摘要
为了完善无水肼的危险等级分类,依据联合国橘黄书爆炸品危险性分级程序,对制式包装无水肼(包括2种尺寸:18 kg和120 kg)分别开展EIDS隔板试验和外部火烧试验。分别采用高速摄像、红外热成像和压力数采测试系统表征样品在火灾刺激下的燃爆过程、火球表面最高温度以及冲击波效应。结果表明:外部火灾条件下,无水肼‑18 kg样品的TNT当量为0.724,是无水肼‑120 kg样品的1930.67倍。无水肼在特定条件下具有明显的爆炸特性,不同制式包装设计压力下的无水肼分别显示出了1.1 C和1.3 C的危险等级。无水肼的危险等级分类与其包装设计压力联系密切,应在实际使用允许范围内,降低无水肼等液体推进剂的包装强度,以有效降低其危险性。
图文摘要
Anhydrous hydrazine was assigned to Class 8 (corrosivity) and the subsidiary hazard classes of which were inflammability (Class 3) and toxicity (Division 6.1). However, as one of the typical energetic materials, anhydrous hydrazine should follow the explosive hazard classification procedure and hence be classified in Class 1. In this context, to improve the hazard classification of packaged anhydrous hydrazine, the hazard classification of packaged anhydrous hydrazine (18 kg and 120 kg) was investigated by means of extremely insensitive detonating substance (EIDS) gap test and external fire test.
无水肼是一种具有类似氨臭味的无色透明液体,有较强的吸湿性,它具有比冲高、可双模式使用等优点,主要应用于航空和航天等领
相关研究人员在含能物质危险性分级领域同样开展了重要工作。Wehrsted
本研究依据联合国橘黄书的爆炸品危险性分级程
无水肼由北京航天试验技术研究所提供,纯度≧98.5%。样品及其制式不锈钢储罐基础参数如
Note: the package was shaped like a cylinder.
橘黄书关于含能材料冲击波感度的测试方法主要有联合国(UN)隔板和极不敏感引爆物质(EIDS)的隔板试
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F001.jpg)
图1 EIDS隔板试验测试方法
Fig.1 EIDS gap test
外部火灾试验是爆炸品危险性分级程序中最重要的试验之一,主要是依据包装样品在发生火灾时产生的冲击波效应和见证板的破损情况等来综合判定样品的危险等级,外部火烧试验测试系统如
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F002.jpg)
图2 外部火烧试验测试系统
Fig.2 Diagram of external fire test apparatus
EIDS隔板试验测试结果如
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F003.jpg)
图3 无水肼的EIDS隔板三发实验结果
Fig.3 three times EIDS gap test results of anhydrous hydrazine
由
净重分别为18 kg和120 kg的制式不锈钢包装无水肼燃爆过程部分高速录像结果如
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F4a1.jpg)
a. anhydrous hydrazine‑18 kg
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F4a2.jpg)
b. anhydrous hydrazine‑120 kg
图4 无水肼样品燃爆过程高速录像图
Fig.4 High‑speed video images of the deflagration process for anhydrous hydrazine samples
火烧条件下,无水肼的受热温度远超其热分解温度(无水肼沸点为113.5 ℃),与储罐接触部分的推进剂不断发生快速热分解反应,并产生大量的高温、高压气体产物(N2和H2
煤油燃烧火焰的平均温度、煤油点火到样品反应以及样品反应持续时间如
由
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F5a1.jpg)
a. anhydrous hydrazine‑18 kg
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F5a2.jpg)
b. anhydrous hydrazine‑120 kg
图5 火烧试验后验证板及包装的破损情况
Fig.5 Witness plates and damage conditions of the packages after external fire tests
由
无水肼‑18 kg和无水肼‑120 kg样品的反射冲击波超压峰值随距离的衰减趋势结果如
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F6a1.jpg)
a. anhydrous hydrazine‑18 kg
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F6a2.jpg)
b. anhydrous hydrazine‑120 kg
图6 地面反射冲击波超压峰值衰减趋势
Fig.6 Peak pressure attenuation trends of the ground‑reflected shock waves
由
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F7a1.jpg)
a. anhydrous hydrazine‑18 kg
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F7a2.jpg)
b. anhydrous hydrazine‑120 kg
图7 样品地面反射超压拟合曲线
Fig.7 The fitting curves of the ground reflected pressure of samples
由
(1) |
(2) |
TNT当量可由
(3) |
式中,TNTe为TNT当量;wTNT为TNT药柱的质量,kg;wx为被测药柱的质量,kg。
(4) |
由
利用红外热像仪测量样品火烧反应过程中的火球表面的最高温度,结果如
![](html/hncl/CJEM2021327/alternativeImage/30D107FE-617E-4dc5-A720-6C26B09428B0-F008.jpg)
图8 样品反应过程火球表面最高温度
Fig.8 The highest temperature of the fireball surface in the reaction process.
