摘要
为研究小尺寸高聚物黏结炸药(polymer bonded explosive,PBX)半球的热冲击损伤特征,针对Φ10 mm TATB基和HNS基PBX半球样品开展了0~100 ℃水浴温度冲击实验,利用X射线显微层析成像(Micro‑computed tomography,μCT)技术研究了样品损伤的三维形态和分布特征,并采用热弹塑性二维轴对称模型对样品温度冲击过程的热传导和热应力进行了模拟分析。CT结果表明温度冲击后2种样品均由边角起裂,其中TATB基PBX半球沿边部环向扩展,形态曲折,具有撕裂和脆断特征;HNS基PBX半球沿轴向基本贯穿,形态平直,具有脆断特征。数字模拟结果表明温度冲击过程中TATB基PBX半球内部产生较强的拉应力,由边角区域至中心区域拉应力先后超过其拉伸强度,导致主裂纹由半球边角区域萌生并向内扩展。样品损伤形态与温度冲击作用下的应力分布特征、黏结剂温度特性吻合。本研究为TATB基和HNS基PBX温度冲击损伤机理分析奠定了基础。
图文摘要
In order to study the damage characteristics of small scale polymer bonded explosive(PBX) hemisphere under thermal shock, water‑bathed thermal shock test from 0 ℃ to 100 ℃ was carried out for Φ10 mm TATB based and HNS based PBX hemispheres respectively. The thermal elastic‑plastic response of PBX hemisphere was calculated by 2D axisymmetric finite element model which contained temperature related material properties, and 3D morphology and distribution characteristics of inner cracks for PBX hemisphere were studied by X‑ray micro‑computed tomography. The correlation between the damage characteristics and elastic‑plastic response for PBX hemisphere was discussed.
高聚物黏接炸药(polymer bonded explosive,PBX)是由单质炸药晶体和高聚物黏结剂等组成的混合炸药,具有颗粒高度填充、非均相的结构特征。PBX广泛应用于各类武器,具有结构承载、爆轰破坏等重要功能。PBX制造过程中会产生微裂纹、微空隙等初始损
为掌握PBX在温度载荷作用下的损伤机制,研究人员综合运用数值模
热应力是导致PBX损伤的最常见的和最主要的形式,其中温度冲击最容易使PBX产生损
TATB、HNS,化工材料研究所;黏结剂F2311、F2314为工业级,晨光化工研究院。
分别采用TATB和F2311、HNS和F2314材料组合,经水悬浮造粒后压制成TATB基和HNS基PBX半球形样品,数量各4发,编号分别为A1~A4、B1~B4。样品直径为Φ10 mm,样品密度约1.60 g·c
采用水浴对流热交换方法开展温度冲击实验,利用高热流密度冲击激发样品产生损伤,实验方法为:在室温(20 ℃)条件下,样品经CT检测后,依次浸入0 ℃冰水混合物、100 ℃热水中各保持30 min,2种温度间的转换时间控制在2 s,样品由100 ℃热水取出30 min后再次进行CT检测。
采用X射线显微CT对样品进行三维CT成像,X射线显微CT检测示意图见

图1 X射线显微CT检测示意图
Fig.1 Schematic diagram of X‑ray micro‑CT
所得样品CT图像为灰度值f(x,y)的空间分布图像,f(x,y)代表样品位置(x,y)上材料的X射线衰减系数,PBX基体和裂纹因X射线衰减系数不同导致影像灰度存在差异。基于图像的不连续性和相似性基本原则,利用sobel边缘检测改进的灰度直方图阈值分割方
PBX半球温度冲击过程中,结构及载荷具有轴对称性,因此将三维空间问题简化为二维轴对称平面问
温度冲击实验前后对所有样品A1~A4、B1~B4均进行了CT检测,由于同类样品的损伤形态特征相同,研究选用样品A1和B1作损伤特征分析。温度冲击实验前,样品A1的三维CT图像、样品B1的内部裂纹三维形貌分别见图

