摘要
研究提出一种通过化学键键能差进行能量密度快速估算的方法,和一种利用拉普拉斯键级和分子片段键离解能相结合快速判断笼型结构稳定性的方法。通过穷举法构建了基于Noradamantane的所有富氮骨架及其435种硝基衍生物,应用上述计算方法筛选兼具高能量密度和稳定性的分子结构,并采用量子化学能量计算和过渡态反应势垒计算验证筛选结果的可靠性。计算发现了两种兼顾高能量密度和结构稳定性的硝基化合物,其爆热、爆速、爆压和金属加速能力的理论计算最大值分别达到7.77 kJ·
图文摘要
含能材料是在受到外部刺激后,能够通过化学反应迅速释放大量热和气体的一类物质。含能材料在军事和民用领域应用广泛,涵盖发射、推进、破坏等多种应用场景。近年来,随着对由CHNO元素构成的含能材料局限性的认识增加,迫切需要探索新一代高能量密度材料(High‑energy‑density material,HEDM)的设计理论和合成方
计算机模拟技术的发展,为含能材料的结构设计和性能研究发挥了重要作
然而,当前的含能分子理论设计研究存在两方面不足:一方面,以量子化学为基础的理论计算面临着大量计算资源的需求,难以在大规模化学物结构空间中实现穷尽可能分子结构的筛
本研究选择ZINC数据

图1 高能量密度富氮笼型硝基化合物的设计流程
Fig.1 Design process of high‑energy‑density nitrogen‑rich cage nitro compounds
量子化学计算采用B3LYP/6‑31G(d,p)的泛函和基组进行结构优化和频率分
张力能表现为化学键偏离正常成键角度和键长而产生的应变能。由于不同的结构拆解方法将导致张力能的计算值有所不同,因此本研究统一采用符合Homodesmotic规则的等键反应方
(1) |
式中,Hrea、Hadd和Hprod分别为反应物(即所设计分子结构)、添加物和产物在298 K温度的焓值,kJ·mo
本研究定义富氮笼型硝基化合物的能量密度Ed为单位质量的最大放热
(2) |
式中,Ebond,rea,i和Ebond,prod,i代表反应物和产物中不同化学键的键能,而nbond,rea,i和nbond,prod,i分别代表相应的摩尔量。由于笼型结构存在较大的张力能,直接应用化学键键能求和方法获得的能量密度误差较大。因此,本研究首先通过量子化学和等键反应方法计算笼型骨架的生成焓,然而根据反应热计算笼型骨架结构的化学键键能和:
(3) |
式中,和分别表示反应物和笼型骨架的生成焓,kJ·mo
(4) |
式中,Ebond‑add,i和Ebond‑remove,i代表引入硝基官能团后分子结构中新增加的化学键和删除的化学键的键能,kJ·mo
bond | Ebond / kJ·mo | bond | Ebond / kJ·mo |
---|---|---|---|
C (s) |
23 | C─H | 413 |
C═O (CO2) | 799 | N─H | 391 |
N═O (─NO2) |
43 |
N![]() | 941 |
O─H | 467 | O═O | 495 |
H─H | 432 | C─NO2 |
27 |
N─NO2 |
20 |
Note: 1) Calculated utilizing the reaction C(s) + O2(g) → CO2(g) with ΔH=-394 kJ·mo
为了验证上述能量密度预估值的准确性,本研究采用B3LYP/6‑31G(d,p)的量化计算在Homodesmotic等键反应条件下计算能量密度并与之比
对于以硝基为致爆基团的CHNO含能化合物,结构中最弱C─NO2、N─NO2化学键的BDE常被用于判断结构稳定性以及含能材料感度的重要依
本研究通过Multiwfn结合量化计算分析富氮笼型含能分子的LB
如

图2 基于Noradamantane结构构建的笼型富氮分子骨架
Fig.2 Nitrogen‑rich molecular cage scaffolds constructed based on Noradamantane structure
scaffold | N content/ % | Δf | Estrain / kJ·mo | scaffold | N content/ % | Δf | Estrain / kJ·mo |
---|---|---|---|---|---|---|---|
C4H9N5‑1 | 55 | 236 | 158 | C3H8N6‑8 | 66 | 438 | 200 |
C4H9N5‑2 | 55 | 465 | 168 | C3H8N6‑9 | 66 | 622 | 166 |
C4H9N5‑3 | 55 | 512 | 82 | C3H8N6‑10 | 66 | 715 | 255 |
C4H9N5‑4 | 55 | 445 | 155 | C3H8N6‑11 | 66 | 583 | 135 |
C4H9N5‑5 | 55 | 528 | 198 | C3H8N6‑12 | 66 | 562 | 111 |
