摘要
采用粒子图像测速技术(PIV)对不等径开放式撞击流中质量分数60%的甘油‑水溶液雾化性能进行了研究,探讨韦伯数We(51≤We≤1605)、入射速度u(2.12 m·
图文摘要
Atomization performance of free impinging jets with unequal nozzle diameter of 60% Glycerol‑water solution was investigated using PIV technique. The effects of nozzle diameter and jet velocity on liquid sheet breakup mode, liquid sheet breakup length, liquid sheet thickness, droplet diameter and velocity were studied. The research results were analyzed and compared with the findings of other scholars. The empirical correlation equations were obtained between liquid sheet breakup length, liquid sheet thickness, Sauter mean diameter D[3,2] and nozzle diameter, We number. The droplet distribution of the composite energetic material binder solvent diethylene glycol‑water solution was investigated, which was compared with the results of empirical correlation equation to verify its universal applicability.
撞击流反应器广泛用于气‑固、固‑固、气‑液、液‑液等不同体系的混
目前,撞击流反应器已被应用于含能材料领域,制备粒径均匀且分布窄的复合含能材料,如张小宁
王杰
甘油,国药集团化学试剂有限公司,分析纯;水,去离子水;二乙二醇,分析纯,武汉华翔科洁生物技术有限公司。
不等径开放式撞击流反应器采用3D打印技术设计并加工,其结构如

图1 不等径开放式撞击流结构示意图
Fig.1 Schematic diagram of free impinging jets with unequal nozzle diameter
粒子图像测速技术(particle image velocimetry Technology, PIV)系统,美国TSI公司;激光器,Nd: YAG;CCD相机,630092,曝光时长300 ns,最大帧率72帧/秒。
60G样品:取甘油与去离子水混合制成1 L质量分数为60%的甘油‑水溶液(60G),分别贮藏在两个储液槽中备用。60G的密度、黏度二乙二醇相近,而二乙二醇作为粘结剂溶剂,常用于溶解GAP和NC,制备性能互补的复合含能粘结剂。因此,研究采用60G模拟开展相关的研究。
二乙二醇‑水溶液:取复合含能材料粘结剂溶剂二乙二醇和去离子水各1 L,分别贮藏在两个储液槽中备用,经不等径开放式撞击流反应器等动量撞击混合后形成二乙二醇‑水溶液。
实验系统如

图2 不等径开放式撞击流雾化特征实验系统
Fig.2 Experimental system for atomization characteristics of free impinging jets with unequal nozzle diameter
在不同韦伯数、入射速度、喷嘴直径(喷嘴1和喷嘴2)下,采用1.3的实验系统研究60G撞击后液膜破碎特征和液滴行为以及二乙二醇与水撞击混合后的液滴分布,实验操作参数如
working fluid | nozzle type | V / mL·mi | u / m· | Re | We | spatial resolution / pixel·m |
---|---|---|---|---|---|---|
60%glycerol‑water | 1 | 250-500 | 1.33-2.65 | 283-565 | 51-205 | 23.26 |
600-1000 | 3.18-5.31 | 678-1130 | 295-819 | 19.23 | ||
1100-1400 | 5.84-7.43 | 1243-1583 | 991-1605 | 23.26 | ||
2 | 400 | 2.12 | 452 | 131 | 23.26 | |
500-1000 | 2.65-5.31 | 565-1130 | 205-819 | 19.23 | ||
diethylene glycol‑water | 1 | 400 | 2.12 | 4216 | 124 | 23.26 |
600-1000 | 3.18-5.31 | 6325-10542 | 279-774 | 19.23 | ||
1200, 1400 | 6.37, 7.43 | 12650, 14758 | 1115, 1517 | 23.26 | ||
2 | 400 | 2.12 | 133 | 147 | 23.26 | |
600-1000 | 3.18‑5.31 | 199‑332 | 330‑916 | 19.23 |
Note: V is flow rate, u is jet velocity, Re is Reynolds number, We is Weber number.
研究采用PIV技术和Image Pro‑Plus对60G撞击后液膜破碎特征、液膜破碎长度、液膜厚度、液滴直径及液滴速度等雾化特征进行研究,具体表征方法如下:
液膜破碎特征:Kampe

