摘要
为了提高超高分子量聚乙烯纤维(ultra high molecular weight polyethylene fiber, UHMWPE)层合板抗弹体侵彻数值分析的建模和计算效率,基于三维等效弹性常数理论,建立了UHMWPE层合板的等效力学模型,发展了一种适用于纤维复合材料层合板抗侵彻性能的三维等效数值分析方法。经UHMWPE层合板抗侵彻试验数据验证,该等效方法考虑了纤维铺层角度对层合板力学性能的影响,可以准确模拟预测层合板的阶段性侵彻破坏特征,对9.1~60.0 mm 厚度范围内层合板弹道性能的平均预测误差小于10%。该方法与纤维尺度的细观数值模拟方法相比,无须对纤维束及基体单独建模;与片层尺度的准细观数值模拟方法相比,无须单独指定纤维/树脂片层铺层方向,且无须在片层间插入大量黏结层单元。
图文摘要
关键词
纤维增强聚合物(fiber reinforced polymer, FRP)材料因其密度低,比强度、比模量高,耐腐蚀性强等突出优点,被广泛应用于航空航天、建筑、造船、汽车等领
学者们对UHMWPE层合板的抗侵彻性能进行了研究。Karthikeyan
尽管开展试验可以获得更直观可靠的抗侵彻性能数据,但其成本高、周期长、难度大的缺点严重限制了UHMWPE层合板防护性能的进一步开发应用,高精度数值方法因而也受到越来越多的关注。Segala
本研究基于三维等效弹性常数理
纤维复合材料层合板可由预浸料(浸润树脂后均匀平铺的纤维丝)以特定的角度旋转、堆叠、热压而成,如
等效方法公式详见式(
(1) |
(2) |
式中,和表示ESL的应力(MPa)和应变;为单个周期内第k个单层板中纤维体积分数;为单个周期内第k个单层板厚度,h为单个周期内所有单层板的总厚度,mm;和表示第k个单层板的应力(MPa)和应变。
(3) |
(4) |
式中,为刚度矩阵中的刚度系数,MPa,计算公式如下:
(5) |
(6) |
(7) |
(8) |
式中,Mij为单层板在不同方向的强度极限,MPa;Sij为单层板在ij平面内的抗剪强度极限(1、2、3分别对应x、y、z轴,如S12表示层间抗剪强度),MPa;Nij为单层板在i(i=j)方向的抗拉(或抗压)强度极限,MPa;Glc为单层板损伤耗散能量(l=1为纤维,l=2为基体),kJ·

a. schematic diagram of layup angles and periodicity

b. simplification process from angle‑ply lamina to ESL
图1 不同铺层角度单层板简化为等效单层板的过程示意图
Fig.1 Diagram of the simplification process from single‑layer plate with different layup angles to equivalent single‑layer plate
本研究提出的等效方法计算流程如

图2 等效方法计算流程
Fig.2 Calculation process of equivalent method
本研究开展了UHMWPE层合板抗12.7 mm API侵彻试验以验证该等效模拟方法的可靠性。为了保证侵彻试验结果准确,试验设计及实施过程严格参考标准GB/T 32497-201
No. | t / mm | stacking angle | vi / m· | vr / m· | E / J | γ |
---|---|---|---|---|---|---|
1 | 20.0 | [0/90]n | 729.5 | 659.8 | 2333.7 | 18.2% |
2 | 20.0 | [0/90/30/‑60/60/‑30]n | 712.0 | 656.8 | 1820.9 | 14.9% |
3 | 20.0 | [0/90/45/‑45]n | 718.4 | 664.8 | 1786.8 | 14.4% |
4 | 60.0 | [0/90]n | 733.0 | 568.9 | 5148.8 | 39.8% |
5 | 60.0 | [0/90/30/‑60/60/‑30]n | 718.0 | 513.8 | 6062.0 | 48.8% |
6 | 60.0 | [0/90/45/‑45]n | 722.7 | 549.9 | 5299.7 | 42.1% |
Note: 1) t is laminate thickness, 2) vi is initial velocity, 3) vr is residual velocity, 4) E is energy absorbed by the laminate, 5) γ is kinetic energy absorption ratio.