C4H9N5‑6 | 55 | 527 | 138 | C3H8N6‑13 | 66 | 561 | 130 |
C4H9N5‑7 | 55 | 578 | 239 | C2H7N7‑1 | 76 | 737 | 160 |
C4H9N5‑8 | 55 | 451 | 115 | C2H7N7‑2 | 76 | 748 | 171 |
C4H9N5‑9 | 55 | 486 | 131 | C2H7N7‑3 | 76 | 682 | 231 |
C4H9N5‑10 | 55 | 508 | 115 | C2H7N7‑4 | 76 | 669 | 225 |
C4H9N5‑11 | 55 | 470 | 78 | C2H7N7‑5 | 76 | 761 | 225 |
C4H9N5‑12 | 55 | 492 | 106 | C2H7N7‑6 | 76 | 691 | 173 |
C4H9N5‑13 | 55 | 446 | 99 | C2H7N7‑7 | 76 | 711 | 186 |
C4H9N5‑14 | 55 | 480 | 110 | C2H7N7‑8 | 76 | 740 | 203 |
C4H9N5‑15 | 55 | 437 | 94 | C2H7N7‑9 | 76 | 715 | 183 |
C4H9N5‑16 | 55 | 379 | 143 | C2H7N7‑10 | 76 | 795 | 234 |
C4H9N5‑17 | 55 | 364 | 147 | C2H7N7‑11 | 76 | 723 | 146 |
C4H9N5‑18 | 55 | 400 | 107 | C2H7N7‑12 | 76 | 732 | 203 |
C3H8N6‑1 | 66 | 616 | 106 | C2H7N7‑13 | 76 | 748 | 220 |
C3H8N6‑2 | 66 | 681 | 186 | CH6N8‑1 | 86 | 849 | 235 |
C3H8N6‑3 | 66 | 585 | 89 | CH6N8‑2 | 86 | 880 | 259 |
C3H8N6‑4 | 66 | 577 | 145 | CH6N8‑3 | 86 | 922 | 264 |
C3H8N6‑5 | 66 | 505 | 183 | CH6N8‑4 | 86 | 889 | 231 |
C3H8N6‑6 | 66 | 596 | 140 | N9H5 | 96 | 1059 | 305 |
C3H8N6‑7 | 66 | 521 | 162 |
Note: 1) N content is the mass ratio of N elements. 2) Δf
本研究通过对49种富氮笼型骨架进行硝基取代,构建了435种硝基富氮笼型化合物。基于式(
通过对上述硝基化合物能量密度排序,本研究挑选了前13个高能分子结构以及C4N5H4‑1‑5NO2进行下一步分析(

图3 高能量密度硝基化合物分子结构(结构中最小的三个拉普拉斯键级用红色数字标注)
Fig.3 Molecular structures of high‑energy‑density nitro derivatives(with the smallest three LBOs marked by red numbers)
然后,本研究通过量化计算和等键反应计算并验证这些分子结构的能量密度,计算结果的比较见
compound | Ed‑estimate / kJ· | Ed‑B3LYP / kJ· | Error / % | Δf | Estrain / kJ·mo | OB / % |
---|---|---|---|---|---|---|
H4N9‑NO2 | 9.13 | 8.95 | 2.0% | 1092 | 342 | 0 |
CH4N8‑3‑2NO2 | 8.73 | 8.49 | 2.9% | 990 | 342 | 0 |
CH4N8‑4‑2NO2 | 8.58 | 8.37 | 2.5% | 965 | 317 | 0 |
CH4N8‑2‑2NO2 | 8.55 | 8.38 | 2.0% | 966 | 369 | 0 |
CH5N8‑3‑NO2 | 8.54 | 8.42 | 1.3% | 972 | 319 | -23 |
C2H4N7‑10‑3NO2 | 8.50 | 8.59 | -1.0% | 996 | 449 | 0 |
CH4N8‑1‑2NO2 | 8.40 | 8.29 | 1.3% | 948 | 351 | 0 |
C2H4N7‑5‑3NO2 | 8.38 | 8.37 | 0.1% | 938 | 423 | 0 |
CH5N8‑4‑NO2 | 8.35 | 8.30 | 0.6% | 949 | 296 | -23 |
C2H5N7‑10‑2NO2 | 8.34 | 8.28 | 0.7% | 914 | 362 | -18 |
C3H5N6‑10‑3NO2 | 8.34 | 8.34 | 0.0% | 900 | 462 | -15 |
