摘要
为提高炸药密度及爆轰能量,将端羟基含氟黏合剂(密度1.40 g·c
图文摘要
The hydroxyl‑terminated fluorine‑containing binder (HTFB) was innovatively applied to increase the explosive density and detonation energy of casting PBX explosive. The effects of curing agents on the viscosity, curing process, curing and mechanical properties were investigated. Rheological property, density and detonation heat of casting PBX explosive based on HTFB system were studied.
关键词
浇注PBX(polymer bonded explosive)炸药具有能量高、低易损性、优异的力学性能、工艺简单等特点,已被广泛应用于常规战斗部装
为了同时满足炸药能量需求及浇注PBX炸药制备工艺需求,创新性地将端羟基含氟黏合剂(HTFB)引入PBX炸药中,其作为液相黏合剂组分,与异氰酸酯类固化剂交联固化,形成PBX炸药网络骨架。本研究考察了固化剂对HTFB黏合剂体系粘度、开放期、凝胶时间、固化成型以及力学性能的影响规律,以惰性黏合剂HTPB为对比,制备HTPB基和HTFB基2种含铝浇注PBX炸药,并表征物料流变性能、炸药成型密度和爆轰性能,为端羟基含氟黏合剂在浇注PBX中应用提供支撑。
试剂:端羟基含氟黏合剂(HTFB),分子量800 g∙mo
HTFB黏合剂胶片样品制备:称取一定量的HTFB、固化剂、催化剂于烧杯中搅拌均匀,在真空条件下脱去气泡后倒入模具中,之后于65 ℃恒温烘箱中固化成型。
浇注PBX炸药样品制备:保持配方固相含量为88%,黏合剂体系为12%,其中HMX含量为53%,铝粉含量为35%。按一定质量比称取53%HMX、35%铝粉、12%HTPB体系或12%HTFB体系于捏合机中混合均匀后,采用真空吸注方式将物料浇注至模具中,之后于65 ℃恒温烘箱中固化成型,开模后药柱外观如

a. PBX‑HTPB

b. PBX‑HTFB
图1 PBX‑HTPB、PBX‑HTFB药柱实图
Fig.1 Photographs of PBX‑HTPB, PBX‑HTFB
流变性能测试:采用安东帕公司MCR102型流变仪表征黏合剂体系和PBX炸药的流变性能。采用动态温度扫描测试端羟基含氟黏合剂体系粘度随温度的变化,从25 ℃匀速升温至70 ℃,升温速率为5 ℃·mi
力学性能测试:HTFB黏合剂胶片样品通过浇铸模具制成哑铃型试样条,采用MTS SANS公司的CMT4202型电子万能试验机,按照GB/T130221991方法测量。测试温度为25 ℃,拉伸速率5 mm·mi
密度测试:采用梅特勒托利多XS204密度仪对PBX样品进行密度测试,测试3组取平均值为样品密度。
端羟基含氟黏合剂活性基团为羟基,可采用异氰酸酯进行交联固

a. original curves

b. partial enlarged curves
图2 HTFB及其固化体系粘度曲线
Fig.2 Viscosity curves of HTFB and its curing system
二官能度异氰酸酯、三官能度异氰酸酯分别与HTFB的固化交联过程示意图见

图3 HTFB与固化剂固化反应示意
Fig.3 The curing reaction of HTFB and curing agent
为研究不同固化剂对HTFB黏合剂体系粘度、开放期、凝胶时间等参数的影响规律,固定固化系数(1.2)及催化剂用量(百万分之六),测试不同黏合剂体系流变参数随时间的变化曲线。为了匹配浇注PBX炸药制备工艺温度,测试温度选择65 ℃,测试50 h,测试结果如

a. complex viscosity

b. modulus
图4 不同黏合剂体系粘度及模量曲线
Fig.4 Viscosity and modulus curves of different adhesive system
由于固化剂结构的不同导致其与黏合剂羟基交联固化后形成的聚氨酯性能差异较大,因此考察不同固化剂对端羟基含氟黏合剂固化成型性能以及力学性能的影响,结果及状态见
binder system | curing properties | tensile strength / MPa | tensile strain / % |
---|---|---|---|
HTFB/TDI |
![]() | brittle fracture | |
HTFB/IPDI |
![]() | brittle fracture | |
HTFB/HDI |
![]() | sticky surface, not cured | |
HTFB/3HDI |
![]() | 40.5 | 23.0 |
在炸药配方设计时,炸药成分间化学相容性影响炸药的安全性和可靠性,首先必须研究组分间的内相容
考虑端羟基含氟黏合剂体系粘度、固化过程、固化成型性能以及力学性能,采用3HDI为固化剂进行浇注PBX炸药配方设计,首先测试端羟基含氟黏合剂体系与炸药组分相容性结果见
component | V / mL | R / mL | result |
---|---|---|---|
HTFB system |
0.6 | - | - |
HMX |
0.1 | - | - |
Al |
0.1 | - | - |
HTFB system/HMX |
0.7 | 0.02 | compatible |
HTFB system/Al |
0.7 | 0.04 | compatible |
Note: 1) results of one component sample with 2.5 g, 2)V and R represent the release gas and the net increase release gas.
端羟基含氟黏合剂密度为1.40 g·c