a. layout of the penetration test

b. components and dimensions of 12.7 mm API
图3 UHMWPE层合板抗侵彻示意图
Fig.3 Schematic illustration of UHMWPE laminates resisting penetration of different projectiles
数值模型基于等效方法建立,采用Abaqus Explicit求解器求解。在12.7 mm API侵彻模拟中,UHMWPE层合板的四角处通过螺栓固定,螺栓采用固定约束,层合板与螺栓间采用通用接触(
UHMWPE单层板及Cohesive黏结层的材料参
UHMWPE ESL | E11 / MPa | E22 / MPa | E33 / MPa | γ12 | γ13 | γ23 | G12 / MPa | G13 / MPa |
---|---|---|---|---|---|---|---|---|
51100 | 51100 | 3620 | 0.001 | 0.18 | 0.499 | 192 | 2000 | |
G23 / MPa | G1tc(=G1cc) / kJ· | G2tc(=G2cc) / kJ· | XT(=XC) / MPa | YT(=YC) / MPa | ZT(=ZC) / MPa | S12 / MPa | S13(=S23) / MPa | |
2000 | 26 | 26 | 1150 | 1150 | 1×1 | 120 | 575 | |
cohesive | Es(=Et) / MPa | En / MPa | N / MPa | S(=T) / MPa |
GⅠc / kJ· |
GⅡc / kJ· |
GⅢc / kJ· | η |
450 | 904 | 5.35 | 7.85 | 0.15 | 0.15 | 0.15 | 2 |
Note: 1) E11, E22, and E33 are the Young's modulus in the principal directions, 2) γ12, γ13, and γ23 are the Poisson's ratios in the principal directions, 3) G12, G13, and G23 are the shear modulus in the principal directions, 4) G1tc, G1cc, G2tc, and G2cc are energies dissipated during damage for fiber tension, fiber compression, matrix tension, and matrix compression failure modes, respectively, 5) XT, XC, YT, YC, ZT, and ZC are strength for the longitudinal tension, longitudinal compression, transverse tension, transverse compression, through‑thickness tension, through‑thickness compression, respectively, 6) S12, S13, and S23 are the shear strength in the principal directions,7) En, Es, and Et are the stiffness in the normal and the two local shear directions, 8) N, S, and T are the strength in the normal and the two local shear directions,9)GⅠc,GⅡc, and GⅢc are the fracture energy in the three fracture modes, η is a material parameter.
section | E / MPa | 𝜈ν | ρ / g·c | A / MPa | B / MPa | n | m | c |
---|---|---|---|---|---|---|---|---|
API core | 210000 | 0.32 | 7.8 | 1540 | 477 | 0.3 | 1.03 | 0.06 |
API jacket | 109000 | 0.22 | 7.92 | 300 | 275 | 0.15 | 1.03 | 0.0022 |
API lead | 16000 | 0.42 | 1.13 | 5.15 | 3.5 | |||
section | Tm / K | Tr / K | d1 | d2 | d3 | d4 | d5 | |
API Core | 1 | 1811 | 300 | 0.1 | 0.76 | 1.57 | 0.005 | -0.84 |
Note: 1) E is the Young's modulus, 2) ν is the Poisson's ratios, 3) ρ is the density, 4) Tm and Tr are the melting temperature and transition temperature, respectively, 5) A, B, n, m, , and d1 to d5 are material parameters for the Johnson‑Cook plasticity model.

