摘要
桥联富氮杂环化合物具有丰富的多样性,良好的热稳定性和优异的能量密度,是潜在的高能量密度材料,受到了国内外学者的广泛研究和报道。其中,亚氨基(—NH—)作为桥联单元,不仅能提高化合物的生成焓和能量密度,还能通过桥联的亚氨基形成氢键而降低感度,构建高能低感含能材料。本文介绍了亚氨基桥联富氮杂环化合物及其盐的研究进展,综述了这些含能化合物的制备方法、理化性质和爆轰性能,对亚氨基桥联富氮杂环化合物未来的发展潜力和重点研究方向进行了展望,从而为亚氨基桥联富氮杂环化合物的设计与合成提供借鉴和参考。
图文摘要
The construction methods of imino‑bridged nitrogen‑rich heterocyclic energetic molecular skeletons were reviewed, and the preparation methods, physicochemical properties and detonation properties of these energetic compounds were compared, the future development potential of imino‑bridged energetic materials was revealed.
含能材料(energetic materials)是武器实现毁伤的能量来源,是发展先进武器装备的根基。传统含能材料如TNT(2,4,6‑三硝基甲苯)、RDX(黑索今)、HMX(奥克托今)、CL‑20(六硝基六氮杂异伍兹烷)等多硝基化合物的能量来源多为分子内有机骨架的氧化燃烧及环状笼型分子的环张力。富氮杂环化合物作为新型含能材料,具有氮含量高、碳氢含量低的特点,结构中含有的高能N—N键、C—N键以及环张力,使其普遍具有高的正生成焓,在传统含能材料的基础上可以通过高生成焓进一步提升能量,并且氮杂环普遍具有良好的热稳定性。同时,高氮低碳氢含量能够使其更易达到氧平衡,分解产物多为环境友好的氮气,是理想的高能量密度材
目前富氮杂环化合物的研究主要集中在多氮稠环和联环含能材料上,其中,联环骨架以结构多样、制备相对简单的特点受到了广泛的关注与研究。联环含能材料通常可以通过直
本文以唑类(主要为四唑、吡唑、三唑、噁二唑等)和嗪类(主要为1,2,4,5‑四嗪)为骨架结构单元,以亚氨基(—NH—)为桥联结构单元,讨论归纳了亚氨基桥联富氮杂环化合物的制备方法、理化性质和爆轰性能,为该类含能化合物后续的研究和发展提供参考。
目前报道的富氮杂环化合物主要是以高氮含量的唑类和嗪类为骨架,其中唑类骨架以结构多样、易制备、稳定性好等优点得到了广泛的关注与研究。唑类杂环骨架也是构成亚氨基桥联富氮杂环化合物的主要结构单元之一。
四唑的氮含量为80.0%,分子内含有大量高能的N—N键和C—N键,具有高生成焓、高气体生成量、热稳定性好以及爆轰产物多为洁净的N2等一系列优良性质,是构建高能量密度材料(HEDMs)的理想结构单
四唑联四唑分子(H2bta,1)是最典型的联环分子之一。早在1964年,Norris

Scheme 1 Synthetic route of compounds
此外,得益于独特的结构和优异的性能,H2bta在自组装、含能金属有机骨架(EMOFs)、含能离子液体等领域均有所应用。Klapötke
2020年,叶志文

Scheme 2 Synthetic route of compounds
2019年,程广斌

Scheme 3 Synthetic route of compounds 3-
2021年,Shreeve

Scheme 4 Synthetic route of compounds
2013年,周智明

Scheme 5 Synthetic route of compounds
Note: ρ is measured density. D is detonation velocity. p is detonation pressure. HOF is heat of formation. Td is decomposition temperature(onset). IS is impact sensitivity. FS is friction sensitivity.
噁二唑环含有2个氮原子和1个氧原子,具有氧平衡好,热稳定性优良,能量和感度适中的特点,是良好的低感高能材料构建单
2014年,周智明

Scheme 6 Synthetic route of compounds 1
2017年,陈甫雪

Scheme 7 Synthetic route of compounds 1
得益于四唑环相对较为简单的制备方法,基于五元唑类的亚氨基桥联富氮杂环化合物主要集中于四唑类化合物,而其他唑类杂环如吡唑、三唑、咪唑、噁二唑等则较少。然而,四唑环虽然具有较高的生成焓,但普遍密度不高,也较难进行进一步的含能化衍生。开发普适性方法制备含有其他唑类骨架的亚氨基桥联富氮杂环化合物,将有希望将此类化合物的性能进一步提升。
四嗪环(Tetrazine)是一种典型的高氮、低碳氢含量的含能结构单元,其氮含量介于四唑和三唑之间。四嗪环共有3种异构体:1,2,3,5‑四嗪、1,2,3,4‑四嗪、1,2,4,5‑四嗪,其中1,2,4,5‑四嗪即s‑四嗪是近年来国内外四嗪类化合物的研究热
2000年,美国洛斯阿拉莫斯国家实验室Hiskey