C2H4N7‑13‑3NO2 | 8.33 | 8.14 | 2.2% | 879 | 387 | 0 |
C2H4N7‑2‑3NO2 | 8.33 | 8.33 | -0.6% | 941 | 378 | 0 |
C4H4N5‑1‑5NO2 | 7.33 | 7.33 | 0.0% | 523 | 374 | 0 |
CL‑20 |
55 |
31 | -11 | |||
ONC |
72 |
113 | 0 |
Note: Ed‑estimate is the energy density calculated by chemical bond energy difference method. Ed‑B3LYP is the energy density calculated by B3LYP/6‑31G(d,p). Error=(Ed‑estimate-Ed‑B3LYP)/Ed‑B3LYP. Δf
此外,张力能的计算结果显示,引入硝基会增加富氮笼型骨架的张力能,这与先前的研究结论一
为计算上述14种硝基化合物的爆轰性能,本研究估算了它们的固相生成热和晶体密度,然后应用Kamlet‑Jacobs公式计算了它们的爆热、爆速、爆压和金属加速能力,计算结果如
compound | N / % | OB / % | ρ / g·c | Δf | Qd / kJ· | vd / km· | pCJ / GPa | |
---|---|---|---|---|---|---|---|---|
H4N9‑1‑NO2 | 80 | 0 | 1.88 | 995 | 8.40 | 10.4 | 49 | 1.24 |
CH4N8‑3‑2NO2 | 64 | 0 | 1.90 | 878 | 7.98 | 10.1 | 47 | 1.15 |
CH4N8‑4‑2NO2 | 64 | 0 | 1.87 | 867 | 7.93 | 10.0 | 45 | 1.13 |
CH4N8‑2‑2NO2 | 64 | 0 | 1.89 | 860 | 7.90 | 10.0 | 46 | 1.14 |
CH5N8‑3‑NO2 | 72 | -23 | 1.80 | 877 | 7.88 | 9.7 | 42 | 1.12 |
C2H4N7‑10‑3NO2 | 53 | 0 | 1.88 | 881 | 8.15 | 9.9 | 45 | 1.12 |
CH4N8‑1‑2NO2 | 64 | 0 | 1.92 | 833 | 7.77 | 10.1 | 47 | 1.14 |
C2H4N7‑5‑3NO2 | 53 | 0 | 1.91 | 810 | 7.88 | 10.0 | 46 | 1.12 |
CH5N8‑4‑NO2 | 72 | -23 | 1.75 | 870 | 7.84 | 9.5 | 39 | 1.1 |
C2H5N7‑10‑2NO2 | 58 | -18 | 1.83 | 811 | 7.81 | 9.6 | 41 | 1.09 |
C3H5N6‑10‑3NO2 | 48 | -15 | 1.88 | 769 | 7.84 | 9.6 | 42 | 1.09 |
C2H4N7‑13‑3NO2 | 53 | 0 | 1.93 | 751 | 7.66 | 10.0 | 46 | 1.12 |
C2H4N7‑2‑3NO2 | 53 | 0 | 1.90 | 812 | 7.84 | 9.9 | 45 | 1.12 |
C4H4N5‑1‑5NO2 | 39 | 0 | 1.93 | 358 | 6.86 | 9.5 | 42 | 1.04 |
CL‑20 | 38 | -11 | 2.04 | 377 | 6.18 | 9.6 | 39 | 1.09 |
Note: N is nitrogen content. OB is oxygen balance. ρ is crystal density. Δf
从
高能量密度硝基化合物最小的三个LBO在

图4 N─N、N─C和C─C化学键的拉普拉斯键级和键离解能计算结果
Fig.4 The calculated LBOs and BDEs of N─N, N─C and C─C chemical bonds
综述上述结果,本研究挑选结构中2个五元环共用的化学键位置非N─N键,且不含有(NH2)2N─N(NH2)2和(CH3)(NH2)N─N(NH2)2类型结构单元的笼型结构作为潜在的稳定结构进行进一步研究。这些结构包括CH4N8‑1‑2NO2、C2H4N7‑13‑3NO2和C4H4N5‑1‑5NO2。这三个结构的LBO计算结果,以及和CL‑20的比较如

图5 拉普拉斯键级比较
Fig.5 Comparison of LBOs
为了进一步定量验证上述候选结构的稳定性,本研究计算各结构开环反应的反应势垒ΔG和硝基断裂的BDE。开环反应参考

图6 开环反应势垒和硝基断裂离解能
Fig.6 Barriers of ring‑opening reaction and the BDEs of N─NO2 dissociation.
