摘要
以粒径为200~300 μm的硅藻土颗粒作为乳化基质的载体来制备低爆速乳化炸药。对硅藻土的微观性能进行表征,分析硅藻土质量分数对炸药的粒径和爆轰机理的影响,测量炸药的密度、爆速、空中爆炸冲击波压力,并进行了硅藻土与乳化基质的相容性测试。结果表明,当硅藻土质量分数由15%增加至35%时,炸药粒径与硅藻土含量呈现负相关,炸药的密度由0.79 g·c
图文摘要
Using diatomite as carrier, the emulsion explosive was prepared and the detonation performance was tested. The particle size change of the explosives was analyzed by laser particle sizer, and the compatibility of diatomite with the emulsified matrix was characterized by TG, XRD and storage experiments.
低爆速炸药通常是在粉状硝铵类炸药中加入适量氯化钠、珍珠岩或矿物粉等惰性添加剂来降低炸药能量密度,用于爆炸焊接、光面爆破和地质勘探
硅藻土因其具有空隙率大、比表面积大、吸附能力好、容重小、熔点高、化学性质稳定且具有较好的结构强度等工艺特性,20世纪70年代以来,以其卓越的性能大量作为载体物质,被广泛应用于轻工、化工、建材等领
试剂:硝酸铵(AN),湖北凯龙楚兴化工集团有限公司;硝酸钠(SN),无锡市富友化工有限公司;柴油、机油、高分子乳化剂(聚异丁烯丁二酰亚胺,T‑152),江南化工股份有限公司;硅藻土,长白朝鲜自治县鑫鑫硅藻土有限公司,平均粒径为200~300 μm,堆积密度0.25~0.27 g·c
仪器:JFS‑550变速分散机,杭州齐威仪器有限公司;BSW‑3A型爆速测试仪,湖南湘西州奇搏矿山仪器厂;TESCAN VEGA3 SBH扫描电镜‑能谱仪,广州贝拓科学技术有限公司;MS2000激光粒度仪,英国马尔文仪器有限公司;TGA2型热重分析仪,瑞士METTLER TOLEDO公司;Ultima型X射线衍射仪,日本理学公司;CY‑YD‑202压力传感器,YE5853电荷放大器,江苏联能电子技术有限公司;JEA502电子天平,昆山国晶电子有限公司;滴定管,烧杯,密度测量杯。
按照

图1 低爆速乳化炸药的制备流程
Fig.1 Preparation process of low detonation velocity emulsion explosive
(1)硅藻土的成分与结构表征:通过能谱仪分析硅藻土的主要成分。用扫描电镜观察单个硅藻土颗粒微观外形和内部空
(2)炸药粒度测试:使用激光粒度仪对制得的炸药颗粒进行粒度测
(3)硅藻土质量分数对乳化炸药密度和爆速的影响:用密度测量杯测量炸药的堆积密度,测量3组取平均值。
采用爆速测量仪测量不同硅藻土质量分数的炸药爆速变化,测量爆速实验的聚氯乙烯管外径为32 mm,内径28 mm,长度500 mm。两探针间距为60 mm,测试2组取平均
(4)空中爆炸冲击波压力测试:分别称取硅藻土质量分数为15%、20%、25%、30%的乳化炸药50 g。在爆炸容器内,将乳化炸药用聚乙烯塑料袋包裹成球形,固定于爆炸容器中央,距压力传感器60 cm(如

图2 空中爆炸冲击波压力试验装置示意图
Fig.2 Schematic diagram of air explosion shock wave pressure test device
(5)乳化基质与硅藻土的相容性测试:采用热重分析仪对制备的乳化基质和不同硅藻土质量分数的乳化炸药进行热重实验;测试条件:样品质量(3±0.2) mg,升温速率为5,10,15 ℃·mi
对硅藻土进行能谱分析,获取其元素分布和元素质量比例,得出样品的基本成分。能谱分析如