图3 不等径开放式撞击流液膜特
Fig. 3 Liquid sheet characteristics of free impinging jets with unequal nozzle diamete
液膜破碎长度:破碎长度Lb采用Image Pro‑Plus软件对所拍摄的500组照片进行测量计算得到平均值,如
液膜厚度:液膜厚度Ts采用Image Pro‑Plus软件对所拍摄的500组照片进行测量计算得到平均值,如
液滴直径:液滴直径的测量采用文献[
(1) |
式中,d为液滴直径,mm;d1为不规则液滴最大长度,mm;d2为不规则液滴最小长度,mm。
研究中以喷嘴直径D=2 mm为基准,入射管长度L为30 mm,即L/D≥10从而保证流体在管中的流动是稳定的。喷嘴之间的距离w为10 mm,即w/D=5。撞击点o为坐标原点(0,0,0),平行于两喷嘴的平面为x‑y平面,垂直于两喷嘴的平面为y‑z平面。CCD相机拍摄的角度采用文献[
以D=2 mm为基准,入射速度u的计算如
(2) |
式中,u为以D=2 mm为基准的入射速度,m·
雷诺数Re的计算如
(3) |
韦伯数We的计算如
(4) |
液滴索特平均直径D[3,2]的计算如
(5) |
液滴速度:采用Insight 4G的后处理软
为了使撞击点保持在两喷嘴之间的中心位置,所有研究保持动量比为1。不同入射速度(韦伯数)(u(We))下2种喷嘴的液膜破碎特征如

图4 喷嘴1在不同入射速度(韦伯数)下60G撞击液膜破碎特征
Fig.4 60G impinging liquid sheet breakup characteristics of nozzle 1 at different jet velocities u(We numbers)

图5 喷嘴2在不同入射速度(韦伯数)下60G撞击液膜破碎特征
Fig.5 60G impinging liquid sheet breakup characteristics of nozzle 2 at different jet velocities u(We numbers)
此现象与文献[
不同韦伯数下液膜破碎长度变化规律如

图6 不同韦伯数下60G撞击液膜破碎长度Lb/D变化规律
Fig.6 Trends of liquid sheet breakup length Lb/D of 60G impinging at different We numbers
将
(6) |
当处于M3、M4模式时,液膜破碎长度与喷嘴直径、韦伯数关联式如
(7) |
将式(
Taylo
(8) |
Ran
(9) |
同时,θ=90°时对于液膜厚度的研究较少,因此本节仍然采用Image Pro‑Plus软件,对拍摄的500组照片进行计算得到液膜厚度平均值,结果如

图7 不同韦伯数下60G撞击液膜厚度变化规律
Fig.7 Trends of liquid sheet thickness of 60G impinging at different We numbers
将
(10) |
从

图8 不同韦伯数下60G撞击D[3,2]/D的变化规律
Fig.8 Trends of D[3,2]/D of 60G impinging under different We numbers
将
(11) |
不同入射速度下,y=-50 mm/-60 mm平面上液滴平均直径分布如

图9 y=-50/-60 mm平面上不同入射速度下60G撞击液滴平均直径沿z轴分布
Fig.9 Average droplet diameter distributions of 60G impinging with different jet velocities u along z‑axis at y=-50/-60 mm
不同入射速度下的液滴直径分布如

a. nozzle 1

b. nozzle 2
图10 不同入射速度下60G撞击喷嘴1和喷嘴2的液滴直径分布
Fig.10 Droplet size distributions of 60G impinging of nozzle 1 and 2 under different jet velocities
y=-60 mm时y方向上的轴向平均速度vy和z方向上的径向平均速度vz沿z轴的变化如

a. average axial velocity component vy

b. average radial velocity component vz
图11 y=-60 mm平面上不同入射速度下60G撞击液滴平均速度沿z轴的分布
Fig.11 Droplet average velocity distributions of 60G impinging with different jet velocities along z‑axis at y=-60 mm
液滴分布特征作为判断其雾化性能的重要标准之一,对于复合含能材料颗粒的均匀性和直径分布十分重要,关系到复合含能材料的稳定性(如撞击感度、摩擦感度等
如

a. nozzle 1

b. nozzle 2
图12 不同入射速度下二乙二醇与水撞击液滴直径分布
Fig.12 Droplet diameter distributions of diethylene glycol‑water impinging at different jet velocities
采用