以Chun
最后,基于分子的可合成性指标(SAscore)的计算表明,CH4N8‑1‑2NO2的SAscore=7.4,高于C4H4N5‑1‑5NO2(SAscore=5.5)和CL‑20(SAscore=5.4)。这表明含有─N─N─N─结构单元的CH4N8‑1‑2NO2更加难以合成。从
氧平衡和氮含量是含能材料中的重要指标,零氧平衡通常与高能量密度正相关,而高氮含量则促进形化学键能较低的N─N键等,从而增多气态产物并优化爆轰性能。本研究基于骨架生成焓和化学键键能差对435种硝基化合物的分子能量密度进行了估算,以探究这二者与能量密度的具体关系,详见

图7 硝基化合物分子的能量密度与氧平衡和氮含量的关系
Fig.7 The relationship between energy density of nitro molecules and OB and N
(1)研究提出一种通过化学键键能差进行能量密度快速估算的方法,估算结果和量化计算能量密度比较的误差在3%以内,证明了估算方法的可靠性。
(2)研究提出利用拉普拉斯键级和分子片段键离解能相结合筛选稳定笼型含能分子结构的方法,并利用过渡态理论计算验证该方法的准确性。
(3)研究通过穷举法研究基于Noradamantane的所有富氮骨架及435种硝基衍生物,从中发现两种兼具高能量密度和结构稳定性的结构,其爆热、爆速、爆压和金属加速能力的理论计算最大值分别达到7.77 kJ·
(4)富氮笼型硝基化合物中具有最高能量密度的结构集中在N>50%的高氮含量及零氧平衡的区域,显示出这些结构特性对于提高能量性能的重要性。
(5)为保证笼型结构的稳定性,应避免在张力能影响较大位置(通过LBO计算发现化学键弱化位置)存在N─N键,并且避免分子结构中具有(NH2)2N─N(NH2)2和(CH3)(NH2)N─N(NH2)2类型的化学键。
致谢
感谢化工材料研究所熊鹰老师和郭世泰博士给予的指导和帮助。
参考文献
黄辉, 黄享建. 后CHNO类含能材料的发展思考[J]. 中国材料进展, 2018, 37(11):889-895. [百度学术]
HUANG Hui, HUAG Xiang‑jian. Reflections on the development of post‑CHNO energetic materials[J]. Progress in Materials Science, 2018, 37(11):889-895. [百度学术]
LE P, XIE C P, YIN P, et al. N‑amination of nitrogen‑rich scaffolds: From single N─N bond formation to diverse energetic functionalization strategies[J]. Energetic Materials Frontiers, 2021, 2(4):306-316. [百度学术]
董海山. 高能量密度材料的发展及对策[J]. 含能材料, 2004, 12(Z1):1-12. [百度学术]
DONG Hai‑shan. Development and strategies of high energy density materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2004, 12(Z1):1-12. [百度学术]
李珏成, 靳云鹤, 邓沐聪, 等. 全氮五唑化合物研究进展[J]. 含能材料, 2018, 26(11): 991-998. [百度学术]
LI Jie‑cheng, JIN Yunhe, DENG Mu‑chong, et al. Research progress on all‑nitrogen pentazole compounds[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(11): 991-998. [百度学术]
VENKATA VISWANATH J, VENUGOPAL K J, SRINIVASA RAO N V, et al. An overview on importance, synthetic strategies and studies of 2,4,6,8,10,12‑hexanitro‑2,4,6,8,10,12‑hexaazaisowurtzitane (HNIW)[J]. Defence Technology, 2016, 12(5): 401-418. [百度学术]
ZHANG M‑X, EATON P E, GILARDI R. Hepta‑ and octanitrocubanes[J]. Angewandte Chemie International Edition, 2000, 39(2):401-404. [百度学术]
HOU T, ZHANG J, WANG C, et al. A facile method to construct a 2,4,9‑triazaadamantane skeleton and synthesize nitramine derivatives[J]. Organic Chemistry Frontiers, 2017, 4(9):1819-1823. [百度学术]
ZHANG J, HOU T, ZHANG L, LUO J. 2,4,4,6,8,8‑hexanitro‑2,6‑diazaadamantane: A high‑energy density compound with high stability[J]. Organic Letters, 2018, 20(22):7172-7176. [百度学术]
TIAN X L, SONG S W, CHEN F,et al.Machine learning‑guided property prediction of energetic materials: Recent advances, challenges, and perspectives[J].Energetic Materials Frontiers,2022, 3(3):177-186. [百度学术]
XIONG Y, ZHONG K, ZHANG C‑y.Trigger linkage mechanism: Two or multiple steps initiate the spontaneous decay of energetic materials[J].Energetic Materials Frontiers,2022, 3(1):38-46. [百度学术]