a. 12.7 mm API

b. FSP
图4 边界条件示意图
Fig.4 Diagrams of boundary condition
采用等效方法预测了不同弹体侵彻贯穿不同厚度UHMWPE层合板后的残余速度,计算结果如
No. | t /mm | stacking angle | bullet type | vi / m· | vr,e / m· | vr,s / m· | error/% |
---|---|---|---|---|---|---|---|
1 | 20.0 | [0/90]n | 12.7 mm API | 729.5 | 659.8 | 669.6 | -1.5 |
2 | 20.0 | [0/90/30/‑60/60/‑30]n | 712.0 | 656.8 | 686.9 | -4.6 | |
3 | 20.0 | [0/90/45/‑45]n | 718.4 | 664.8 | 690.6 | -3.9 | |
4 | 60.0 | [0/90]n | 733.0 | 568.9 | 486.5 | 14.5 | |
5 | 60.0 | [0/90/30/‑60/60/‑30]n | 718.0 | 513.8 | 541.2 | -5.3 | |
6 | 60.0 | [0/90/45/‑45]n | 722.7 | 549.9 | 541.2 | 1.6 | |
7 | 10.0 | [0/90]n |
20 mm FS | 470.0 | 346.5 | 307.7 | 11.2 |
8 | 10.0 | 644.7 | 579.4 | 560.3 | 3.3 | ||
9 | 10.0 | 985.0 | 955.0 | 882.0 | 7.6 | ||
10 | 20.0 | 676.0 | 451.0 | 501.5 | -11.2 | ||
11 | 20.0 | 892.0 | 740.0 | 710.7 | 4.0 | ||
12 | 20.0 | 1054.0 | 865.0 | 845.5 | 2.3 |
Note: 1) vr,e is experimental residual velocity, 2) vr,s is simulated residual velocity.
同时还预测了不同厚度UHMWPE层合板抗不同口径FSP侵彻时的弹道极限速度V50,计算结果见
No. | t / mm | bullet type | v50,e / m· | v50,s / m· | error / % |
---|---|---|---|---|---|
1 | 10.0 |
20 mm FS | 394.0 | 398.5 | -1.1 |
2 | 20.0 | 620.0 | 552.5 | 10.9 | |
3 | 9.1 |
12.7 mm FS | 506.0 | 492.5 | 2.7 |
4 | 20.0 | 825.8 | 665.0 | 19.5 |
Note: 1) V50,e is experimental ballistic limit, 2) V50,s is simulated ballistic limit.
已有研究表明,UHMWPE层合板在抗侵彻过程中会表现出典型的阶段性侵彻破坏特

a. experimental resul

b. quasi‑mesoscale simulation resul

c. macroscopic equivalent algorithm
图5 FSP侵彻20 mm层合板
Fig.5 FSP against 20 mm UHMWPE

图6 弹体冲击20 mm 厚UHMWPE层合板速度变化过程
Fig.6 Velocity changes of FSP/API during impacting 20 mm UHMWPE

a. experiment

b. macroscopic equivalent simulation
图7 12.7 mm API侵彻20 mm UHMWPE的实验和模拟结果
Fig.7 Results of experiment and simulation of 12.7 mm API against 20 mm UHMWPE
进一步采用等效方法模拟了20 mm厚UHMWPE层合板在12.7 mm API侵彻作用下的破坏特征。试验结果如
本研究采用等效方法预测了12.7 mm API,12.7 mm FSP和20 mm FSP侵彻9.1~60.0 mm厚度UHMWPE层合板后的弹体残余速度及层合板弹道极限速度,据

a. 20 mm laminates

b. 60 mm laminates
图8 UHMWPE层合板背面侵彻破坏
Fig.8 Backside penetration damage of UHMWPE laminate

图9 12.7 mm FSP侵彻UHMWPE层合板后的分层破坏程
Fig.9 Degree of delamination damage after penetration of 12.7 mm FSP into UHMWPE laminate
此外,弹体初始速度与层合板弹道极限速度的比值Vi/V50亦对等效方法的计算精度产生影响。以20 mm FSP侵彻20 mm层合板为例,当初始速度为1054 m·
ESL厚度tc的选取体现等效程度,即tc=t时将整块层合板等效为一个整体,而当tc→0则相当于不进行等效。本研究主要关注等效程度对本方法预测精度和计算效率的影响,并选取αtc/βdp作为等效程度的控制指标,即比例厚度,共设计了如
No. | t/mm | stacking angle | bullet type | α | β | dp/mm |
---|---|---|---|---|---|---|
1 | 20 | [0/90]n | 12.7 mm API | 0.8 | 3.1 | 12.7 |
2 | 20 | [0/90/30/‑60/60/‑30]n | 0.8 | 3.1 | 12.7 | |
3 | 20 | [0/90/45/‑45]n | 0.8 | 3.1 | 12.7 | |
4 | 60 | [0/90]n | 0.8 | 3.1 | 12.7 | |
5 | 60 | [0/90/30/‑60/60/‑30]n | 0.8 | 3.1 | 12.7 | |
6 | 60 | [0/90/45/‑45]n | 0.8 | 3.1 | 12.7 | |
7 | 9.1 | [0/90]n | 12.7 mm FSP | 1 | 1 | 12.7 |
8 | 20 | [0/90]n | 1 | 1 | 12.7 | |
9 | 10 | [0/90]n | 20 mm FSP | 1 | 1 | 20 |
10 | 20 | [0/90]n | 1 | 1 | 20 |