图13 不同韦伯数下二乙二醇与水撞击液滴直径实验值与计算值对比
Fig.13 Comparison of experimental values and theoretical predictions of droplet diameters of diethylene glycol‑water impinging at different We numbers
(1)以60G为工作介质、采用PIV技术及Image Pro‑Plus软件研究了不等径开放式撞击流反应器的液膜破碎特征。结果发现随入射速度的增大,液膜破碎长度先增大后减小,液膜厚度减小;喷嘴直径的增大对同一入射速度下液膜破碎模式的影响不显著,而液膜破碎长度和厚度均增大。
(2)以60G为工作介质研究了不等径开放式撞击流反应器的液滴行为。结果表明随韦伯数增大,液滴直径减小,液滴直径分布变窄,液滴速度增大,D[3,2]最小值达到620 μm;而随着喷嘴直径增大,液滴直径增大,速度减小,分布变宽。
(3)获得了60G液膜破碎长度、液膜厚度、D[3,2]与喷嘴直径、韦伯数间的经验关联式,并验证了不等径开放式撞击流反应器中复合含能材料粘结剂溶剂二乙二醇与水混合过程的液滴分布。结果表明随入射速度增大,二乙二醇与水撞击混合后液滴直径减小,分布变窄,D[3,2]数值在关联式±15%误差范围内与理论预测结果一致,为不等径开放式撞击流反应器制备复合含能材料的结构优化提供指导。
参考文献
TAMIR A著, 伍沅译. 撞击流反应器: 原理和应用[M]. 北京: 北京化学工业出版社, 1995. [百度学术]
TAMIR A, WU Yuan. Impinging stream reactor: principle and application[M]. Beijing: Chemical Industry Press, 1995. [百度学术]
张建伟, 闫宇航, 沙新力, 等. 撞击流强化混合特性及用于制备超细粉体研究进展[J]. 化工进展, 2020, 39(3): 824-833. [百度学术]
ZHANG Jian‑wei, YAN Yu‑hang, SHA Xin‑li, et al. Advances on impinging stream intensification mixing mechanism for preparing ultrafine powders[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 824-833. [百度学术]
LV J, HU C, BAI M, et al. Experimental investigation of free single jet impingement using SiO2‑water nanofluid[J]. Experimental Thermal and Fluid Science, 2017, 84: 39-46. [百度学术]
张小宁, 王卫民, 徐更光. 高速撞击流技术制备炸药超细微粉的研究[J]. 火炸药学报, 1999, 22(3): 1-4. [百度学术]
ZHANG Xiao‑ning, WANG Wei‑min, XU Geng‑guang. Study on the preparation of ultrafine particle of explosive using the technology of high‑speed impinging streams[J]. Chinese Journal of Explosives and Propellants, 1999, 22(3): 1-4. [百度学术]
HUANG J C P. The breakup of axisymmetric liquid sheets[J]. Journal of Fluid Mechanics, 1970, 43(3): 305-319. [百度学术]
DOMBROWSKI N, FRASER R P. A photographic investigation into the disintegration of liquid sheets[J]. A Philosophical Transactions of the Royal Society of London, Series A, 1954, 247(924): 101-130. [百度学术]
LI R, ASHGRIZ N. Characteristics of liquid sheets formed by two impinging jets[J]. Physics of Fluids,2006,18(8): 087104. [百度学术]
JUNG S, HOATH S D, MARTIN G D, et al. Atomization patterns produced by the oblique collision of two Newtonian liquid jets[J]. Physics of Fluids, 2010, 22(4): 042101. [百度学术]
ERNI P, ELABBADI A. Free impinging jet microreactors: controlling reactive flows via surface tension and fluid viscoelasticity[J]. Langmuir, 2013, 29(25): 7812-7824. [百度学术]
LAI W H, HUANG T H, JIANG T L. Effects of fluid properties on the characteristics of impinging‑jet sprays[J]. Atomization Spray, 2005, 15(4): 457-468. [百度学术]
XIA Y, KHEZZAR L, ALSHEHHI M, et al. Atomization of impinging opposed water jets interacting with an air jet[J]. Experimental Thermal and Fluid Science, 2018, 93: 11-22. [百度学术]
