VARRIANO‑MARSTON E. An infrared microspectroscopy method for determining deterrent penetration in nitrocellulose‑based propellant grains[J]. Journal of Applied Polymer Science, 1987, 33: 107-116. [百度学术]
Ossola B, Vogelsanger B, Bronnimann E. Fourier‑transformat‑ ions‑infrarot‑spektroskopie‑eine vielseitige methode zur analytic von nitrocellulose und treibladungspulvern[C]//25th International Annual Conference of ICT, 1994: 38/1‑38‑16. [百度学术]