摘要
稠环含能化合物由2个或2个以上的共用原子和1个化学键的环构成,具有较大π‑π共轭结构,是一类热门的新型含能材料。含能稠环独特的多环共面结构和较大共轭体系,表现出良好的安定性,同时多个含氮杂环组成的共面结构还使得其具有较高的生成热、较大的环张力和优异的能量水平,能够在高性能和分子稳定性之间取得平衡。含氮桥头类稠环骨架以C—N键为共用键连接多个氮杂环,此类稠环大多具有良好的密度、稳定性和多个可修饰位点,是含能稠环领域中的一类新型含能骨架。本研究简要介绍了近年来报道的氮桥头型含能稠环化合物的合成、爆轰性能和稳定性研究,为该类化合物后续的研究和发展提供一定的参考。
图文摘要
Recent advance in synthesis, detonation properties, stability, and outlook of C—N type fused‑ring energetic materials was reviewed, which will be useful for the energetic community in the future study
含能材料是一种具有亚稳态特性的高能量密度材料。在特定的外界刺激下,它将迅速释放能量并产生大量的气
随着对高能钝感炸药、绿色氧化剂、高效安全起爆药等需求的日益增加,含能材料研究逐渐聚焦于调节含能材料的能量和安定
在兼具高性能和分子稳定性的新型含能骨架中,含能稠环化合物具有平面化的分子结构、良好的热稳定性和高密度等特性,被认为是传统含能材料的有力竞争
常见的含能稠环骨架中相邻的环共用了2个碳原子,此类碳桥头型含能稠环的研究报道较多,例如1,2,3‑三唑(4,5‑e)呋咱(3,4‑b)吡嗪‑6‑氮氧化(TFPO),3,6‑二硝基吡唑[4,3‑c]吡唑‑1,4‑二氨基(LLM‑119)和三硝基三唑并苯等。虽然C—C型稠环骨架具有高氮含量,大共轭结构,平面化等稠环优点,但是其构筑骨架的桥头碳原子,占据了含能官能团的修饰位点,对于含能分子能量的提升十分不利。含氮桥头类稠环骨架以C—N为稠环骨架共用原子,使其保持稠环优点的同时,还丰富了含能骨架种类。近年来,研究者对以含氮桥头类稠环含能材料进行设计合成研究开始逐渐增多。本文将对代表性含氮桥头型含能稠环的合成和性能进行论述。
双环含氮桥头类稠环骨架与其它稠环化合物一样,环合反应是获得新型含能骨架的关键。双环含氮桥头类稠环骨架可综合不同杂环的优势,具有多元化的设计空间。其中,[5,5]‑双环和[5,6]‑双环是双环含氮桥头类稠环骨架常见的2种结构。
2010年,吡唑并三嗪(化合物1)稠环骨架由Dalinger团

Scheme 1 Synthesis of compound
借鉴化合物1的合成方法,2016年,Chavez教授课题

Scheme 2 Synthesis of compounds 2 and
引入1个额外N—O键,能够有效的提高密度和性能。在含氮桥头类稠环骨架上引入N—O键来增加密度,使用稠环的结构来代替叠氮基团,达到降低感度的目的。张嘉恒课题

Scheme 3 Synthesis of compound

a. Synthetic scheme

b. Reaction mechanism
Scheme 4 Synthesis of compound 6 and its salt
在稠环骨架上引入羰基是设计合成更高能和更不敏感的化合物的方法之一。周智明课题
汤永兴

Scheme 5 Synthesis of compounds 6 and
2019年,汤永兴

Scheme 6 Synthesis of compound
2022年,汤永兴

Scheme 7 Synthesis of compound 1
汤永兴

Scheme 8 Synthesis of compound 11 and its salt
2021年,汤永兴

Scheme 9 Synthesis of compound 1

a. synthetic scheme

b. reaction mechanism
Scheme 10 Synthesis of compounds 13 and 1
汤永兴课题
1998年,Chavez和Hiskey合作开发了一系列三唑并四嗪含能化合物(