a. FSP penetration through multiple thicknesses of
laminates(10 mm(20FSP) means 20 mm FSP

b. 12.7 mm API penetrates multiple laminates
(20 mm‑30(12.7API) means 12.7 mm API penetrates 20 mm laminates with [0/90/30/‑60/60/‑30]n)
图10 ESL最优比例厚度确定
Fig.10 Calculation of optimal ESL proportional thickness
此外,采用等效方法对20 mm和60 mm厚UHMWPE层合板抗12.7 mm API侵彻的弹体残余速度vr进行预测,计算结果如
由
本研究提出了一种可简化层合板抗侵彻数值模拟过程的三维等效方法,研究表明对于侵彻过程中分层破坏面积较小的层合板,等效方法将具有更高的计算精度。故进一步开展了玻璃纤维增强复合材料(glass fiber reinforced plastics,GFRP)层合板(抗侵彻时分层破坏程度较
t / mm | vi / m· | result | v50,s / m· | v50,e / m· | error / % |
---|---|---|---|---|---|
4.5 | 180.0 | NP | 185.0 |
175. | 5.4 |
190.0 | P | ||||
9.0 | 280.0 | NP | 285.0 |
293. | 2.8 |
290.0 | P |
在保证计算精度的前提下,本研究提出了一种可显著提升复合材料层合板抗侵彻分析效率的三维等效方法,该方法可通过材料参数计算考虑铺层角度的影响,大幅降低建模难度和计算量。主要结论如下:
(1)通过引入平均应力应变理论,将层合板内具有周期性铺层组合特征的若干单层板等效简化为单一等效单层板,可有效降低层合板建模的复杂程度,显著提升抗侵彻计算效率,最高可达20倍;
(2)采用提出的等效方法对9.1~60 mm厚UHMWPE层合板弹道性能预测的平均误差小于10%,可准确地模拟出不同种FRP层合板在不同弹速侵彻作用下的冲切、分层和凸起变形等阶段性侵彻破坏特征,具备较高的精度和适用性;
(3)层合板的分层破坏是影响等效方法计算精度的重要因素,当分层破坏程度增大时,层合板物理上的层间应力不连续将不可避免地引入计算误差。
参考文献
RIEDEL W, NAHME H, WHITE D M, et al. Hypervelocity impact damage prediction in composites: Part II—experimental investigations and simulations[J]. International Journal of Impact Engineering, 2006, 33(1): 670-680. [百度学术]
CHEN X, CHANDRASEKARAN R, SONG F, et al. Personal energy footprint in shared building environment: Poster abstract[C]//Proceedings of the 15th International Conference on Information Processing in Sensor Networks. Vienna Austria, 2016: 30. [百度学术]
HAZELL P J, APPLEBY‑THOMAS G. A study on the energy dissipation of several different CFRP‑based targets completely penetrated by a high velocity projectile[J]. Composite Structures, 2009, 91(1): 103-109. [百度学术]
CUNNIFF P. Dimensionless Parameters for Optimization of Textile Based Body Armor Systems[C]//Proceedings of the 18th International Symposium on Ballistics. San Antonio, Texas, 1999: 1303-1310. [百度学术]
MOURITZ A P, COX B N. A mechanistic interpretation of the comparative in‑plane mechanical properties of 3D woven, stitched and pinned composites[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(6): 709-728. [百度学术]
AHMED A, ZILLUR RAHMAN M, OU Y, et al. A review on the tensile behavior of fiber‑reinforced polymer composites under varying strain rates and temperatures[J]. Construction and Building Materials, 2021, 294: 123565. [百度学术]
APPLEBY‑THOMAS G J,HAZELL P J,DAHINI G.On the response of two commercially‑important CFRP structures to multiple ice impacts[J].Composite Structures,2011,93(10): 2619-2627. [百度学术]
O’MASTA M R, DESHPANDE V S, WADLEY H N G. Mechanisms of projectile penetration in Dyneema® encapsulated aluminum structures[J]. International Journal of Impact Engineering, 2014, 74: 16-35. [百度学术]
NGUYEN L H, RYAN S, CIMPOERU S J, et al. The efficiency of ultra‑high molecular weight polyethylene composite against fragment impact[J]. Experimental Mechanics, 2016, 56(4): 595-605. [百度学术]
TAN V B C, KHOO K J L. Perforation of flexible laminates by projectiles of different geometry[J]. International Journal of Impact Engineering, 2005, 31(7): 793-810. [百度学术]
TAYLOR S A, CARR D J. Post failure analysis of 0 degrees /90 degrees ultra high molecular weight polyethylene composite after ballistic testin[J]. Journal of microscopy, 1999, 196(2): 249-256. [百度学术]