Scheme 8 Synthetic route of compounds 12,1
2008年,Shreeve
2014年,Shreeve

Scheme 9 Synthetic route of compounds 14 and 1
2015年,Gozin

Scheme 10 Synthetic route of compounds 16-1
2017年,Gozin

Scheme 11 Synthetic route of compounds 19-2
2009年,Chavez

Scheme 12 Synthetic route of compounds 25,26 and 2

Scheme 13 Synthetic route of compounds 28,29 and 3
2010年,Sheremetev

Scheme 14 Synthetic route of compounds 31-3
2012年,Sheremetev

Scheme 15 Synthetic route of compounds 37, 38 and 3
2017年,Rudakov

Scheme 16 Synthetic route of compounds 40-4
总体来讲,报道的基于嗪类亚氨基桥联富氮杂环化合物种类单一,均是1,2,4,5‑四嗪衍生物;合成方法也单一,均是以3,5‑二甲基吡唑为离去基团,通过取代反应在1,2,4,5‑四嗪的3位和6位引入亚氨基桥和杂环。在构建方法、桥连杂环种类以及骨架的含能化衍生等方面都还有较大的开发潜力。
本文综述了近年来亚氨基(—NH—)桥联的富氮杂环含能化合物的主要合成方法和基本性能,对化合物分子结构对性能的影响进行了简要分析。此类化合物普遍具有优异的稳定性和良好的能量,但目前已报道的化合物数量和种类还较少,仍有许多方向需要探索和研究。
一方面,亚氨基桥本身具有一定的能量,桥联多个氮杂环也能提高化合物的密度;并且亚氨基还能提供一个NH形成分子内和分子间氢键,降低感度,使得该类化合物在拥有高能量密度的同时其机械感度和热稳定性均处于较为理想的水平,如四唑联四唑分子1,四唑联1,2,3‑三唑分子8,四唑联吡唑分子9等。亚氨基桥联策略在平衡能量与感度方面展现出的优势与应用潜力,是今后高能量密度材料的重要发展方向。
另一方面,制约亚氨基桥联化合物发展的重要原因是制备方法,目前此类化合物主要通过叠氮化、亲核取代、Dimroth重排等方法制备,而这些方法均需对应特定底物,普适性不强。因开发更为简单、更具普适性的制备方法是亚氨基桥联化合物发展的一个重要方向。同时,目前报道的亚氨基桥联化合物多是四唑类和1,2,4,5‑四嗪类化合物。这2类骨架虽然氮含量高,生成焓高,但随之而来的是可进一步修饰位点少,总体密度不高。因此,将其他可修饰位点较多的吡唑、咪唑、三唑等唑类引入亚氨基桥连化合物,有可能进一步提高此类化合物的密度与能量。此外,虽然亚氨基桥联化合物是一类性能优异的基础骨架,但也需要以不同的含能衍生化方法来改善目标化合物的能量水平,结合构效关系合理的调控化合物分子的各项性质,从而得到能量更高、稳定性更优异、合成方法更简便的含能化合物。
综上,亚氨基桥联富氮杂环含能化合物将作为新型含能材料的重要研究方向之一,随着制备方法不断优化,普适性骨架构建方法和基团定向引入技术的开发,构效关系不断揭示,相信在不久的将来,大量具有优异爆轰性能、低感度和良好热稳定性的亚氨基桥联含能化合物能被含能材料研究人员探索合成出来。
参考文献
GAO H, SHREEVE J M. Azole‑based energetic salts[J]. Chemical Reviews, 2011, 111(11): 377-7436. [百度学术]
XU Y, WANG Q, SHEN C, et al. A series of energetic metal pentazolate hydrates[J]. Nature, 2017, 549, 78-81. [百度学术]
ZHANG C, SUN C, HU B, et al. Synthesis and characterization of the pentazolate anion cyclo‑N
LIU T,LIAO S,SONG S,et al.Combination of gem‑dinitrom‑ ethyl functionality and a 5‑amino‑1,3,4‑oxadiazole framework for zwitterionic energetic materials[J]. Chemical Communication, 2020, 56(2): 209-212. [百度学术]
LIAO S, ZHOU Z, WANG K, et al. Synthesis of 5/6/5‑fused tricyclic‑cation‑based cyclo‑N
张计传, 王振元, 王滨燊, 等. 富氮稠环含能化合物: 平衡能量与稳定性的新一代含能材料[J]. 含能材料, 2018, 26(11): 983-990. [百度学术]
ZHANG Ji‑chuan, WANG Zhen‑yuan, WANG Bin‑shen, et al. Fused⁃ring nitrogen⁃rich heterocycles as energetic materials:Maintaining a fine balance between performance and stability[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(11): 983-990. [百度学术]
LIAO S, LIU T, ZHOU Z, et al. Energetic isomers of bridged oxadiazole nitramines: the effect of asymmetric heterocyclics on stability and energetic properties[J]. Dalton Transactions, 2021, 50(38): 13286-13293. [百度学术]
HUYNH M V, HISKEY M A, HARTLINE E L, et al. Polyazido high‑nitrogen compounds:Hydrazoand azo‑1,3,5‑triazine[J]. Angewandte Chemie International Edition, 2004, 43(37): 4924-4928. [百度学术]
QU Y, BABAILOV S P. Azo‑linked high‑nitrogen energetic materials[J]. Journal of Materials Chemistry A, 2018, 6(5): 1915-1940. [百度学术]