Scheme 11 Synthesis of compounds 16-2
陈甫雪

Scheme 12 Synthesis of compounds 24 and 2
胡璐

Scheme 13 Synthesis of compounds 28-3
刘应乐课题

Scheme 14 Synthesis of compound 3
2022年,张庆华

Scheme 15 Synthesis of compound 33 and its salt

a. synthetic scheme

b. reaction mechanism
Scheme 16 Synthesis of compounds 34 and 3
1,2,3‑三唑环上有3个连续的氮原子,其生成热可与呋咱相当,高于它的同分异构体1,2,4‑三唑。然而,由于合成、官能团化和选择性困难等原因,与吡唑、咪唑、四唑和1,2,4‑三唑等其他唑类化合物相比,1,2,3‑三唑类含能化合物的研究较少。在此背景下,2021年,冯尚彪
张庆华

Scheme 17 Synthesis of compounds 37 and 3
张庆华

Scheme 18 Synthesis of compound 3
由于合成策略的丰富性以及合成方法的相对简易,含氮桥头类含能化合物的双环含氮桥头类含能化合物的研究多于三环类含氮桥头化合物。部分代表性的双环含氮桥头类含能化合物的物理特性和爆轰性能见
compounds | Td / ℃ | ρ / g·c | ΔfH / kJ·mo | D / m· | p / GP | IS / J | FS / N |
---|---|---|---|---|---|---|---|
2 | 232 | 1.86 | 398.3 | 8700 | 32 | 29 | >360 |
3 | 138 | 1.904 | 378 | 8970 | 35.4 | 10.3 | 258 |
5 | 185 | 1.87 | 631.4 | 9326 | 36.4 | 10 | 160 |
6 | 197 | 1.97 | 218.6 | 9069 | 39.5 | >40 | 324 |
7 | 163 | 1.82 | 811.2 | 8746 | 31.5 | 5 | 120 |
8 | 290 | 1.80 | 446.5 | 8434 | 27.7 | >40 | >360 |
9 | 355 | 1.90 | 344 | 8727 | 32.6 | >60 | >360 |
10 | 265 | 1.94 | 164.8 | 8751 | 32.5 | >60 | >240 |
11‑4 | 201 | 1.83 | 1882 | 9077 | 34.4 | 10 | 240 |
12 | 261 | 1.71 | 302.6 | 7891 | 21.0 | >40 | >360 |
13 | 406 | 1.78 | 127.1 | 7789 | 21.8 | >40 | >360 |
14 | 248 | 1.89 | 314.6 | 8713 | 31.9 | >40 | >360 |
24 | 213 | 1.83 | 656.8 | 8953 | 33.9 | >40 | >360 |
26 | 292 | 1.79 | 634.3 | 8763 | 31.3 | >40 | >360 |
28 | 182 | 1.88 | 486.0 | 9047 | 35.1 | 10 | >160 |
29 | 220 | 1.86 | 744 | 9384 | 39.1 | 25 | 240 |
30 | 138 | 1.91 | 740.9 | 9301 | 38.3 | 3 | >5 |
31 | 114 | 1.93 | 593.0 | 9503 | 41.0 | 1 | 5 |
32 | 232.1 | 1.90 | 7.05 | 7877 | 26.8 | >60 | >360 |
33 | 348 | 1.743 | 189.63 | 7849 | 22.16 | >80 | >360 |
34 | 166 | 1.83 | 790.8 | 8912 | 32.27 | 2 | 10 |
35 | 256 | 1.81 | 415.8 | 8623 | 28.36 | 30 | 360 |
37 | 234 | 1.93 | 348 | 8994 | 34.1 | 20 | >360 |
38 | 217 | 1.84 | 684 | 8819 | 32.4 | 18 | 360 |
39 | 287 | 1.869 | 398 | 8899 | 30.3 | >40 | >360 |
Note: Td is the thermal decomposition temperature (onset) under nitrogen gas (DSC, 5 ℃·mi
对于这类稠环骨架而言,桥头中的氮原子增加了密度和氧平衡。由
就耐热特性而言,通过不同多氮杂环(如吡唑、三嗪和四嗪等)的组装,提升了热分解温度等一系列综合安定性参数。较为突出的有化合物13,其热分解温度高达406 ℃,但是在这类耐热稠环中,爆轰性能往往不理想。而安定性方面,三唑并三唑化合物12,吡唑并三嗪化合物13和14,三唑并四嗪化合物24和26等均对外界刺激不敏感(IS>60 J,FS>360 N)。而具有氮氧化结构的化合物29,则在热稳定、爆轰性能和感度上具有非常的平衡,为新的研究热点。
含氮桥头类稠环骨架除了上述介绍的最近几年的双环含氮桥头类稠环骨架,还涌现了一批其它多环含氮桥头类稠环骨架,尤其是三环的含氮桥头类稠环骨架,具有设计性广泛的优势。大多数三环骨架都是[5,6,5]稠环,分子内氧化偶联的环化反应是这类骨架常用的合成策略,这使得它们大部分具有良好的对称性。
Chavez