图2 样品A1与B1温度冲击前后形貌(a,b. 温度冲击前样品A1,B1的三维CT图像; c,d. 温度冲击后样品A1,B1的三维CT图像; e,f. 温度冲击后样品A1,B1内部裂纹三维形貌)
Fig.2 morphology of sample A1 and B1 before and after temperature shock(a,b. 3D CT image for sample A1 and B1 before temperature shock; c,d. 3D CT image for sample A1 and B1 after temperature shock; e,f. 3D morphology of inner cracks for sample A1 and B1 after temperature shock
图
基于图像分割处理得到的2种样品内部裂纹三维形貌特征,由裂纹所有体素的体积和计算裂纹体积,由裂纹与背景相邻的像素面积和计算裂纹表面积,分析得到温度冲击前后样品内部裂纹的体积及表面积,结果见
基于CT检测获得的裂纹特征,可以看出在0~100 ℃温度冲击作用下,样品A1和B1的主裂纹由边角部位起裂并向内部扩展,表明温度冲击过程中样品边角部位的热应力先超过了其拉伸强度。样品A1和B1分别采用了F2311、F2314黏结剂,其温度特性存在明显差别,其中F2311、F2314的玻璃化转变温度分别为0 ℃、49.6 ℃,软化点温度分别约为80 ℃、120 ℃。在0~100 ℃温度冲击过程中,F2311由高弹态向黏流态转变,样品A1开裂特征由脆断向撕裂转变;同时随着温度升高,样品内部的黏结剂F2311逐步软化,炸药与黏结剂之间的界面作用相应减弱,造成结构强度降低,在半球内部周向热应力作用下产生环状开裂;F2314由玻璃态向高弹态转变,样品B1仍保持一定的脆性和结构强度,在周向热应力作用下产生轴向脆性开裂。
样品A1和B1端面及距端面1785 μm、3570 μm位置的径向CT切片见

图3 温度冲击后样品A1和B1径向CT切片
Fig.3 Radial CT slices of sample A1 and B1 after temperature shock
由
对样品所有径向切片,由样品端面至顶部,依次测量其损伤面积比(裂纹面积与总面积之比),得到样品A1~A4和样品B1~B4损伤面积比随切片位置的分布曲线见

a. TATB based PBX samples

b. HNS based PBX samples
图4 不同样品的径向截面损伤面积比
Fig.4 Curves of damage area ratio at different radial slices for different samples
由于TATB基和HNS基PBX样品均呈现由边角部位起裂向内扩展的形态特征,本研究选用TATB基PBX样品作热传导和热应力分析。TATB基PBX样品受0~100 ℃温度冲击1.3 s时的温度分布和应力分布见

a. Temperature distribution

b. Stress distribution
图5 温度冲击1.3 s时的温度分布和应力分布
Fig.5 Temperature distribution and stress distribution at high temperature shock 1.3 s
为研究TATB基PBX样品内部温度和应力分布规律,在应力最大的方向,由半球中轴至边角部位依次选取4点N1~N4(