a. PBX‑HTPB

b. PBX‑HTFB
图5 PBX‑HTPB与PBX‑HTFB物料状态
Fig.5 Material status of PBX‑HTPB, PBX‑HTFB
为进一步定量描述物料流变性能,采用粘度表征物料状态,测试流变曲线如

a. viscosity curve

b. shear stress curve
图6 PBX‑HTPB、PBX‑HTFB流变曲线
Fig.6 Rheological curves of PBX‑HTPB, PBX‑HTFB
相较而言,HTPB基炸药流动性更好。
参照GJB772A-1997方法701.1爆热测试方法准备爆热测试样
sample name | density / g·c | detonation heat / J· |
---|---|---|
PBX‑HTPB | 1.84 | 7311 |
PBX‑HTFB | 1.96 | 7790 |
(1)考察的异氰酸酯固化剂(TDI、IPDI、HDI、3HDI)对HTFB新型黏合剂体系粘度、固化过程、固化成型及力学性能具有显著影响。其中三官能度异氰酸酯作为固化剂更能满足浇注PBX炸药制备工艺及性能需求。
(2)HTFB基浇注PBX炸药制备工艺温度需设置在60 ℃以上,以保证物料在较低粘度下混合均匀且顺利浇注。
(3)HTFB/3HDI粘结体系与炸药组分HMX、Al相容性好。
(4)保持固相含量相同的情况下,与HTPB基PBX炸药对比,端羟基含氟黏合剂基PBX炸药在具备较好浇注流变性能、固化成型质量的同时,密度和爆热均有大幅度提升。因此,端羟基含氟黏合剂在浇注PBX炸药中具有非常好的应用前景。
参考文献
罗观, 黄辉, 张明, 等. 可浇注固化PBX 类含铝炸药低易损性研究[J]. 含能材料, 2004, 12(1): 20-22. [百度学术]
LUO Guan, HUANG Hui, ZHANG Ming, et al. Study on low vulnerability of cast‑cured PBX aluminized explosive[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2004, 12(1): 20-22. [百度学术]
罗观, 殷明, 郑保辉, 等. 高格尼能钝感浇注PBX设计及性能[J]. 含能材料, 2014, 22(4): 487-492. [百度学术]
LUO Guan, YIN Ming, ZHENG Bao‑hui, et al. Design and performance of an insensitive cast PBX with high gurney energy[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2014, 22(4): 487-492. [百度学术]
曹仕瑾, 李忠友, 熊伟强, 等. 低易损浇注HMX‑Al基PBX炸药设计与性能[J]. 含能材料, 2021, 29(7): 650-657. [百度学术]
CAO Shi‑jin, LI Zhong‑you, XIONG Wei‑qiang, et al. Design and performance of a low vulnerability PBX with HMX and Al[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, 29(7): 650-657. [百度学术]
陈俊杰. 端羟基多氟聚醚的合成与固化行为研究[D]. 绵阳: 西南科技大学, 2020. [百度学术]
CHEN Jun‑jie. Study on synthesis and curing behavior of hydroxy‑terminated polyfluoropolyether[D]. Mianyang, Southwest University of Science and Technology, 2020. [百度学术]
王鹏, 李忠友, 李彦荣, 等. 一种高爆热含铝炸药及其制备方法: CN201811597646.7[P], 2019. [百度学术]
WANG Peng, LI Zhong‑you, LI Yan‑rong, et al. High‑explosion‑heat aluminium‑containing explosive and preparation method thereof: CN201811597646.7[P], 2019. [百度学术]
王靖岩, 王义智, 韩志伟. 铝‑氟聚物反应性物质制备及研究进展[J]. 含能材料, 2021, 29(1): 78-86. [百度学术]
WANG Jing‑yan, WANG Yi‑zhi, HAN Zhi‑wei. Preparation and research progress of aluminum‑fluoropolymer reactive materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, 29(1): 78-86. [百度学术]
YARRINGTON C D,GROVEN L J,REEVES R V,et al.The effect of doping on the combustion and reaction kinetics of silicon reactives[J].Combustion and Flame,2013,160(9): 1835-1841. [百度学术]
KETTWICH S C, KAPPAGANTULA K, KUSEL B S, et al. Thermal investigations of nanoaluminum/perfluoropolyether core‑shell impregnated composites for structural energetics[J]. Thermochimica Acta, 2014, 591: 45-50. [百度学术]
KE X, GUO S, GOU B, et al. Superhydrophobic fluorine‑containing protective coating to endow Al nanoparticles with long⁃term storage stability and self⁃activation reaction capability[J]. Advanced Materials Interfaces, 2019, 6(19): 1901025(1-11. [百度学术]
汪慧思, 陶博文, 张小平, 等. 铝/改性氟橡胶复合燃料的制备及应用[J]. 含能材料, 2021, 29(11): 1068-1075. [百度学术]
WANG Hui‑si, TAO Bo‑wen, ZHANG Xiao‑ping, et al. Preparation and application of Al/modified‑fluororubber composite fuel[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, 29(11): 1068-1075. [百度学术]