Scheme 19 Synthesis of compound 4
汤永兴

Scheme 20 Synthesis of compound 41 and its salt
尹平

Scheme 21 Synthesis of compounds 42 to 4
含能稠环作为阳离子形成离子盐仅有少量报道。2018年,陆明教授课题

Scheme 22 Synthesis of compounds 47 and 4
2021年,于琼

Scheme 23 Synthesis of compounds 49 and 5
汤永兴

Scheme 24 Synthesis of compounds 51 to 5
受限于合成策略限制,多环含氮桥头类含能化合物的研究较少,但仍有部分多环含氮桥头类含能化合物具有良好的物化特性和爆轰性能(
compounds | Td / ℃ | ρ / g·c | ΔfH / kJ·mo | D / m· | p / GP | IS / J | FS / N | Ref. |
---|---|---|---|---|---|---|---|---|
40 | 138 | 1.907 | 787 | 9400 | 38 | 5.3 | 92 |
|
41 | 233 | 1.955 | 758 | 9631 | 44.0 | 10 | 240 |
|
42‑2 | 221 | 1.86 | 393 | 8893 | 35.9 | 35 | 360 |
|
47‑3 | 141.6 | 1.85 | 715.5 | 8942 | 37.38 | 10 | 160 |
|
49 | 247 | 1.76 | 820 | 8544 | 27.3 | >40 | >360 | 50 |
50‑3 | 221 | 1.84 | 732 | 9088 | 32.3 | >40 | >360 | 50 |
51 | 261 | 1.762 | 326.6 | 8135 | 28.1 | 15 | >360 |
|
Note: Td is the thermal decomposition temperature (onset) under nitrogen gas (DSC, 5 ℃·mi
通过N位NH2的偶连反应得到的多环含氮桥头类化合物,具有高密度和高爆速的优点,例如化合物40密度为1.907 g·c
相对偶氮官能团对能量密度的出色贡献而言,引入烷基桥得到的多环含氮桥头类化合物具有感度低,耐热性好的优势,例如化合物51热分解温度为261 ℃,摩擦感度大于360 N。因此,不同桥连单元的选择是调控多环含氮桥头类含能化合物性能的关键。
综上所述,本文对近几年含氮桥头类稠环含能化合物的合成研究进展进行了简要介绍。相对于传统含能骨架,这类新型稠环有望构建爆轰性能更高、感度更低的高能材料。这些稠环骨架因其自身的结构特性,可增强热稳定性和降低对破坏性机械刺激的敏感性,同时这些、稠环骨架具有较高的能量水平。此外,在稠环骨架上引入不同高能基团可改善其性能,用于合理设计和发现新的富氮稠环含能化合物。含氮桥头类稠环含能化合物大多具有平面几何结构,大量的高能N—N键和C—N键和较大的环张力,存在较强的氢键和π‑π相互作用。这些特征的组合有利于提升爆轰性能,同时保持分子的稳定性,为实现高能量与低感度的平衡提供了有效的解决方案。
在含氮桥头类稠环中,通过不同多氮杂环(如吡唑、三嗪和四嗪等)的组装,提升了分子的综合安定性。例如,吡唑并三嗪化合物13的分解温度达到了406 ℃,而且对外界刺激不敏感(IS>60 J,FS>360 N)。考虑到它的低感度和高热稳定性,它们可能在不敏感弹药领域得到应用。相对于不含氮的桥头碳原子骨架,含氮桥头类稠环更有利于实现高能量水平和低感度的平衡,其骨架设计策略在拓展应用上更具有优势。通过共用的C—N键可以在实现长氮链结构的构筑,为化合物带来高氮含量和高生成热。这些有趣的长氮链含能化合物在密度、爆轰性能、冲击和摩擦感度方面具有优越的整体性能优势。例如,四唑并四嗪化合物5氮含量高达72.7%,分解温度为185 ℃,生成热高达631.4 kJ·mo
基于含氮桥头类稠环骨架优秀的综合性能,相关研究已经成为高能材料领域的研究前沿,受到世界各国研究者的广泛关注。然而,该领域的发展仍然面临了一些关键挑战,有待在未来研究工作中突破。首先,一些含氮桥头类稠环骨架的合成步骤相对较长,合成条件较为苛刻。需要发展新型的含能稠环骨架构筑方法,优化合成工艺路线,以满足实际应用中的成本需求和生产安全需求。其次,对于复杂的含能稠环骨架,差异化的位点和反应活性,在致爆基团的引入上带来了一定的困难,相关的修饰方法有待于进一步开发。最重要的是,目前含氮桥头类稠环骨架的大部分研究仍然遵循传统的“先合成再评估”的模式,造成当前研发模式效率不理想。需要在后续的研究工作中,发展先进的结构设计策略,实现这类复杂骨架的精准合成和特定的性能调控,探索这类高能低感含能材料的高效研发模式。
参考文献
YIN Ping, ZHANG Qing‑hua, SHREEVE J M. Dancing with energetic nitrogen atoms: versatile N‑functionalization strategi‑es for N‑heterocyclic frameworks in high energy density materials[J]. Account‑s of Chemical Research, 2016, 49(1): 4-16. [百度学术]
黄辉, 王泽山, 黄亨建,等. 新型含能材料的研究进展[J]. 火炸药学报, 2005, 28(4): 9-13. [百度学术]
