摘要
(C6H14N2)[Na(ClO4)3]是新型含能钙钛矿化合物的典型代表,需明确其热分解行为、热分解机制及感度特性,以推动其在配方中的应用。以差示扫描量热‑热重分析方法实现了分解放热量、分解温度等参数的获取;以动力学模拟计算解析了相关分解机理;以同步热分析‑红外‑质谱联用技术结合原位红外技术探索了(C6H14N2)[Na(ClO4)3]的分解产物及分解历程;以国军标法获得了热感度、摩擦感度与撞击感度参数。结果表明:在10 ℃·mi
图文摘要
The thermal behaviors and decomposition mechanism of (C6H14N2)[Na(ClO4)3] were investigated by both experimental and calculation methods. The decomposition mechanism was analyzed by kinetic simulation calculation software, while the decomposition products and decomposition processes of (C6H14N2)[Na(ClO4)3] were explored by DSC/TG‑FTIR‑MS technique combined with in‑situ infrared technology. The parameters of thermal sensitivity, friction sensitivity and impact sensitivity were obtained by the military standard methods.
耐热含能材料广泛应用于航天事业及深井爆破等领
新型含能钙钛矿化合物的典型代表(C6H14N2)[Na(ClO4)3]由陈小明
原料:DABCO、高氯酸及高氯酸钠,化学纯,西安近代化学研究所。(C6H14N2)[Na(ClO4)3]制备按照文献报道方法完
仪器:Q200差示扫描量热仪(美国,TA)、60 SXR原位红外光谱仪(美国,Nicolet),YC‑1C型真空安定性试验仪、同步热分析‑红外‑质谱(DSC·TG‑FTIR‑MS)联用系统(由德国耐驰STA449F3、德国耐驰QMS403C和布鲁克70vFTIR组成)、ML‑1型撞击感度仪、WM‑1摩擦感度仪、爆发点测试仪。
同步热分析‑红外‑质谱(DSC·TG‑FTIR‑MS)联用实验,样品量0.4 mg,温度范围40~600 ℃,铝坩埚,吹扫气为高纯氮气,吹扫速率50 mL·mi
DSC实验,样品量0.4 mg,温度范围40~600 ℃,铝坩埚,吹扫气为高纯氮气,吹扫速率为50 mL·mi
原位红外实验,样品量0.5 mg,升温速率10 ℃·mi
真空安定性实验按照GJB772A-1997方法501.1进行测试,实验温度(100±0.5) ℃,恒温48 h。
撞击感度测定按照GJB772A-1997方法601.2进行测试,落锤重10 kg,药量50 mg,落锤高度25 cm;撞击感度用爆炸概率P1表示。
摩擦感度测定按照GJB772A-1997方法602.1进行测试,表压3.92 MPa,摆角90°,药量20 mg,摩擦感度用爆炸概率P2表示。
5 s爆发点测试按照GBJ 772A-1997炸药试验法606.1完成,药量30 mg。
在10 ℃·mi

图1 (C6H14N2)[Na(ClO4)3]结构
Fig.1 Structure of (C6H14N2)[Na(ClO4)3]

图2 10 ℃·mi
Fig.2 DSC‑TG curves of (C6H14N2)[Na(ClO4)3] at the heating rate of 1

图3 10 ℃·mi
Fig.3 DSC curve of DABCO at the heating rate of 10 ℃·mi

图4 不同升温速率下 (C6H14N2)[Na(ClO4)3]下的DSC曲线
Fig.4 DSC curves of (C6H14N2)[Na(ClO4)3] at different heating rates
Note: β, heating rate;TP, decomposition peak temperature; ΔH, heat release.

图5 (C6H14N2)[Na(ClO4)3]的分解活化能Ea随分解深度α的变化
Fig.5 Changes of the decomposition activation energy Ea of (C6H14N2)[Na(ClO4)3] with the decomposition depth α
(C6H14N2)[Na(ClO4)3]的骨架是基于N

图6 10 ℃·mi
Fig.6 MS spectra of gaseous products of (C6H14N2)[Na(ClO4)3] at the heating rate of 10 ℃·mi

图7 10 ℃·mi
Fig.7 IR spectra of gaseous products of (C6H14N2)[Na(ClO4)3] at the heating rate of 10 ℃·mi
为进一步阐明(C6H14N2)[Na(ClO4)3]分解机理,采用原位红外技术对比分析(C6H14N2)[Na(ClO4)3]及DABCO受热分解的固相分解产物

a. (C6H14N2)[Na(ClO4)3]

b. DABCO
图8 1
Fig.8 IR spectra of condensed products of (C6H14N2)[Na(ClO4)3] and DABCO at the heating rate of 1