图3 样品能谱分析图
Fig.3 The energy spectrum analysis of the sample
用扫描电镜观察单个硅藻土颗粒微观外形和内部空隙分别见图

a. shape of diatomite

b. internal structure of diatomite
图4 硅藻土颗粒外形和内部结构扫描电镜图
Fig.4 SEM images of diatomite particle shape and internal structure
为分析硅藻土质量分数对乳化炸药形貌及粒径变化的影响,分别将质量分数为5%、10%、15%、20%、25%、30%的硅藻土颗粒与乳化基质进行分散混合,炸药样品形貌见

a. 5%

b. 10%

c. 15%

d. 20%

e. 25%

f. 30%
图5 不同硅藻土质量分数的炸药样品形貌
Fig.5 Morphologies of explosive samples with different mass fractions of diatomite
从
对硅藻土样品和硅藻土质量分数为15%、20%、25%、30%的乳化炸药粒度分析如

图6 硅藻土样品和不同硅藻土质量分数的乳化炸药粒度
Fig.6 Diatomite sample and particle size of emulsified explosive with different mass fraction of diatomite
由
将单个硅藻土颗粒近似为一个球体,当乳化基质包覆每个硅藻土颗粒表面后,设乳化基质均匀包覆每个颗粒,如

a. individual diatomaceous earth particles are
coated with an emulsified matrix

b. schematic of adjacent explosive particles
图7 乳化基质包覆硅藻土颗粒示意图
Fig.7 Schematic diagram of diatomite particles coated by emulsified matrix
则包覆厚度可推导为:
(1) |
(2) |
式中,l为乳化基质包覆厚度,μm;V为加入乳化基质的体积,
由
对硅藻土质量分数分别为5%、10%、15%、20%、25%、30%、35%、40%的乳化炸药进行密度和爆速测试,测试结果见
Note: ω is the mass fraction of diatomaceous earth in % units, D is the explosive explosion velocity, the unit is m·
由
当硅藻土质量分数为15%时,爆速为2561 m·
乳化炸药的密度随着硅藻土质量分数增加而降低,根据混合炸药理论密度公式为
(3) |
式中,ρt为炸药理论密度,g·c
炸药空隙率公式为
(4) |
式中,ρw为炸药测试密度,g·c
通过Origin2019软
(5) |
式中,D为爆速,m·
分析认为,当炸药中硅藻土质量分数达到15%时,炸药形貌完全为粉状,硅藻土颗粒被乳化基质包覆形成炸药颗粒。不仅有乳化基质包覆硅藻土颗粒的空隙,同时炸药颗粒之间形成的空隙也增多。如

图8 粉状炸药起爆原理示意图
Fig.8 Schematic diagram of initiation principle of powdery explosive
当硅藻土质量分数由15%增加至35%时,炸药爆速和密度随着硅藻土质量分数的增加而降低。这是由于硅藻土质量分数的增多,炸药的密度下降,单位质量炸药的乳化基质量降低,而硅藻土颗粒的主要成分为SiO2,在爆炸反应时不参与反应,稀释了爆轰反应区的能量,降低了前沿冲击波的压力,进而降低了炸药爆轰传播的速度。当硅藻土质量分数为40%时,硅藻土质量分数较大,炸药的密度降到0.47 g·c
对硅藻土质量分数为15%、20%、25%、30%、35%的乳化炸药进行空中爆炸冲击波压力测试,其空中爆炸冲击波压力‑时间曲线如

图9 不同硅藻土质量分数乳化炸药冲击波超压‑时间曲线
Fig.9 Pressure‑time curves of air shock wave of emulsified explosive with different diatomite contents
由
乳化炸药在其储存或者运输过程中都会产生缓慢的热分解反应,若热量不能及时释放,就有可能造成热量聚集导致爆炸等严重后

a. 0%

b. 15%

c. 20%

d. 25%
图10 乳化基质和乳化炸药的TG曲线
Fig.10 TG curves of emulsion matrix and emulsion explosive
从
对硅藻土和热重实验后的3种不同硅藻土含量的乳化炸药残留物取样进行X射线衍射分析,其XRD衍射图如