HUANG Hui, WANG Ze‑shan, HAUNG Heng‑jian, et al. Researches and progresses of novel energetic materials[J]. Chinese Journal of Explosives & Propellants, 2005, 28(4): 9-13. [百度学术]
HE Chun‑lin, IMLER G H, PARRISHC D A, et al. Energetic salts of 4‑nitramino‑3‑(5‑dinitromethyl‑1,2,4‑oxadiazolyl)‑furazan:powerful alliance towards good thermal stability and high performance[J].J Mater Chem A, 2018, 6(35): 16833-16837. [百度学术]
CHEN Ji‑feng, YU Yi, ZHANG Shu‑juan, et al. Energetic materials with fluorinated four‑membered h‑eterocyclic ring: 3,3′‑Difluoroazetidine (DFAZ) Salts[J]. New Journal of Chemistry, 2019, 43(38):15115-15119. [百度学术]
张计传, 王振元, 王滨燊,等. 富氮稠环含能化合物:平衡能量与稳定性的新一代含能材料[J].含能材料, 2018, 26(11): 983-990. [百度学术]
ZHANG Ji‑chuan, WANG Zhen‑yuan, WANG Bin‑shen, et al. Fused‑ring nitrogen‑rich heterocycle‑s as energetic material‑s: Maintaining a fine balance between performance and stability[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(11): 983-990. [百度学术]
ZHANG Ji‑chuan, DU Yao, DONG Kai, et al. Taming dinitramide anions within an energetic metal‑o‑rganic framework:a new strategy for synthesis and tunable properties of high energy materials[J].Chemistry of Materials, 2016, 28(5): 1472-1480. [百度学术]
PENG Pan‑pan, HU Bao‑ping, LU Fei‑peng, et al. Synthesis of energetic salts containing three heter‑ocyclic anions by a one‑pot condensation reaction[J]. New J Chem, 2019, 43(48): 19069-19074. [百度学术]
霍欢,王伯周,廉鹏,等. 三种稠环硝胺化合物的爆炸性能估算及其硝化母体化合物的合成[J].火炸药学报, 2014, 37(1): 21-30. [百度学术]
HUO Huan, WANG Bo‑zhou, LIAN Peng, et al. Estimation of explosive performances for three f‑used ring nitramine compounds and synthesisof their nitrification parent ring compounds[J]. Chinese Journal of Explosives & Propellants, 2014, 37(1): 21-30. [百度学术]
BODDU V M, VISWANATH D S, GHOSH T K, et al. 2,4,6‑triamino‑1,3,5‑trinitrobenzene (TATB) and TATB‑based formulations‑a review[J]. Journal of Hazardous Materials, 2010, 181(1-3): 1-8. [百度学术]
CADY H H, LARSON A C. The crystal structure of 1,3,5‑triamino‑2,4,6‑trinitrobenzene[J]. Acta Crystallographica, 1965, 18(3): 485-496. [百度学术]
MURAVYEV N V, BRAGIN A A, MONOGAROV K A, et al. 5‑Amino‑3,4‑dinitropyrazole as a promising energetic material[J]. Propellants Explosives Pyrotechnics, 2016, 41(6): 999-1005. [百度学术]
YIN Ping, PARRISH D A, SHREEVE J M. Energetic multifunctionalized nitrnitrosaminopyrazoles and their ionic derivatives: ternary hydrogen‑bond induced high energy density materials[J]. Journal of the American Chemical Society, 2015, 137(14): 4778-4786. [百度学术]