WHEELER S E. Homodesmotic reactions for thermochemistry[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 2(2):204-220. [百度学术]
RAMABHADRAN R O , KRISHNAN. R. Theoretical thermochemistry for organic molecules: Development of the generalized connectivity‑based hierarchy[J]. Journal of Chemical Theory and Computation, 2011, 7(7):2094-2103. [百度学术]
Zhang J, XIAO H. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane[J]. The Journal of Chemical Physics, 2002, 116(24):10674-10683. [百度学术]
张骥, 肖鹤鸣, 贡雪东, 等.六硝基六氮杂异伍兹烷气相热解引发反应的理论研究[J]. 含能材料, 2000, 8(4):149-154. [百度学术]
ZHANG Ji,XIAO He‑ming,GONG Xue‑dong,et al.Theoretical study on the gas‑phase thermal decomposition initiation reaction of hexanitrohexaazaisowurtzitane[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2000,8(4):149-154. [百度学术]
GIMARC B M, ZHAO M. Strain energies in homoatomic nitrogen clusters N(4), N(6), and N(8)[J]. Inorganic chemistry, 1996, 35(11):3289-3297. [百度学术]
TAN B S, LONG X P, LI J S. The cage strain energies of high‑energy compounds[J]. Computational and Theoretical Chemistry, 2012, 993(2210‑271X):66-72. [百度学术]
WANG F, DU H, ZHANG J, et al. Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8‑tetranitro‑1,3,5,7‑tetraazacubane as a novel high energy density material[J]. The Journal of Physical Chemistry A, 2011, 115(42):11788-11795. [百度学术]
CHI W‑J, GUO Y‑Y, LI Q‑S, et al. Substituent effects on the properties related to detonation performance and stability for pentaprismane derivatives[J]. Theoretical Chemistry Accounts, 2016, 135(6):145. [百度学术]
YANG J, GONG X, MEI H, et al. Design of zero oxygen balance energetic materials on the basis of diels‑alder chemistry[J]. The Journal of Organic Chemistry, 2018, 83(23):14698-14702. [百度学术]
WEN L Y, YU T , LAI W P, et al. Accelerating molecular design of cage energetic materials with zero oxygen balance through large‑scale database search[J]. Journal of Physical Chemistry Letters, 2021, 12(47):11591-11597. [百度学术]
WEN L Y, YU T , LAI W P, et al. Intra‑ring bridging: A strategy for molecular design of highly energetic nitramines[J]. Chinese Journal of Chemistry, 2021, 39:2857-2864. [百度学术]
GUO S T, HUANG J, QIAN W, et al. Discovery of high energy and stable prismane derivatives by the high‑throughput computation and machine learning combined strategy[J]. FirePhysChem, 2024, 4(1):55-62. [百度学术]
STERLING T, IRWIN J J. ZINC 15‑ligand discovery for everyone[J]. Journal of Chemical Information and Modeling, 2015, 55(11):2324-2337. [百度学术]
TIRADO‑RIVES J, JORGENSEN W L.Performance of b3lyp density functional methods for a large set of organic molecules[J].Journal of Chemical Theory and Computation, 2008, 4(2):297-306. [百度学术]
MURAVYEV N V, DOMINIQUE R W, PIERCEY D G. Progress and performance of energetic materials: Open dataset, tool, and implications for synthesis[J]. Journal of Materials Chemistry A, 2022, 10(20):11054-11073. [百度学术]
ZUMDAHL S S, ZUMDAHL S A, DECOSTE D J. Chemistry. 10th ed.[M]. Boston, Cengage Learning, 2018. [百度学术]