张小宁, 徐更光, 王廷增. 高速撞击流粉碎制备超细HMX 和RDX 的研究[J]. 北京理工大学学报, 1999, 19(5): 120-124. [百度学术]
ZHANG Xiao‑ning, XU Geng‑guang, WANG Ting‑zeng. Preparation of ultra‑fine explosive HMX and RDX using high‑speed impinging streams[J]. Journal of Beijing Institute of Technology, 1999, 19(5): 120-124. [百度学术]
张小宁, 徐更光, 何得昌, 等. 纳米级奥克托今超微颗粒制备技术研究[J]. 兵工学报, 2002, 23(4): 472-475. [百度学术]
ZHANG Xiao‑ning, XU Geng‑guang, HE De‑chang, et al. A study on the preparation technology of nanometer ultra‑fine HMX particle[J]. Acta Armamentarii, 2002, 23(4): 472-475. [百度学术]
陈潜, 何得昌, 徐更光等. 高速撞击流法制备超细HMX炸药[J]. 火炸药学报, 2004, 27(2): 23-25. [百度学术]
CHEN Qian, HE De‑chang, XU Geng‑guang, et al. Preparation of ultrafine particle of HMX explosive using the technology of high‑speeding impinging streams[J]. Chinese Journal of Explosives and Propellants, 2004, 27(2): 23-25. [百度学术]
王杰超. 窄粒度分布含能复合微球的膜乳化辅助制备及性能研究[D]. 太原: 中北大学, 2021. [百度学术]
WANG Jie‑chao. Preparation and performance study of membrane emulsification‑assisted preparation of energetic composite microspheres with narrow particle size[D]. Taiyuan: North University of China, 2021. [百度学术]
ALVISO C T, PEKALA R W. Melamine‑formaldehyde aerogels[J]. Polym Prepr, 1991, 32: 242. [百度学术]
梁鹏飞, 张阿芳, 刘跃军, 等. 一种三喷嘴撞击流快速混合装置: CN202111215945.1[P], 2021. 2022‑01‑04. [百度学术]
LIANG Peng‑fei, ZHANG A‑fang, LIU Yue‑jun, et al. A triple‑impinging jets rapid mixing device: CN202111215945.1[P], 2021. 2022‑01‑04. [百度学术]
KAMPEN J, CIEZKI H, TIEDT T, et al. Some aspects of the atomization behavior of Newtonian and of shear‑thinning gelled non‑Newtonian fluids with an impinging jet injector[C]//42nd AIAA Joint Propulsion Conference and Exhibition, Sacramento, CA, USA, 2006: 1-13. [百度学术]
MA D, CHEN X, KHARE P, et al. Atomization patterns and breakup characteristics of liquid sheets formed by two impinging jets[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 2011: 97. [百度学术]
ZHANG J, LIANG P, LUO Y, et al. Liquid sheet breakup mode and droplet size of free opposed impinging jets by particle image velocimetry[J]. Industrial & Engineering Chemistry Research, 2020, 29: 11296-11307. [百度学术]
ZHANG J, LIANG P, LIU Y. Impingement and breakup characteristics of free opposed impinging jets with unequal nozzle diameter[J]. Experimental Thermal and Fluid Science, 2023, 145: 110884. [百度学术]
BAI F Q, DIAO H, ZHANG M Z, et al. Breakup characteristics of power‑law liquid sheets formed by two impinging jets[J]. Fluid Dynamics Research, 2014, 46: 055506. [百度学术]
TAYLOR G. Formation of thin flat sheets of water[C]//Proceedings of the Royal Society of London, 1960, 259: 1-17. [百度学术]
RANZ W E. Some experiments on the dynamics of liquid films[J]. Journal of Applied Physics, 1959, 12: 1950-1955. [百度学术]