摘要
为探究SiC质量分数、SiC粒径和Al粒径及其交互作用对PTFE/Al/SiC(PAS)反应材料力学性能的影响,通过
图文摘要
To investigate the influence of SiC mass fraction, SiC particle size, Al particle size, and their interactions on the mechanical properties of PTFE/Al/SiC (PAS) reactive materials, a factorial design criterion was employed to design and prepare eight different compositions of PTFE/Al/SiC reactive materials, and quasi‑static compression tests and SHPB experiments were conducted. Significant factors were selected using the t‑value ranking method, and response surface methodology was employed to analyze significant interaction effects.
聚四氟乙烯/铝(PTFE/Al)反应材料因其能量密度高,释能迅速,配方可调控等优点备受关
近年来,针对PTFE/Al反应材料的研究主要集中在力学响应行
碳化硅(SiC)作为一种典型的陶瓷增强材料,已有研究表明其在PTFE/Al基三元体系中能够起到显著的强化作用。任鑫鑫
基于此,在已有研究基础
SiC粉末,平均直径为7 μm和28 μm,纯度>99.0%,秦皇岛一诺高新材料开发有限公司;Al粉末平均直径为5 μm和20 μm,纯度>99.0%,上海乃欧纳米科技有限公司;PTFE粉末,平均直径为25 μm,纯度>99.0%,上海三爱富新材料股份有限公司。
设有3个主因子A、B和C,每一因子设置2个水平,此设计称为

图1
Fig.1 Geometric view of
effect | formula |
---|---|
A | |
B | |
C | |
AB | |
AC | |
BC | |
ABC |
(1) |
式中,y表示响应预测值,β0表示实测响应均值,βi表示回归系数。AB,AC以及BC表示一阶交互作用,ABC表示二阶交互作用。
取SiC质量分数(记为因子A)、SiC粒径(记为因子B)以及Al粒径(记为因子C)作为待研究的3个因子。由于
formulation | SiC mass fraction(A) / % | SiC particle size(B) / μm | Al particle size (C) / μm |
---|---|---|---|
1# | 10(-1) | 7(-1) | 5(-1) |
2# | 30(+1) | 7(-1) | 5(-1) |
3# | 10(-1) | 28(+1) | 5(-1) |
4# | 30(+1) | 28(+1) | 5(-1) |
5# | 10(-1) | 7(-1) | 20(+1) |
6# | 30(+1) | 7(-1) | 20(+1) |
7# | 10(-1) | 28(+1) | 20(+1) |
8# | 30(+1) | 28(+1) | 20(+1) |
Note: (±1)are coded variables without units.
材料制备过程如下:(1)按照

图2 PAS材料力学测试试件
Fig.2 PAS material specimen for mechanical test
采用SHPB系统(ZDSHPB‑15 宗德机电设备有限公司)开展PAS材料动态力学测试,采用万能试验机(CMT5105 美特斯工业系统有限公司)开展PAS材料准静态力学测试。SHPB压杆系统包括气室、子弹、入射杆、透射杆、应变片、缓冲装置以及动态应变仪,系统设置示意如

图3 SHPB测试系统
Fig.3 SHPB testing system
由于PAS材料阻抗较低,因此采用较低阻抗的铝杆作为测试杆组。其中入射杆和透射杆长度和直径分别为1200 mm和16 mm,弹性模量71 GPa,应力波速5000 m·

图4 传感器原始电压输出
Fig.4 Raw voltage output of the sensors

图5 8种配方PAS材料典型实测应变‑应变率关系
Fig.5 Typical measured strain‑strain rate relationship for 8 formulations of PAS materials

a. formulation 1#

b. formulation 2#

c. formulation 3#

d. formulation 4#

e. formulation 5#

f. formulation 6#

g. formulation 7#

h. formulation 8#
图6 8种配方PAS动态与准静态力学测试结果
Fig.6 Dynamic and quasi‑static mechanical testing results for 8 formulations of PAS material
选择
response | mark | response | mark |
---|---|---|---|
dynamic stress(strain:0.10) | Sd0.10 | quasi‑static stress(strain:0.10) | S0.10 |
dynamic stress(strain:0.15) | Sd0.15 | quasi‑static stress(strain:0.15) | S0.15 |
dynamic stress(strain:0.20) | Sd0.20 | quasi‑static stress(strain:0.20) | S0.20 |
通过