POLITZER P, MURRAY J S, GRICE M Eet al. Calculation of heats of sublimation and solid phase heats of formation[J]. Molecular Physics, 1997, 91(5):923-928. [百度学术]
POLITZER P, MARTINEZ J, MURRAY J S, et al. An electrostatic interaction correction for improved crystal density prediction[J]. Molecular Physics, 2009, 107(19):2095-2101. [百度学术]
LI J. A multivariate relationship for the impact sensitivities of energetic N‑nitrocompounds based on bond dissociation energy[J]. Journal of Hazardous Materials,2010,174(1):728-733. [百度学术]
MATHIEU D, ALAIME T. Impact sensitivities of energetic materials: Exploring the limitations of a model based only on structural formulas[J]. Journal of Molecular Graphics and Modelling, 2015, 62:81-86. [百度学术]
KUMAR M A, ASHUTOSH P, VARGEESE A A. The decomposition mechanism of hexanitrohexaazai‑exaazaisowurtzitane (CL‑20) by coupled computational and experimental study[J]. The Journal of Physical Chemistry A,2019,123(18):4014-4020. [百度学术]
YE L, ZHANG Z, WANG F, et al. Reaction mechanism and kinetic modeling of gas‑phase thermal decomposition of prototype nitramine compound HMX[J]. Combustion and Flame, 2024, 259:113181. [百度学术]
ZHANG Z, YE L, WANG X, et al. Unraveling the reaction mechanism on pyrolysis of 1,3,5‑trinitro‑1,3,5‑triazinane (RDX)[J]. Combustion and Flame, 2022, 242:112220. [百度学术]
CHUNG C, Michael S, Gordon M S. An ab initio study of potential energy surfaces for N8 isomers[J]. Journal of Physical Chemistry A, 2000, 104(23):5647-5650. [百度学术]
LU T, CHEN. F. Bond order analysis based on the Laplacian of electron density in fuzzy overlap space[J]. The Journal of Physical Chemistry A, 2013, 117(14):3100-3108. [百度学术]
LU T, CHEN Q, LIU Z. A thorough theoretical exploration of intriguing characteristics of cyclo[18]carbon: Geometry, bonding nature, aromaticity, weak interaction, reactivity, excited states, vibrations, molecular dynamics and various molecular properties[J]. 10.26434/chemrxiv.11320130.v2, 2019. [百度学术]
ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06 functionals and 12 other functionals[J]. Theoretical Chemistry Accounts, 2008, 119(5):525-525. [百度学术]
ERTL P, SCHUFFENHAUER A. Estimation of synthetic accessibility score of drug‑like molecules based on molecular complexity and fragment contributions[J]. Journal of Cheminformatics, 2009, 1(1): 8. [百度学术]
BUMPUS J A. A Theoretical investigation of the ring strain energy, destabilization energy, and heat of formation of CL‑20[J]. Advances in Physical Chemistry, 2012, 2012:175146. [百度学术]
PEPEKIN V I. Limiting detonation velocities and limiting propelling powers of organic explosives[J]. Doklady Physical Chemistry, 2007, 414(2): 159-161. [百度学术]
LIN H, YANG D‑D, LOU N, et al. Computational design of high energy density materials with zero oxygen balance: A combination of furazan and piperazine rings[J]. Computational and Theoretical Chemistry, 2018, 1139:44-49. [百度学术]