FISCHER N, FISCHER D, KLAPETKE T M, et al. Pushing the limits of energetic materials‑the synthesisand characterization of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422. [百度学术]
ZHOU Jing, ZHANG Jun‑lin, WANG Bo‑zhou, et al. Recent synthetic efforts towards high energy density materials: ho‑w to design high‑performance energetic structures?[J]. FirePhysChem, 2022. DOI: 10.1016/j.fpc.2021.09.005. [百度学术]
GAO Hai‑xiang, ZHANG Qing‑hua, SHREEVE J M. Fused heterocycle‑based energetic materials(2012-2019)[J]. J Mater Chem A, 2020, 8(8): 4193-4216. [百度学术]
LIU W, LIU W L, PANG S P. Structures and properties of energetic cations in energetic salts[J]. RSC Advances, 2017, 7(6): 3617-3627. [百度学术]
ZHANG Peng‑cheng, ZHAO Xiu‑xiu, DU Yao, et al. Polymorphism, phase transformation and energet‑ic properties of 3‑nitro‑1,2,4‑triazole[J]. RSC Advances, 2018, 8(43): 24627-24632. [百度学术]
YAN Qi‑long, COHEN A, PETRUTIK N, et al. Highly insensitive and thermostable energetic co‑ordination nanomaterials based on functionalized graphene oxides[J]. J Mater Chem A, 2016, 4(25): 9941-9948. [百度学术]
YIN Ping, HE Chun‑lin,SHREEVE J M.Fused heterocycle‑based energetic salts: Alliance of pyrazol‑e and 1,2,3‑triazole[J]. J Mater Chem A, 2016, 4(4): 1514-1519. [百度学术]
阳世清,徐松林,黄亨建,等. 高氮化合物及其含能材料[J]. 化学进展, 2008, 20(4): 526-537. [百度学术]
YANG Shi‑qing, XU Song‑lin, HUANG Heng‑jian, et al. High nitrogen compounds and their energy materials[J]. Progress in Chemistry, 2008, 20(4): 526-537. [百度学术]
DALINGER I L, VATSADSE I A, SHKINEVA T K, et al. Nitropyrazoles[J]. Russ Chem Bull, 2010, 59(8):1631-1638. [百度学术]
SCHULZE M C, SCOTT B L, CHAVEZ D E. A high density pyrazolo‑triazine explosive (PTX)[J]. J Mater Chem A, 2015, 3(35): 17963-17965. [百度学术]
PIERCEY D G, CHAVEZ D E, SCOTT B L, et al. An energetic triazolo‑1,2,4‑triazine and its N‑oxide[J]. Angew Chem Int Ed, 2016, 55(49): 15315-15318. [百度学术]
WEI Hao, ZHANG Jia‑heng, SHREEVE J M. Synthesis, characterization, and energetic properties of 6‑amino‑tetrazolo[1,5‑b]‑1,2,4,5‑tetrazine‑7‑N‑oxide: A nitrogen‑rich material with high density[J]. Chemistryan Asian Journal, 2015, 10(5): 1130-1132. [百度学术]
BIAN Cheng‑ming, DONG Xiao, ZHANG Xiu‑hui, et al. The unique synthesis and energetic properties of novel fused heterocycle: 7‑nitro‑4‑oxo‑4,8‑dihydro‑[1,2,4]triazolo[5,1‑d][1,2,3,5]tetrazine 2‑oxid‑e and its energetic salts[J]. J Mater Chem A, 2015, 3(7): 3594-3601. [百度学术]
HUANG Wei, TANG Yong‑xing, IMLER G H, et al. Nitrogen‑rich tetrazolo[1,5‑b]pyridazine: Promisingbuilding block for advanced energetic materials[J]. J Am Chem Soc, 2020, 142(7): 3652-3657. [百度学术]