由
由
将2组样品的试验结果汇总,包含冲击波效应、包装和见证板的破坏程度等,并依据橘黄书爆炸品危险性分级程序标准判定两组产品的危险等级,结果如
由
(1)无水肼液体推进剂没有冲击波感度,不具有传播爆轰的能力。
(2)火灾刺激条件下,无水肼‑18 kg样品的TNT当量为0.724,是无水肼‑120 kg样品的1930.67倍。无水肼在特定条件下具有明显的爆炸特性,不同包装强度下,无水肼分别显示出了1.1 C和1.3 C的危险等级。
(3)包装无水肼的危险性分类结果与其包装设计压力密切相关,与质量大小并无明显关联。出于安全目的,应在实际使用允许范围内,降低无水肼等液体推进剂制式包装的设计强度,以有效降低其危险性。研究结果在液体推进剂生产和储存等场所的防爆安全设计以及运输和使用过程中的安全管理等方面具有指导和借鉴意义。
参考文献
李亚裕. 液体推进剂[M]. 北京: 中国宇航出版社, 2011: 288-300. [百度学术]
LI Ya‑yu. Liquid propellant[M]. Beijing: China Aerospace Press, 2011: 288-306. [百度学术]
WELSH T W, BRODERSON H J. Anhydrous hydrazine. III. Anhydrous hydrazine as a solvent[J]. Journal of the American Chemical Society, 1915, 37(4): 816-824. [百度学术]
MATSUMOTO M, KANO H, SUZUKI M, et, al. Carcinogenicity and chronic toxicity of hydrazine monohydrate in rats and mice by two‑year drinking water treatment[J]. Regulatory Toxicology and Pharmacology, 2016, 76: 63-73. [百度学术]
LI Z X, ZHANG W Y, LIU C X, et al. A colorimetric and ratiometric fluorescent probe for hydrazine and its application in living cells with low dark toxicity[J]. Sensors and Actuators B chemical, 2017, 241: 665-671. [百度学术]
ASKEY P J. The thermal decomposition of hydrazine[J]. Journal of the American Chemical Society, 1930, 52(3): 970-974. [百度学术]
BELLERBY J M. The effect of some dissolved metal‑ion contaminants on the homogeneous decomposition rate of anhydrous hydrazine[J]. Journal of hazardous materials, 1986, 13(1): 57-60. [百度学术]
胡长诚. 国外水合肼、无水肼制备及提纯方法研发进展[J]. 化学推进剂与高分子材料, 2005, 3(4): 1-5. [百度学术]
HU Chang‑cheng. Foreign research and development progress of preparation and purification methods for hydrazine hydrate and anhydrous hydrazine[J]. Chemical Propellants & Polymeric Materials, 2005, 3(4): 1-5. [百度学术]
禹天福, 吴志坚. 空间环境下无水肼和甲基肼的爆炸危险性[J]. 火箭推进, 2001(6): 1-7. [百度学术]
YU Tian‑fu, WU Zhi‑jian. The explosion risk of anhydrous hydrazine and methylhydrazine in space environment[J]. Journal of Rocket Propulsion, 2001(6): 1-7. [百度学术]
WEHRSTEDT K, WILDNER W, GUTHNER T, et al. Safe transport of cyanamide[J]. Journal of Hazardous Materials, 2009, 170(2): 829-835. [百度学术]
PERSSON M, ANFLO K, DINARDI A. A family of thrusters for ADN‑based monopropellant LMP‑103S[C]. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, the American Institute of Aeronautics and Astronautics, Inc., with permission, 2012. [百度学术]
XU S, LIU D, PAN F, et al. Hazard classification of seat belt pretensioners by UN test 6(c)[J]. Procedia Engineering, 2012, 45: 533-538. [百度学术]
AIAA standards, the American Institute of Aeronautics and Astronautics. Special Project_ Fire, Explosion, Compatibility, and Safety Hazards of Hypergols‑Monomethydrazine(AIAA SP‑085‑1999)[S]. 1999. [百度学术]
HERBERT I. The UK Buncefield incident e the view from a UK risk assessment engineer[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 913-920. [百度学术]
SHARMA R K, GURJAR B R, WATE S R, et al. Assessment of an accidental vapour cloud explosion: Lessons from the Indian Oil Corporation Ltd. accident at Jaipur, India[J]. Journal of Loss Prevention in the Process Industries,2013,26(1): 82-90. [百度学术]
陈新华, 聂万胜. 液体推进剂爆炸危害性评估方法及应用[M]. 国防工业出版社, 2005, 90-120. [百度学术]
CHEN Xin‑hua, NIE Wan‑sheng. Evaluation method and application of liquid propellant explosion harmfulness[M]. National Defense Industry Press, 2005, 90-120. [百度学术]
GJB 2216A-2019肼类燃料和硝基氧化剂包装贮存运输要求[S]. 2019. [百度学术]
GJB 2216A-2019 Requirments for package storage and transportation of hydrazine fuels and nitro‑oxidizers[S]. 2019. [百度学术]
ST/SG/AC.10/11/Rev.7. Recommendations on the transport of dangerous goods, tests and criteria, 7th Rev. ed.[S]. New York: United Nations Publication, 2019. [百度学术]
HENRYCH J, MAJOR R. The dynamics of explosion and its use[M]. Amsterdam, 1979, 558-570. [百度学术]
HELD M. TNT‑Equivalent[J]. Propellants, Explosives, Pyrotechnics, 1983, 8(5):158-167. [百度学术]
张玉磊, 王胜强, 袁建飞, 等. 不同量级TNT爆炸冲击波参数相似律实验研究[J]. 弹箭与制导学报, 2016, 36(6): 53-56. [百度学术]
ZHANG Yu‑lei, WANG Sheng‑qiang, YUAN Jian‑fei, et al. Experimental research on similarity law of explosive shock wave parameters with different orders of magnitude TNT[J]. Journal of Projectile, Rockets, Missiles and Guidance, 2016, 36(6): 53-56. [百度学术]
XU H B, CHENG L K, ZHANG D Z. Mitigation effects on the reflected overpressure of blast shock with water surrounding an explosive in a confined space[J]. Defence Technology, 2020, 17(3): 1071-1080. [百度学术]