a. quasi‑static stress

b. dynamic stress
图7 t值排序
Fig.7 t‑value ranking
设有k个配方,每个配方重复测试n次,共有kn个测试值。设表示第i个处理的n个测试值的和;表示全部测试值的总和;表示第i个处理的平均数;表示全部测试值的平均数。
总离差平方和
(2) |
令:
则:
(3) |
式中,SST表示总离差平方和,即所有测试值与总平均数之差的平方和;SSt为处理间离差平方和,即处理间的平均数和总平均数之差的平方和,是不同处理带来的差异;SSe称为处理内离差平方和,即处理内的观测值与其所在组的平均数的差的平方和,是随机误差带来的差异。
因子贡献率表征了因子对响应的影响程度,计算公式为:
(4) |
通过公式(

a. quasi‑static stress

b. dynamic stress
图8 主因子及显著交互因子贡献率
Fig.8 Contribution rates of main factors and significant interaction factors
对于准静态应力(

a. Al

b. SiC
图9 Al与SiC颗粒微观形貌
Fig.9 Microscopic morphology of Al and SiC particles
响应与因子之间的回归函数根据

a. quasi‑static stress

b. dynamic stress
图10 因子回归系数
Fig.10 Regression coefficients of factors
准静态应力回归函数的因子相关性在应变区间0.10~0.20内保持一致(

a. response:S0.15

b. response:Sd0.15 and Sd0.20
图11 主因子扰动趋势
Fig.11 Perturbation trends of main factors
对于动态应力回归函数,如

a. response:S0.15

b. response:Sd0.15
图12 函数预测值与实际测试值关系
Fig.12 Relationship between predicted values of a function and actual test values
通过对比准静态与动态扰动结果,应变率的突变没有改变A对响应的扰动趋势:较高的SiC质量分数能够对PAS材料的力学性能产生有利影
因子间交互作用在材料力学响应中起到不可忽略的作用。为研究因子间交互作用对准静态及动态应力的影响作用,取S0.15及Sd0.15进行多因子交互分析,并利用真实变量回归函数(见
strain rate / | response | regression function (real variables) |
---|---|---|
0.01 | S0.15 | |
3200 | Sd0.15 |

a. response surface plot

b. contour plot
图13 SiC质量分数/SiC粒径对响应S0.15的作用
Fig.13 Effects of SiC mass fraction/SiC particle size on S0.15
为解释这一现象,分别对SiC质量分数30%和10%的PAS材料进行微观形貌表征,结果如

a. 30% SiC

b. 10% SiC
图14 PAS材料微观形貌
Fig. 14 Microscopic morphology of PAS materials

a. SiC mass fraction/Al particle size

b. SiC particle size/Al particle size
图15 SiC质量分数/Al粒径和SiC粒径/Al粒径对响应S0.15的作用
Fig.15 Effects of SiC mass fraction/Al particle size and SiC particle size/Al particle size on S0.15
对于动态响应Sd0.15,ABC是最为显著的交互因子。通常使用立方图分析三因子交互作用,如

图16 响应Sd0.15立方图
Fig.16 Cube plot of Sd0.15 response
在高SiC质量分数条件下,动态响应存在两个较大值,分别在(A:30%,B:7 μm,C:5 μm)和(A:30%,B:28 μm,C:20 μm)得到。保持A高水平,显示B、C及其交互作用对响应Sd0.15的作用见