TANG Yong‑xing, HE Chun‑lin, IMLER G H, et al. Aminonitro groups surrounding a fused pyrazolo‑triazine ring: A supe‑rior thermally stable and insensitive energetic material[J]. ACS Appl Energy Mater, 2019, 2(3): 2263-2267. [百度学术]
ZENG Zhi‑wei, LIU Yu‑ji, HUANG Wei, et al. Radical‑mediated C─N bond activation in 3,5‑diamino‑4‑nitro‑1H‑pyrazole towards high‑energy and insensitive energetic materials[J]. Journal of Materia‑ls Chemistry A, 2022, 10(15): 8268-8272. [百度学术]
TANG Yong‑xing, HE Chun‑lin, IMLER G H, et al. High‑performing and thermally stable energetic 3,7‑Diamino‑7H‑[1,2,4]triazolo[4,3‑b][1,2,4]triazole derivatives[J]. Journal of Materials Chemistry A, 2017, 5(13): 6100-6105. [百度学术]
TANG Yong‑xing, AN Zi‑wei, CHINNAM A K, et al. Very thermostable energetic materials based on a fused‑triazole: 3,6‑diamino‑1H‑[1,2,4]triazolo[4,3‑b][1,2,4]triazole[J]. New J Chem, 2021, 45(1): 85-91. [百度学术]
TANG Yong‑xing, MA Jin‑chao, IMLER G H, et al. Versatile functionalization of 3,5‑diamino‑4‑nitrop‑yrazole for promising insensitive energetic compounds[J]. Dalton Trans, 2019, 48(3):14490-14496. [百度学术]
MA Jin‑chao, TANG Yong‑xing, CHENG Guang‑bin, et al. Energetic derivatives of 8‑nitropyrazolo[1,5‑a][1,3,5]triazine‑2,4,7‑triamine: Achieving balanced explosives by fusing pyrazole with triazine[J].Org Lett, 2020, 22(4): 1321-1325. [百度学术]
CHAVEZ D E, HISKEY M A. Synthesis of the bi‑Heterocyclic parent ring system 1,2,4‑triazolo[4,3‑b][1,2,4,5]tetrazine and some 3,6‑disubstituted derivatives[J]. J Heterocycl Chem, 1998, 35(6): 1329-1332. [百度学术]
WANG Gui‑long, LU Tian, FAN Gui‑juan, et al. Synthesis and properties of insensitive [1,2,4]triazol‑o[4,3‑b]‑1,2,4,5‑tetrazine explosives[J]. New J Chem, 2019, 43(4): 1663-1666. [百度学术]
HU Lu, YIN Ping, IMLER G H, et al. Fused rings with N‑oxide and ─NH2: Good combination for high density and low sensitivity energetic materials[J]. Chem Commun, 2019, 55(61): 8979-8982. [百度学术]
HU Lu, HE Chun‑lin, ZHAO Gang, et al. Selecting suitable substituents for energetic materials based on a fused triazolo‑[1,2,4,5]tetrazine ring[J]. ACS Appl Energy Mater, 2020, 3(6): 5510-5516. [百度学术]
HU Lu, YIN Ping, ZHAO Gang, et al. Conjugated energetic salts based on fused rings: Insensitive and highly dense materials[J]. J Am Chem Soc, 2018, 140(44): 15001-15007. [百度学术]
HU Lu, GAO Hai‑xiang, SHREEVE J M. Challenging the limits of nitrogen and oxygen content of fused rings[J]. J Mater Chem A, 2020, 8(34): 17411-17414. [百度学术]