GREENHALGH E S, BLOODWORTH V M, IANNUCCI L, et al. Fractographic observations on Dyneema® composites under ballistic impact[J]. Composites Part A: Applied Science and Manufacturing, 2013, 44: 51-62. [百度学术]
KARTHIKEYAN K, RUSSELL B P. Polyethylene ballistic laminates: Failure mechanics and interface effect[J]. Materials & Design, Elsevier, 2014, 63: 115-125. [百度学术]
NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite[J]. International Journal of Impact Engineering, 2015, 75: 174-183. [百度学术]
CHEN L, CAO M, FANG Q. Ballistic performance of ultra‑high molecular weight polyethylene laminate with different thickness[J]. International Journal of Impact Engineering, 2021, 156: 103931. [百度学术]
CAO M, CHEN L, XU R, et al. Multi‑stage penetration characteristics of thick ultra‑high molecular weight polyethylene laminates[J]. Defence Technology, 2023, 27: 101-110. [百度学术]
CAO M, CHEN L, XU R, et al. Effect of the temperature on ballistic performance of UHMWPE laminate with limited thickness[J]. Composite Structures, 2021, 277: 114638. [百度学术]
CAO M,CHEN L,FANG Q. Penetration and perforation characteristics of the novel UHMWPE film laminates by the 7.62 mm standard bullet[J].Composite Structures,2023,308:116669. [百度学术]
CAO M, ZHOU D, WANG Z, et al. An experimental study of the penetration resistance of UHMWPE laminates with limited thickness[J]. Thin‑Walled Structures, 2023: 111438. [百度学术]
SHEN Y, WANG Y, YAN Z, et al. Experimental and numerical investigation of the effect of projectile nose shape on the deformation and energy dissipation[J]. Materials, Multidisciplinary Digital Publishing Institute, 2021, 14(15): 4208. [百度学术]
HARIS A, TAN V B C. Effects of spacing and ply blocking on the ballistic resistance of UHMWPE laminates[J]. International Journal of Impact Engineering, 2021, 151: 103824. [百度学术]
SEGALA D B, CAVALLARO P V. Numerical investigation of energy absorption mechanisms in unidirectional composites subjected to dynamic loading events[J]. Computational Materials Science, 2014, 81: 303-312. [百度学术]
CHOCRON S, NICHOLLS A E, BRILL A, et al. Modeling unidirectional composites by bundling fibers into strips with experimental determination of shear and compression properties at high pressures[J]. Composites Science and Technology, 2014, 101: 32-40. [百度学术]
WANG H, WEERASINGHE D, MOHOTTI D, et al. On the impact response of UHMWPE woven fabrics: Experiments and simulations[J]. International Journal of Mechanical Sciences, 2021, 204: 106574. [百度学术]
ZHANG Y, DONG H, LIANG K, et al. Impact simulation and ballistic analysis of B4C composite armour based on target plate tests[J]. Ceramics International, 2021, 47(7, Part A): 10035-10049. [百度学术]
ZHANG R, HAN B, ZHONG J‑Y, et al. Enhanced ballistic resistance of multilayered cross‑ply UHMWPE laminated plates[J]. International Journal of Impact Engineering, 2022, 159: 104035. [百度学术]
ZHANG R, QIANG L‑S, HAN B, et al. Ballistic performance of UHMWPE laminated plates and UHMWPE encapsulated aluminum structures: Numerical simulation[J]. Composite Structures, 2020, 252: 112686. [百度学术]
ANSARI M M, CHAKRABARTI A, IQBAL M A. An experimental and finite element investigation of the ballistic performance of laminated GFRP composite target[J]. Composites Part B: Engineering, 2017, 125: 211-226. [百度学术]
ANSARI Md M, CHAKRABARTI A. Ballistic performance of unidirectional glass fiber laminated composite plate under normal and oblique impact[J]. Procedia Engineering, 2017, 173: 161-168. [百度学术]
古兴瑾, 许希武. 纤维增强复合材料层板高速冲击损伤数值模拟[J]. 复合材料学报, 2012, 29(1): 150-161. [百度学术]