SUN Q, SHEN C, LI X, et al. Combination of four oxadiazole rings for the generation of energetic materials with high detonation performance, low sensitivity and excellent thermal stability[J]. Journal of Materials Chemistry A, 2017, 5(22): 11063-11070. [百度学术]
MA J, CHINNAM A K, CHENG G, et al. 1,3,4‑Oxadiazole bridges: A strategy to improve energetics at the molecular level[J]. Angewandte Chemie International Edition, 2021, 60(10): 5497-5504. [百度学术]
李柯佳, 汤永兴, 黄伟. 亚胺基桥连的平面型富氮含能化合物的合成与性能[J]. 含能材料, 2021, 29(8): 721-725. [百度学术]
LI Ke‑jia, TANG Yong‑xing, HUANG Wei. Synthesis and properties of imine⁃bridged planar nitrogen⁃rich energetic materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, 29(8): 721-725. [百度学术]
彭蕾, 李玉川, 杨雨璋, 等. 双环和多环四唑含能化合物的合成研究进展[J]. 有机化学, 2012, 32(4): 667-676. [百度学术]
PENG Lei, LI Yu‑chuan, YANG Yu‑zhang, et al. Research progress in synthesis of energetic compounds of bicyclo‑ and multicyclo‑tetrazoles[J]. Chinese Journal of Organic Chemistry, 2012, 32(4): 667-676. [百度学术]
NORRIS W P, HENRY R A. Cyanoguanyl azide chemistry[J]. Journal of Organic Chemistry, 1964, 29(3): 650-660. [百度学术]
KLAPÖTKE T M, MAYER P, STIERSTORFER J, et al. Bistetrazolylamines—synthesis and characterization[J]. Journal of Materials Chemistry, 2008, 43(18): 5248-5258. [百度学术]
LU Y, WANG M, ZHOU W, et al. Novel 3‑D PtS‑like tetrazolate‑bridged manganese(II) complex exhibiting spin‑canted antiferromagnetism and field‑induced spin‑flop transition[J].Inorganic Chemistry, 2008, 47(19): 8935-8942. [百度学术]
GAO E, LIU N, CHENG A, et al. Novel frustrated magnetic lattice based on triangular [Mn3(m3‑F)] clusters with tetrazole ligands[J]. Chemical Communications, 2007(24): 2470-2472. [百度学术]
LI N, CHEN W, GUAN Y, et al. Chlorine anion‑pi and pi(‑)‑pi(‑) interactions in two tetrazolyl derivative based C
GUO Y, GAO H, TWAMLEY B, et al. Energetic nitrogen rich salts of N,N‑bis[1(2)H‑Tetrazol‑5‑yl]amine[J]. Advanced Materials, 2007, 19(19): 2884-2888. [百度学术]
WANG R, GUO Y, SA R, et al. Nitroguanidine‑fused bicyclic guanidinium salts: A family of high‑density energetic materials[J]. Chemistry-A European Journal, 2010, 16(28): 8522-8529. [百度学术]
HUANG Y, ZHANG Y, SHREEVE J M. Nitrogen‑rich salts based on energetic nitroaminodiazido[1,3,5]triazine and guanazine[J]. Chemistry-A European Journal, 2011, 17(5): 1538-1546. [百度学术]
STEEL P J. Heterocyclic tautomerism. XI. Structures of 5,5'‑bitetrazole and 1‑methyl‑5‑(2'‑pyridyl)tetrazole at 130 K[J]. Journal of Chemical Crystallography, 1996, 26(6): 299-402. [百度学术]
FRIEDRICH M, GÁLVEZ‑RUIZ J C, KLAPÖTKE T M. BTA Copper Complexes[J]. Inorganic Chemistry, 2005, 44(22): 8044-8052. [百度学术]
ZHANG M, XU J, ZHANG N, et al. A highly stable and tightly packed 3D energetic coordination polymer assembled by nitrogen‑rich tetrazole derivative[J]. New Journal of Chemistry, 2018, 42(16): 13927-13932. [百度学术]
XU Y, LIU W, LI D, et al. In situ synthesized 3D metal‑organic frameworks (MOFs) constructed from transition metal cations and tetrazole derivatives: A family of insensitive energetic materials[J]. Dalton Transactions, 2017, 46(33): 11046-11052. [百度学术]