图11 硅藻土和乳化炸药残留物的XRD衍射图
Fig 11 XRD patterns of diatomite and emulsion explosive residues
抽取硅藻土质量分数为15%、20%、25%的乳化炸药在储存期为2 d和120 d,任取其中一个颗粒观测到的扫描电镜图见

a. 15 %

b. 20%

c. 25%
图12 储存期为2 d与120 d的炸药颗粒扫描电镜图
Fig.12 SEM images of explosive particles stored for 2 d and 120 d
Note: vD is the detonation velocity of the explosive, The pm is the peak pressure of the air blast shock wave,S(0.5) is the average particle size of the explosive.
从
(1)硅藻土颗粒外形不规整,其内部为微米级空隙结构,当乳化基质与硅藻土分散混合时,乳化基质包覆在硅藻土颗粒表面,并封闭着空隙,使得低爆速乳化炸药具有一定的自敏化功能。
(2)实验结果表明,当硅藻土质量分数增至15%时,炸药形貌开始呈现粉状。当硅藻土质量分数为15%~35%时,炸药的密度由0.79 g·c
(3)通过TG实验证明硅藻土的加入对乳化基质的热安定性没有明显影响,XRD衍射证明硅藻土与乳化基质在常温或加热时不会相互反应。对比储存期为2 d和120 d的硅藻土含量为15%、20%、25%的低爆速乳化炸药,炸药颗粒粒径未发生变化。观察炸药微观形貌,乳化基质未出现析晶脱落现象,其爆速和空中爆炸冲击波超压降幅均小于5%,说明该低爆速乳化炸药具有较好的储存稳定性,硅藻土和乳化基质相容性良好。
参考文献
Sherpa B B, Kumar P D, Upadhyay A, et al. Low Velocity of Detonation Explosive Welding (LVEW) Process for Metal Joining[J]. Propellants, Explosives, Pyrotechnics,2020,45(10):1554-1565. [百度学术]
黄文尧,余燕,吴红波,等. 低爆速膨化铵油爆炸焊接炸药的实验研究[J]. 含能材料,2012,20(6):784-788. [百度学术]
HUANG Wen‑yao, YU Yan, WU Hong‑bo, et al. Experimental study on expanded ANFO explosive of low detonation velocity used in exlosive welding[J]. Chinese Journal of Energetic Materials, 2012,20(6):784-788. [百度学术]
堵平,黄东定,王泽山.一种低爆速炸药及其在地震勘探中的应用[J].兵工学报,2005,26(4):465-468. [百度学术]
DU Ping,HUANG Dong‑ding,WANG Ze‑shan. Application of low detonation velocity explosive in geologic exploration[J]. Acta Armanentarii, 2005,26(4):465-468. [百度学术]
Sil’Vestrov V V, Plastinin A V. Investigation of low detonation velocity emulsion explosives[J]. Combustion, Explosion, and Shock Waves,2009,45(5):124‑133. [百度学术]
汪旭光.乳化炸药[M].第2版.北京:冶金工业出版社,2008. [百度学术]
WANG Xu‑guang. Emulsion explosive[M]. 2nd Edition. Beijing: Metallurgical Industry Press,2008. [百度学术]
黄文尧,张凯,吴红波,等.低爆速爆炸焊接乳化炸药的制备与性能[J].含能材料,2013,21(3):357-362. [百度学术]
HUANG Wen‑yao, ZHANG Kai, WU Hong‑bo, et al. Preparation and performance of low detonation velocity emulsion explosives used in explosive welding[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2013, 21(3): 357-362. [百度学术]
李雪交, 缪广红, 杨明, 等. 蜂窝型低爆速乳化炸药的制备及应用[J].火炸药学报,2018,41(2):153-158. [百度学术]
LI Xue‑jiao, MIAO Guang‑hong, YANG Ming, et al. Preparation and application of low detonation emulsion explosive with honeycomb structure[J]. Chinese Journal of Explosives & Propellants, 2018,41(2):153-158. [百度学术]
周国安,马宏昊,沈兆武,等.以黏土颗粒为惰性剂的低爆速乳化炸药爆炸性能及爆轰机理[J].火炸药学报,2018,41(3):289-293. [百度学术]
ZHOU Guo‑an, MA Hong‑hao, SHEN Zhao‑wu, et al. Detonation properties and mechanism of low detonation velocity emulsion explosives with clay particles as the inert agents[J]. Chinese Journal of Explosives & Propellants, 2018,41(3):289-293. [百度学术]
高玉刚.珍珠岩对乳化炸药爆炸性能的影响[J].火工品,2021(2):49-52. [百度学术]
GAO Yu‑gang. The effect of perlite on explosion property of emulsion explosive[J]. Initiators & Pyrotechnics, 2021(2):49-52. [百度学术]