a. response surface plot

b. contour plot
图17 SiC粒径/Al粒径对响应Sd0.15的作用(SiC质量分数30%)
Fig.17 Effect of SiC particle size /Al particle size on Sd0.15 (SiC mass fraction of 30%)
观察
以上分析表明,应变率3200
(1)较高的SiC质量分数对PAS材料的力学性能产生了积极影响。在高应变率加载下,较大尺寸的SiC颗粒能够有效提高材料的力学响应。Al颗粒对于PAS材料系统的力学响应作用有限。
(2)强烈的因子间交互作用在本研究中不可忽略。在低应变率加载下,SiC质量分数/SiC粒径交互作用显著:SiC质量分数高且SiC粒径较小时,可以双重优化颗粒分散状态和界面结合强度,从而提高材料的力学响应。在高应变率加载下,SiC粒径/Al粒径交互作用显著:SiC颗粒与Al颗粒粒径尺寸接近时,材料的力学响应能够得到有效提高。
(3)析因设计方法结合响应面分析可以快速筛选影响材料性能的重要因子和交互作用,并优化材料配方以获得更好的材料性能。不仅提高了研究效率,还为材料设计和工程应用提供了可靠的理论依据,在PTFE/Al基反应材料配方设计中具有显著的价值。
参考文献
WU J X, LIU Q, FENG B, et al. Improving the energy release characteristics of PTFE/Al by doping magnesium hydride [J]. Defence Technology, 2022, 18(2): 219-228. [百度学术]
LAN J, LIU J X, ZHANG S, et al. Influence of multi‑oxidants on reaction characteristics of PTFE‑Al‑XmOY reactive material [J]. Materials & Design, 2020, 186: 108325. [百度学术]
LIU S B, ZHENG Y F, YU Q B, et al. Interval rupturing damage to multi‑spaced aluminum plates impacted by reactive materials filled projectile[J]. International Journal of Impact Engineering, 2019, 130: 153-162. [百度学术]
WANG H F, XIE J W, GE C, et al. Experimental investigation on enhanced damage to fuel tanks by reactive projectiles impact[J]. Defence Technology, 2021, 17(2): 599-608. [百度学术]
YUAN Y, LIU Z Y, HE S, et al. Shock‑induced reaction behaviors of functionally graded reactive material[J]. Defence Technology, 2021, 17(5): 1687-1698. [百度学术]
ZHANG H, WANG H F, YU Q B, et al. Perforation of double‑spaced aluminum plates by reactive projectiles with different densities[J]. Materials, 2021, 14(5): 1229. [百度学术]
ZHANG H, ZHENG Y F, YU Q B, et al. Penetration and internal blast behavior of reactive liner enhanced shaped charge against concrete space[J]. Defence Technology, 2022, 18(6): 952-962. [百度学术]
GUO H G, ZHENG Y F, HE S, et al. Reaction characteristic of PTFE/Al/Cu/Pb composites and application in shaped charge liner[J]. Defence Technology, 2022, 18(9): 1578-1588. [百度学术]
叶胜, 毛亮, 胡榕, 等. 不同Al粒径的PTFE/Al活性射流作用双层间隔靶的实验研究[J]. 含能材料, 2021, 29(7): 625-633. [百度学术]
YE Sheng, MAO Liang, HU Rong, et al. Experimental study on the effect of al particle size on the damage performance of PTFE/Al reactive jet against double⁃layer spacer target[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, 29(7): 625-633. [百度学术]
XU F Y, WANG H F, KANG J, et al. Response behavior of the PTFE/Al/W granular composite under different loadings[J]. Shock Waves, 2022, 32(7): 633-642. [百度学术]
李尉, 任会兰, 宁建国, 等. Al/PTFE活性材料的动态力学行为和撞击点火特性[J]. 含能材料, 2020, 28(1): 38-45. [百度学术]
LI Wei, Ren Hui‑lan, NING Jian‑guo, et al. Dynamic mechanical behavior and impact ignition characteristics of Al/PTFE reactive materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020, 28(1): 38-45. [百度学术]
LU G C, LIU Z Y, XIE J W, et al. Impact‑initiated chemical reaction behavior of PTFE/Al reactive materials‑A theory‑based numerical method[J]. Journal of Applied Physics, 2023, 133(19): 195105. [百度学术]
XU F Y, KANG J, WANG H F. Numerical simulation of impact‑induced mechanical behavior of the PTFE/Al/W reactive materials[J]. Aip Advances, 2022, 12(10): 105215. [百度学术]
田伟玺, 何源, 王传婷, 等. 冲击载荷作用下Al/PTFE活性材料的非均相化学反应模型[J]. 南京理工大学学报, 2022, 46(6): 659-670. [百度学术]
TIAN Wei‑xi, HE Yuan, WANG Chuan‑ting, et al. Heterogeneous chemical reaction model of Al/PTFE reactive materials under impact load[J]. Journal of Nanjing University of Science and Technology, 2022, 46(6): 659-670. [百度学术]