YANG Q, SONG X, ZHANG W, et al. Three new energetic complexes with N,N‑bis(1H‑tetrazole‑5‑yl)‑amine as high energy density materials: Syntheses, structures, characterizations and effects on the thremal decomposition of RDX[J]. Dalton Transactions, 2017, 46(8): 2626-2634. [百度学术]
ZHANG S, LIU X, YANG Q, et al. A New Strategy for storage and transportation of sensitive highenergy materials: guest‑dependent energy and sensitivity of 3D metal‑organ‑ ic‑framework‑based energetic compounds[J]. Chemistry-A European Journal, 2014, 20(26): 7906-7910. [百度学术]
LI F, ZHAO W, CHEN S, et al. Nitrogen‑rich alkali metal salts (Na and K) of [Bis(N,N‑bis(1H‑tetrazol‑5yl)amine)‑zinc(II)] anion: Syntheses, crystal structures, and energetic properties[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2015, 641(5): 911-916. [百度学术]
FRIEDMAN Y, GOLDBERG I. Tetrazole‑bridged manganese coordination polymer as high‑energy material[J]. Polyhedron, 2018, 139: 327-330. [百度学术]
WANG W, CHEN S, GAO S, et al. Syntheses and characterization of Lead(II) N,N‑Bis[1(2)H‑tetrazol‑5‑yl]amine Compounds and Effects on Thermal Decomposition of Ammonium Perchlorate[J]. European Journal of Inorganic Chemistry, 2010, (23): 3475-3480. [百度学术]
XUE B, YANG Q, CHEN S, et al. Synthesis, crystal structure, and thermodynamics of a high‑nitrogen copper complex with N,N‑bis‑(1(2)H‑tetrazol‑5‑yl) amine[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(3): 997-1002. [百度学术]
COOK C, HABIB F, AHAREN T, et al. High‑temperature spin crossover behavior in a nitrogen‑rich FeIIIBased System[J]. Inorganic Chemistry, 2013, 52(4): 1825-1831. [百度学术]
DONG Z AND YE Z. Synthesis and properties of salts derived from C4N1
TANG J, YANG P, YANG H, et al. A simple and efficient method to synthesize high‑nitrogen compounds: Incorporation of tetrazole derivatives with N5 chains[J]. Chemical Engineering Journal, 2020, 386(15):124027. [百度学术]
FENG S, YIN P, HE C, et al. Tunable dimroth rearrangement of versatile 1,2,3‑triazoles towards high‑performance energetic materials[J]. Journal of Materials Chemistry A, 2021, 20(9):12291-12298. [百度学术]
ZHANG M, GAO H, LI C, et al. Towards improved explosives with a high performance: N‑(3,5‑dinitro‑1H‑pyra‑ zol‑4‑yl)‑1H‑tetrazol‑5‑amine and its salts[J]. Journal of Materials Chemistry A, 2017, 4(5): 1769-1777. [百度学术]
BENZ M, KLAPÖTKE T M,STIERSTORFER J. Combining performance with thermal stability: Synthesis and characterization of 5‑(3,5‑dinitro‑1H‑pyrazol‑4‑yl)‑1H‑tetrazole and its energetic derivatives[J]. Zeitschrift für anorganische und allgemeine Chemie, 2020, 646(16): 1380-1388. [百度学术]
荣晶晶. 噁二唑类化合物的制备工艺研究[D]. 北京: 北京理工大学, 2016. [百度学术]
RONG Jing‑jing. Study on the Optimization of Synthesis Oxadiazoles Compounds[D]. Beijing:Beijing University of Science and Technology, 2016. [百度学术]
BIAN C, WANG K, LIANG L, et al. Nitrogen‑rich energetic salts of bis‑heterocycle‑substituted 1,2,3‑triazole(HTANFT)[J]. European Journal of Inorganic Chemistry, 2014, 35: 6022-6030. [百度学术]