YONG Deng, LI Jin‑hong, QIAN Ting‑ting, et al. Preparation and characterization of KNO3/diatomite shape‑stabilized functionalization of diatomite and its applications[J]. Materials Reports, 2020,34(3):23-33. [百度学术]
彭立华,顾晓滨,刘鹏,等.硅藻土基相变储能材料研究进展[J].硅酸盐学报,2021,49(5):1006-1016. [百度学术]
PENG Li‑hua, GU Xiao‑bin, LIU Peng, et al. Diatomite based change energy storage materials‑a short review[J].Journal of the Chinese Ceramic Society, 2021,49(5):1006-1016. [百度学术]
王学凯,王金淑,杜玉成,等.硅藻土功能化及其应用[J].材料导报,2020,34(3):23-33. [百度学术]
WANG Xue‑kai, WANG Jin‑shu, DU Yu‑cheng, et al. Functionalization of diatomite and its applications[J]. Materials Reports, 2020,34(3):23-33. [百度学术]
黄文尧,颜事龙.炸药化学与制造[M].第1版.北京:冶金工业出版社,2009. [百度学术]
HUANG Wen‑yao, YAN Shi‑long. Explosives Chemistry And Production[M]. 1nd Edition. Beijing: Metallurgical Industry. [百度学术]
程扬帆,方华,沈兆武,等.乳化炸药中空功能微囊的制备方法及性能表征[J].含能材料,2019,27(9):792-800. [百度学术]
CHENG Yang‑fan, FANG Hua, SHEN Zhao‑wu, et al. Preparation and application of functional hollow microcapsules in emulsion explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2019,27(9):792-800. [百度学术]
周德志,曹小华,占昌朝,等.H3PW12O40/酸改性硅藻土催化剂的制备、表征及催化合成乙酸正丁酯[J].化工进展,2020,39(2):554-560. [百度学术]
ZHOU De‑zhi, CAO Xiao‑hua, ZHAN Chang‑chao, et al. Preparation, characterization of acid modified diatomite supported H3PW12O40 and its catalytic performance for n‑butyl acetate synthesis[J]. Chemical Industry and Engineering Progress, 2020,39(2):554-560. [百度学术]
吴攀宇,刘锋,魏国,等.动态挤压对现场混装乳化炸药稳定性的影响[J].含能材料,2021,29(12):1160-1167. [百度学术]
WU Pan‑yu, LIU Feng, WEI Guo, et al. Influence of dynamic extrusion on stability of field mixed emulsion explosive[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021,29(12):1160-1167. [百度学术]
国家质量监督检验检疫总局.GB/T 13228-2015:工业炸药爆速测定方法[S].北京:中国标准出版社,2015. [百度学术]
Hua Fang, Yang‑Fan Cheng, Hong Su, et al. Effects of content and particle size of cenospheres on the detonation characteristics of emulsion explosive[J]. Journal of Energetic Materials,2021,39(2):197-214. [百度学术]
孙剑锋,张红,梁金生,王菲,段昕辉,王亚平.生态环境功能材料领域的研究进展及学科发展展望[J].材料导报,2021,35(13):13075-13084. [百度学术]
SUN Jian‑feng, ZHANG Hong, LIANG Jin‑sheng, et al. Research & development of the field of ecological environment functional material and its discipline prospect[J]. Materials Reports, 2021,35(13):13075-13084. [百度学术]
任俊, 沈健,卢寿慈.颗粒分散科学与技术[M].第2版.北京:化学工业出版社,2020. [百度学术]
REN Jun, SHEN Jian, LU Shou‑ci. KELI FENSAN KEXUE YU JISHU[M]. 1nd Edition. Beijing: Chemical Industry Press,2020. [百度学术]
吴红波,杨柳,沈占军,张续,高郁凯.二甲基亚砜对乳胶基质耐低温性能及热分解特性的影响[J].含能材料,2022,30(3):242‑249. [百度学术]
WU Hong‑bo, YANG Liu, SHEN Zhan‑jun,et al. Effect of dimethyl sulfoxide on low temperature resistance and thermal decomposition of emulsion explosive matrix[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2022,30(3):242-249. [百度学术]