KANG Yun‑jie, DONG Yu‑ting, LIU Ying‑le, et al. Halogen bonding (C—F…X) and its effect on creating ideal insensitive energetic materials[J]. Chemical Engineering Journal, 2022, 440, 135969. DOI: 10.1016/j.cej.2022.135969. [百度学术]
CAO Yu‑teng, CAI Zi‑wu, XIA Hong‑lei, et al. Simple reaction to prepare a heat‑resistant and insensitive explosive(2‑nitro‑[1,2,4]triazolo[1,5‑a][1,3,5]triazine‑5,7‑diamine) and its derivatives[J]. Chemical Engineering Journal, 2022, 432, 134297. DOI: 10.1016/j.cej.2021.134297. [百度学术]
FENG Shang‑biao, YIN Ping, HE Chun‑lin, et al. Tunable dimroth rearrangement of versatile 1,2,3‑t‑riazoles towards high‑performance energetic materials[J]. Journal of Materials Chemistry A, 2021, 9(20): 12291-12298. [百度学术]
CHEN Si‑tong, ZHANG Wen‑quan, WANG Yi, et al. [1,2,4]Triazolo[4,3‑b]pyridazine as a building block towards low‑sensitivity high‑energy materials[J]. Chemical Engineering Journal, 2021, 421, 129635. DOI: 10.1016/j.cej.2021.129635. [百度学术]
CHEN Si‑tong, LIU Yu‑ji, FENG Yong‑an, et al. 5,6‑Fused bicyclic tetrazolo‑pyridazine energetic materials[J]. Chem Commun, 2020, 56(10): 1493-1496. [百度学术]
CHAVEZ D E, BOTTARO J C, PETRIE M, et al. Synthesis and thermal behavior of a fused, tricyclic 1,2,3,4‑tetrazine ring system[J].Angewandte Chemie,2015,127(44):13165-13167. [百度学术]
TANG Yong‑xing, KUMAR D, SHREEVE J M. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4‑tetrazine[J]. J Am Chem Soc, 2017, 139(39): 13684-13687. [百度学术]
YIN Ping, ZHANG Jia‑heng, IMLER G H, et al. Polynitro‑functionalized dipyrazolo‑1,3,5‑triazinanes: Energetic polycyclization toward high density and excellent molecular stability[J]. Angew Chem Int Ed, 2017, 56(30): 8834-8838. [百度学术]
XU Yuan‑gang, ZHU Zhong‑qin, SHEN Cheng, et al. In situ synthesized energetic salts based on the C—N fused tricyclic 3,9‑diamine‑6,7‑dihydro‑bis(triazolo)‑tetrazepine cation: a family of high‑performance energetic materials[J]. Propellants Explos Pyrotech, 2018, 43(6): 595-601. [百度学术]
YU Qiong, SINGH J, STAPLES R J, et al. Assembling nitrogen‑rich, thermally stable, and insensitive energetic materials by polycyclization[J]. Chemical Engineering Journal, 2022, 431, 133235. DOI: 10.1016/j.cej.2021.133235. [百度学术]
TANG Yong‑xing, HE Chun‑lin, IMLER G H, et al. Ring closure of polynitroazoles via an N,N′‑alkylene bridge: towards high thermally stable energetic compounds[J]. European Journal of Organic Chemistry, 2018, (19): 2273-2276. [百度学术]