山西省化工研究所. 聚氨酯弹性体[M]. 山西: 化学工业出版社, 2012: 63‑81. [百度学术]
Shanxi Provincial Institute of Chemical Industry. Polyurethane elastomer[M]. Shanxi: Chemical Industry Press, 2012: 63‑81. [百度学术]
王晓川, 卢先明, 莫洪昌, 等. 三官能度NIMMO‑THF共聚醚含能粘合剂的合成与固化[J]. 含能材料, 2019, 27(7): 603-608. [百度学术]
WANG Xiao‑chuan, LU Xian‑ming, MO Hong‑chang, et al. Synthesis and curing of tri‑functionality NIMMO‑THF copolyether energetic binder[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2019, 27(7): 603-608. [百度学术]
莫高明, 王艳菲, 张若愚, 等.流变和光学法研究PAN/DMSO/H2O体系的凝胶化和相分离行为[J]. 高分子通报, 2016, (9): 162-170. [百度学术]
MO Gao‑ming, WANG Yan‑fei, ZHANG Ruo‑yu, et al. Rheological and optical investigation of the gelation and phase separation behavior for PAN/DMSO/H2O system[J]. Polymer Bulletin, 2016, (9): 162-170. [百度学术]
金韶华, 松全才. 炸药理论[M]. 西安: 西北工业大学出版社, 2010: 125-131. [百度学术]
JIN Shao‑hua, SONG Quan‑cai. Explosive theory[M]. Xi′an: Northwestern Polytechnical University Press, 2010: 125-131. [百度学术]
GJB 772A-97: 炸药试验方法 方法501.2真空安定性试验 压力传感器法[S]. 北京: 国防科工委军标出版发行部出版, 1997. [百度学术]
GJB 772A-97:Explosive test method,method 501.2 vacuum stability test,pressure sensor method[S]. Beijing:Publication and Distribution Department of Military Bidding, Commission of Science,Technology and Industry for National Defense, 1997. [百度学术]
TEIPEL U, 欧育湘(译. 含能材料[M]. 北京: 国防工业出版社, 2009: 372-439. [百度学术]
TEIPEL U, OU Y X(translate). Energetic materials[M]. Beijing: National Defense Industry Press, 2009: 372-439. [百度学术]
唐汉祥. 推进剂料浆流变特性研究[J]. 固体火箭技术, 1994, (3): 28-34. [百度学术]
TANG Han‑xiang. A study on rheological properties of composite propellant slurry[J]. Journal of Solid Rocket Technology, 1994, (3): 28-34. [百度学术]
LI H X, WANG J Y, AN C W. Study on the rheological properties of CL‑20/HTPB casting explosives[J]. Central European Journal of Energetic Materials, 2014, 11(2): 237-255. [百度学术]
刘慧慧, 郑申声, 关立峰, 等. HMX级配对醇醛高聚物粘结炸药流变性能的影响[J]. 含能材料, 2016, 24(10): 978-984. [百度学术]
LIU Hui‑hui, ZHENG Shen‑sheng, GUAN Li‑feng, et al. Effects of HMX gradation on the rheological properties of the aldol based polymer bonded explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016,24(10): 978-984. [百度学术]
欧亚鹏, 闫石, 焦清介, 等. 浇注高聚物粘结炸药的粘结剂体系设计及其应用研究[J]. 兵工学报, 2018, 39(1): 63-70. [百度学术]
OU Ya‑peng, YAN Shi, JIAO Qing‑jie, et al. Design and application of binder system for castable polymer bonded explosive[J]. Acta Armamentarii, 2018, 39(1): 63-70. [百度学术]
史钰, 任全彬, 黄谱, 等. 一种改性HTPB固体推进剂的流变特性及其3D打印成型[J]. 含能材料, 2022, 30(8): 826-832. [百度学术]
SHI Yu, REN Quan‑bin, HUANG Pu, et al. Rheological properties and 3D printing of a modified‑HTPB solid propellant[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2022, 30(8): 826-832. [百度学术]
GJB 772A-97: 炸药试验方法 方法701.1爆热 恒温法和绝热法[S]. 北京: 国防科工委军标出版发行部出版, 1997. [百度学术]
GJB 772A-97: Explosive test methods, method 701.1 explosive, thermostatic method and adiabatic method[S]. Beijing: Publication and Distribution Department of Military Bidding, Commission of Science, Technology and Industry for National Defense, 1997. [百度学术]