PANG F, WANG G, LU T, et al. Preparation and characteristics of 1,2,4‑oxadiazole‑derived energetic ionic salts with nitrogen‑linkages[J]. New Journal of Chemistry, 2018, 42(6): 4036-4044. [百度学术]
黄清华. 四嗪及其衍生物的合成[D]. 南京: 南京理工大学, 2010. [百度学术]
HUANG Qing‑hua. Synthesis of Tetrazine and their Derivatives[D]. Nanjing: Nanjing University of Science and Technology, 2010. [百度学术]
HISKEY M A ,CHAVEZ D E ,NAUD D L. US Patent 6342589 (2002). [百度学术]
ZHANG X, REN Y, LI W, et al. 3,6‑Bis(1H‑1,2,3,4‑tetrazol‑5‑yl‑amino)‑1,2,4,5‑tetrazine–based energetic strontium(II) complexes: Synthesis, crystal structure, and thermal properties[J]. Journal of Coordination Chemistry, 2013, 66(12): 2051-2064. [百度学术]
QING L, BIN Y, JIN Y, et al. Energetic calcium(II) complexes of 3,6‑bis(1H‑1,2,3,4‑tetrazol‑5‑yl‑amino)1,2,4,5‑tetrazine: Synthesis, crystal structure, and thermal properties[J]. Journal of Coordination Chemistry, 2017, 70, (13): 2249-2260. [百度学术]
LIU Q, CHEN X, CAO W, et al. The synthesis, crystal structure and thermal properties of an energetic compound: the hydrated azanium salt of 3,6‑bis[(1H‑1,2,3,4‑tetrazol‑5‑yl)‑amino]‑1,2,4,5‑tetrazine[J]. Acta Crystallographica Section C Structural Chemistry, 2017, 73(11): 941-945. [百度学术]
JOO Y H,WAMLEY B T,GARG S,et al. Energetic nitrogen‑rich derivatives of 1,5‑diaminotetrazole[J]. Angewandte Chemie International Edition,2008,48(33):6236-6239. [百度学术]
WEI H,GAO H,SHREEVE J M. N‑oxide 1,2,4,5‑tetrazine‑based high‑performance energetic materials[J]. Chemistry-A European Journal,2014, 20(51): 16943-16952. [百度学术]
AIZIKOVICH A, SHLOMOVICH A, COHEN A, et al. Nitration pattern of energetic 3,6‑diamino‑1,2,4,5‑tetrazine derivatives containing azole functional groups[J]. Dalton Transactions, 2015, 44(31): 13939-13946. [百度学术]
SHLOMOVICH A, PECHERSKY T, COHEN A, et al. Energetic isomers of 1,2,4,5‑tetrazine‑bis‑1,2,4‑triazoles with low toxicity[J]. Dalton Transactions, 2017, 46(18): 5994-6002. [百度学术]
CHAVEZ D E, PARRISH D A. New heterocycles from tetrazines and oxadiazoles[J]. Journal of Heterocyclic Chemistry, 2009, 46(1): 88-90. [百度学术]
YU Q, YANG H, IMLER G H, et al. Derivatives of 3,6‑bis(3‑aminofurazan‑4‑ylamino)‑1,2,4,5‑tetrazine: Excellent energetic properties with lower sensitivities[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31522-31531. [百度学术]
SHEREMETEV A B, PALYSAEVA N V AND STRUCHKOVA M I. The first synthesis of 3‑nitro‑4‑[(s‑tetrazin‑3‑yl)amino]furazans[J]. Mendeleev Communications,2010, 20(6): 350-352. [百度学术]
SHEREMETEV A B, PALYSAEVA N V, STRUCHKOVA M I, et al. A mild and efficient synthesis of 3‑hetarylamino‑s‑tetrazines[J]. Mendeleev Communications, 2012, 22(6): 302-304. [百度学术]
PALYSAEVA N V, KUMPAN K P, STRUCHKOVA M I, et al. A direct approach to a 6‑hetarylamino[1,2,4]triazolo[4,3‑b][1,2,4,5]tetrazine Library[J]. Organic Letters, 2014, 16(2): 406-409. [百度学术]
RUDAKOV G F, MOISEENKO Y A,SPESIVTSEVA N А. Synthesis of monosubstituted 1,2,4,5‑tetrazines–3‑amino‑1,2,4,5‑tetrazines[J]. Chemistry of Heterocyclic Compounds, 2017, 53(6-7): 802-810. [百度学术]