GU Xing‑jin, XU Xi‑wu. Numerical simulation of damage in fiber reinforced composite laminates under high velocity impact[J]. Acta Materiae Compositae Sinica, 2012,29(1): 150-161. [百度学术]
曹铭津, 陈力, 方秦. 超高分子量聚乙烯纤维层合板抗侵彻性能的一种数值分析方法[J]. 含能材料, 2021, 29(2): 132-140. [百度学术]
CAO Ming‑jin, CHEN Li, FANG Qin. Numerical method of penetration resistance of ultrahigh molecular weight polyethylene laminate[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2021,29(2):132-140. [百度学术]
LÄSSIG T, NGUYEN L, MAY M, et al. A non‑linear orthotropic hydrocode model for ultra‑high molecular weight polyethylene in impact simulations[J]. International Journal of Impact Engineering, 2015, 75: 110-122. [百度学术]
NGUYEN L H, LÄSSIG T R, RYAN S, et al. A methodology for hydrocode analysis of ultra‑high molecular weight polyethylene composite under ballistic impact[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 224-235. [百度学术]
PHADNIS V A, PANDYA K S, NAIK N K, et al. Ballistic impact behaviour of woven fabric composite: Finite element analysis and experiments[J]. Journal of Physics: Conference Series, 2013, 451(1): 012019. [百度学术]
SUN C T, SIJIAN LI. Three‑dimensional effective elastic constants for thick laminates[J]. Journal of Composite Materials, 1988, 22(7): 629-639. [百度学术]
NGUYEN L. The ballistic performance of thick ultra high molecular weight polyethylene composite[D]. Melbourne: RMIT University, 2016. [百度学术]
中华人民共和国国家质量监督检验检疫总局. GB/T 32497-2016:纤维增强复合材料抗破片模拟弹性能试验方法V50法[S]. 北京:中国标准出版社, 2016. [百度学术]
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 32497-2016:Test method of ballistic resistance against fragment simulating projectiles for fiber‑reinforced composites—V50method[S]. Beijing:Standards Press of China, 2016. [百度学术]
中华人民共和国公安部. GA 141-2010:警用防弹衣[S]. 北京:中国标准出版社, 2010. [百度学术]
Ministry of Public Security of the People's Republic of China. GA 141-2010: Police ballistic resistance of body armor[S]. Beijing:Standards Press of China, 2010. [百度学术]
ABAQUS User’s Manual[CP]. 2014. [百度学术]
HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, SAGE Publications Ltd STM, 1973, 7(4): 448-464. [百度学术]
HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47: 329-334. [百度学术]
CAMANHO P P, DÁVILA C G. Mixed‑mode decohesion finite elements for the simulation of delamination in composite materials[R]. NASA/TM‑2002‑211737,U.S.A.: NASA Langley Research Center, 2002. [百度学术]
马铭辉, 李烨, 蒋招绣, 等. 12.7 mm穿燃弹对半无限厚45钢的侵彻行为[J]. 高压物理学报, 2021, 35(5): 158-166. [百度学术]
MA Ming‑hui, LI Ye, JIANG Zhao‑xiu, et al. Penetration behavior of 12.7 mm projectile into semi infinite 45 steel[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055104. [百度学术]
CAO M, CHEN L, XU R, et al. Multi‑stage penetration characteristics of thick ultra‑high molecular weight polyethylene laminates[J]. Defence Technology, 2023, 27: 101-110. [百度学术]
GELLERT E P, CIMPOERU S J, WOODWARD R L. A study of the effect of target thickness on the ballistic perforation of glass‑fibre‑reinforced plastic composites[J]. International Journal of Impact Engineering, 2000, 24(5): 445-456. [百度学术]
鲍盘盘. 复合材料层压板高速冲击损伤有限元分析方法[C]//第17届全国复合材料学术会议(复合材料力学分论坛)论文集. 中国北京: 中国航空学会, 2012: 99-103. [百度学术]
BAO Pan‑pan. Finite element analysis method of hign velocity impact damage characteristics of composite laminates[C]//17th National Conference on Composite Materials. Beijing: Chinese Society of Aeronautics and Astronautics, 2012: 99-103. [百度学术]