图9 高氯酸铵的红外谱图
Fig.9 IR spectra of NH4ClO4
根据GJB772A-1997中,采用真空安定性方法和5 s爆发点测试对(C6H14N2)[Na(ClO4)3]的热感度进行了初步探索,并研究了其安全性能。(C6H14N2)[Na(ClO4)3]的5 s爆发点233 ℃,真空安定性实验结果表明,(C6H14N2)[Na(ClO4)3]在100 ℃下加热48 h,放气量约0.04 mL·
(1)本研究对新型含能钙钛矿(C6H14N2)[Na(ClO4)3]的热分解热行为、分解动力学、分解机理以及安全性等进行了全面的研究探讨。
(2)(C6H14N2)[Na(ClO4)3]具有优异的热稳定性,属于耐热含能结构,其分解放热量为4227 J·
(3)采用Friedman无模型方法计算,(C6H14N2)[Na(ClO4)3]整个分解反应过程中活化能和指前因子基本不变,(C6H14N2)[Na(ClO4)3]的分解为一步反应,且反应过程中活化能为175 kJ·mo
(4)加热条件下有机阳离子H2DABC
(5)(C6H14N2)[Na(ClO4)3]撞击感度P1为32%,摩擦感度P2为80%,机械感度水平低于RDX、HMX等代表性现役含能化合物。
参考文献
ZHOU J, DING L, BI F Q, et al. Research on the thermal behavior of novel heat resistance explosive 5,5′‑bis(2,4,6‑trinitrophenyl)‑2,2′‑bi(1,3,4‑oxadiazole)[J]. Journal of Analytical & Applied Pyrolysis, 2018, 129: 189-194. [百度学术]
MA Q, FAN G J, LIAO L Y, et al. Thermally stable energetic salts composed of heterocyclic anions and cations based on 3,6,7‑triamino‑7 H‑s‑triazolo[5,1‑c]‑s‑triazole: Synthesis and intermolecular interaction study[J]. Chem Plus Chem, 2017, 82(3): 474-482. [百度学术]
LI C, ZHANG M, CHEN Q S, et al. Three‑dimensional metal‑organic framework as super heat‑resistant explosive: Potassium 4‑(5‑amino‑3‑nitro‑1H‑1,2,4‑triazol‑1‑yl)‑3,5‑dinitropyrazole[J]. Chemistry‑A European Journal, 2017, 23(7): 1490-1493. [百度学术]
WANG Q Y, WANG S, FENG X, et al. A heat‑resistant and energetic metal‑organic framework assembled by chelating ligand[J]. ACS Applied Materials & Interfaces, 2017, 9(43): 37542-37547. [百度学术]
LIU W,LIN Q H,YANG Y Z, et al. Energetic salts based on an oxygen‑containing cation: 2,4‑Diamino‑1,3,5‑triazine‑6‑one[J]. Chemistry‑An Asian Journal, 2014, 9(2): 479-486. [百度学术]
SIKDER A K, SIKDER N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications[J]. Journal of Hazardous Materials, 2004, 112(1-2): 1-15. [百度学术]
张俊林,周静,毕福强,等.芳香耐热含能化合物合成研究进展[J]. 含能材料, 2017, 25(10): 873-880. [百度学术]
ZHANG Jun‑lin, ZHOU Jing, BI Fu‑qiang, et al. Progress on synthesis of heat‑resistant aromatic energetic compounds[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(10):873-880. [百度学术]
ZHOU J, DING L, ZHU Y, et al. Comparative thermal research on tetraazapentalene‑derived heat‑resistant energetic structures[J]. Scientific Reports, 2020, 10, 21757. [百度学术]
LIU N, ZHANG Q, DUAN B H, et al. Comparative study on thermal behavior of three highly thermostable energetic materials: z‑TACOT, PYX, and TNBP[J]. Fire Phys Chem, 2021, 1(1): 61-69. [百度学术]
ZHANG W X, CHEN S L, ZHANG Y, et al. Molecular perovskites as a new platform for designing advanced multi‑component energetic crystals[J]. Energetic Materials Frontiers, 2020, 1(3-4): 123-135. [百度学术]
CHEN S L, YANG Z R, WANG B J, et al. Molecular perovskite high‑energetic materials[J]. Science China Materials, 2018, 61, 1123-1128. [百度学术]
ZHOU J, DING L, ZHAO F Q, et al. Thermal studies of novel molecular perovskite energetic material (C6H14N2)[NH4(ClO4)3][J]. Chinese Chemical Letters, 2020, 31(2): 554-558. [百度学术]
FANG H, GUO X Y, WANG W, et al. The Thermal catalytic effects of CoFe‑Layered double hydroxide derivative on the molecular perovskite energetic material (DAP‑4)[J]. Vacuum, 2021, 193: 110503. [百度学术]
DENG P, WANG H X, YANG X B, et al. Thermal decomposition and combustion performance of high‑energy ammonium perchlorate‑based molecular perovskite[J]. Journal of Alloys and Compounds, 2020, 827: 154257. [百度学术]
JIA Q, DENG P, LI X X, et al. Insight into the thermal decomposition properties of potassium perchlorate (KClO4)‑based molecular perovskite[J]. Vacuum, 2020, 175: 109257. [百度学术]
ZHOU J, ZHANG J L, CHEN S L, et al. Comparative thermal research on energetic molecular perovskite structures[J]. Molecules, 2022, 27(3): 805. [百度学术]
SHANG Y, YU Z H, HUANG R K, et al. Metal‑free hexagonal perovskite high‑energetic materials with NH3O
KLAPÖTKE T M. Energetic Materials Encyclopedia[M]. De Gruyter, 2018. [百度学术]