ZHOU J Y, RAN X W, TANG W H, et al. Research on the penetration characteristics of PTFE projectile with reactive inner core[J]. Polymers, 2023, 15(3): 617. [百度学术]
LI H D, DUAN H, ZHANG Z L, et al. Study on perforation behavior of PTFE/Al reactive material composite jet impacting steel target[J]. Materials, 2023, 16(7): 2715. [百度学术]
WANG R Q, YIN Q, YAO M, et al. Experimental investigation on ignition effects of fuel tank impacted by Bi2O3‑reinforced PTFE/Al reactive material projectile[J]. Metals, 2023, 13(2): 399. [百度学术]
XU S L, YANG S Q, ZHANG W. The mechanical behaviors of polytetrafluorethylene/Al/W energetic composites[J]. Journal of Physics‑Condensed Matter, 2009, 21(28): 285401. [百度学术]
XU F Y, LIU S B, ZHENG Y F, et al. Quasi‑static compression properties and failure of PTFE/Al/W reactive materials[J]. Advanced Engineering Materials, 2017, 19(1): 1600350. [百度学术]
WANG H X, LI Y C, FENG F, et al. Compressive properties of PTFE/Al/Ni composite under uniaxial loading[J]. Journal of Materials Engineering and Performance, 2017, 26(5): 2331-2336. [百度学术]
WU J X, WANG H X, FANG X, et al. Investigation on the thermal behavior, mechanical properties and reaction characteristics of Al‑PTFE composites enhanced by Ni particle[J]. Materials, 2018, 11(9): 1741. [百度学术]
ZHOU J Y, DING L L, TANG W H, et al. Experimental study of mechanical properties and impact‑induced reaction characteristics of PTFE/Al/CuO reactive materials[J]. Materials, 2020, 13(1): 66. [百度学术]
HUANG J Y, FANG X, LI Y C, et al. The mechanical and reaction behavior of PTFE/Al/Fe2O3 under impact and quasi‑static compression[J]. Advances in Materials Science and Engineering, 2017: 3540320. [百度学术]
YUAN Y, GENG B Q, SUN T, et al. Impact‑induced reaction characteristic and the enhanced sensitivity of PTFE/Al/Bi2O3 composites[J]. Polymers, 2019, 11(12): 2049. [百度学术]
任鑫鑫, 武双章, 李裕春, 等. Al/PTFE/SiC反应材料准静压性能研究[J]. 火工品, 2020 (6): 54-57. [百度学术]
REN Xin‑xin, WU Shuang‑zhang, LI Yu‑chun, et al. Study on quasi‑static pressure properties of Al/PTFE/SiC reaction materials[J]. Initiators & Pyrotechnics, 2020(6): 54-57. [百度学术]
WU J X, HUANG J Y, LIU Q, et al. Influence of ceramic particles as additive on the mechanical response and reactive properties of Al/PTFE reactive composites[J]. Rsc Advances, 2020, 10(3): 1447-1455. [百度学术]
SHOMAN N A, GEBREEL R M, EL‑NABARAWI M A, et al. Optimization of hyaluronan‑enriched cubosomes for bromfenac delivery enhancing corneal permeation: characterization, ex vivo, and in vivo evaluation[J]. Drug Delivery, 2023, 30(1): 2162162. [百度学术]
MONTGOMERY D C. Design and analysis of experiments [M]. 8th edition. America: Wiley, 2009. [百度学术]
THIRUGNANASAMBANDHAM K, SIVAKUMAR V. Application of D‑optimal design to extract the pectin from lime bagasse using microwave green irradiation[J]. International Journal of Biological Macromolecules, 2015, 72: 1351-1357. [百度学术]
HERBOLD E B, NESTERENKO V F, BENSON D J, et al. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene‑Al‑W granular composite materials[J]. Journal of Applied Physics, 2008, 104(10): 103903. [百度学术]
乔良, 涂建, 赵利军, 等. Al/W/PTFE粒径级配关系对材料强度影响的实验研究[J]. 兵器材料科学与工程, 2014, 37(6): 17-21. [百度学术]
QIAO Liang, TU Jian, ZHAO Li‑jun, et al. Influence of particle size grading on strength of Al/W/PTFE composite[J]. Ordnance Material Science and Engineering, 2014, 37(6): 17-21. [百度学术]
ZHANG J, LI Y C, HUANG J Y, et al. The effect of al particle size on thermal decomposition, mechanical strength and sensitivity of Al/ZrH2/PTFE composite[J]. Defence Technology, 2021, 17(3): 829-835. [百度学术]