a. Temperature history

b. Stress history
图6 N1~N4点的温度和应力历史
Fig.6 Temperature and stress history of point N1-N4
另外,TATB基PBX样品由0 ℃转至100 ℃环境后,由表及里温度逐渐升高,TATB基PBX样品中的黏结剂F2311软化,导致其脆性降低、韧性增强,在拉应力作用下样品开裂由脆断向撕裂转变,尤其半球近表面撕裂特征更明显。根据TATB基PBX半球样品温度冲击后的损伤形态CT检测结果,主裂纹由边角区域起裂后,在拉应力的作用下,裂纹偏向于沿拉应力超过其拉伸强度、相对的软化区和非软化区中间的强度薄弱部位扩展。HNS基PBX半球中黏结剂F2314在半球内部起裂时处于玻璃态,随着最大拉应力由半球边角向中心演变,裂纹迅速向内扩展,形成了垂直于端面的、形态平直的主裂纹,同时产生部分形态平直的次裂纹等,裂纹具有脆断特征。
(1)0~100 ℃高温冲击下,PBX半球内部拉应力由边角到中心区域先后超过其拉伸强度,导致半球内部产生由边角区域起裂并向内扩展的主裂纹。
(2)由0 ℃转至100 ℃高温环境,PBX半球内部温度由表及里温度依次升高,TATB基PBX半球中的F2311黏结剂逐步软化,导致其开裂呈脆断和撕裂特征,裂纹偏向于沿半球边部环状扩展。HNS‑PBX半球中的F2314黏结剂处于玻璃态,导致其开裂呈脆断特征,裂纹偏向于沿半球轴向扩展。
(3)HNS‑PBX半球顶部的初始裂纹在高温冲击作用下沿径向及环向、轴向扩展,扩展程度远低于半球内部新生的主裂纹和次裂纹。
参考文献
梁华琼,雍炼,唐常良,等.RDX为基的PBX炸药压制过程损伤形成研究[J]. 含能材料, 2009, 17(6):713-716. [百度学术]
LIANG Hua‑qiong, YONG Lian, TANG Chang‑liang. Pressing damage of RDX‑based polymer bonded explosive[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2009, 17(6): 713-716. [百度学术]
梁华琼,雍炼,唐常良,等.压制过程中PBX炸药颗粒的破碎及损伤[J]. 火炸药学报, 2010, 33(1): 27-30. [百度学术]
LIANG Hua‑qiong, YONG Lian, TANG Chang‑liang,et al. Crack and damage of PBX during pressing[J]. China Journal of Explosive and Propellants, 2010, 33(1): 27-30. [百度学术]
张伟斌,李敬明,杨雪海.TATB颗粒温压成形PBX的初始细观损伤[J].含能材料,2015,23(2):202-204. [百度学术]
ZHANG Wei‑bin,LI Jing‑ming,YANG Xue‑hai,et al. Initial mesoscopic damage of TATB based PBX pressed by warm compaction[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2015, 23(2):202-204. [百度学术]
陈鹏万,黄风雷.含能材料损伤理论及应用[M]. 北京:北京理工大学出版社, 2006. [百度学术]
CHEN Peng‑wan, HUANG Feng‑Iei. Damage theory and applications of energetic materials[M]. Beijing: Beijing Institute of Technology Press ,2006. [百度学术]
唐明峰,温茂萍,涂晓珍,等.高温及机械应力对PBX力学行为的影响规律及机理分析[J].含能材料,2018,26(2):150-155. [百度学术]
TANG Ming‑feng,WEN Mao‑ping,TU Xiao‑zhen,et al. Influence and mechanism of high temperature and mechanical stress on the mechanical behaviors of PBXs[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018,26(2): 150-155. [百度学术]
韦兴文,吴束力,唐兴. HMX基PBX炸药热损伤的数值计算与实验研究[J].火炸药学报,2014,37(4):9-13. [百度学术]
WEI Xing‑wen,WU Shu‑li,TANG Xing. Numerical calculation and experimental study on thermal damage of HMX based polymer bonded explosive[J]. Chinese Journal of Explosives & Propellants,2014,37(4):9-13. [百度学术]
唐明峰,甘海啸,温茂萍,等. 含缺口PBX药柱热冲击响应的数值模拟及试验[J]. 含能材料,2021,29(1):41-47. [百度学术]
TANG Ming‑feng, GAN Hai‑xiao, WEN Mao‑ping,et al. Simulation and experimental study on the thermal shock behavior of notched PBX cylinders[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2021,29(1):41-47. [百度学术]
田勇,张伟斌,郝莹, 等. 炸药热冲击损伤破坏及超声波特性参量检测[J].火炸药学报, 2000, 23(4): 13-15. [百度学术]
TIAN Yong, ZHANG Wei‑bin,HAO Ying,et al.Thermal shock damage of explosive and its ultrasonic characterization[J]. Chinese Journal of Explosives and Propellants,2000,23(4):13-15. [百度学术]
田勇,罗顺火,张伟斌,等. JOB‑9003“激热”冲击损伤破坏及超声特征[J].火炸药学报,2002,25(3): 17-19. [百度学术]
TIAN Yong,LUO Shun‑huo,ZHANG Wei‑bin,et al. Water-bathed thermal shock damage of PBX JOB⁃9003 and its ultrasonic characteristics[J]. Chinese Journal of Explosives & Propellants,2002,25(3):17-19. [百度学术]
田勇,张伟斌,温茂萍,等. JOB‑9003高聚物粘结炸药热冲击损伤破坏相关性研究[J]. 含能材料,2004,12(3):174-177. [百度学术]
TIAN Yong, ZHANG Wei‑bin, WEN Mao‑ping, et al. Research on correlation of thermal shock damage of PBX JOB‑9003[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2004, 12(3): 174-177. [百度学术]
邵珠格,刘如沁,吴艳青,等. 高温作用后HMX基PBX热损伤表征试验研究[J].火炸药学报,2020,43(4): 406-412. [百度学术]
SHAO Zhu‑ge, LIU Ru‑qin, WU Yan‑qing, et al. Experimental study on thermal damage characterization of HMX based PBX after high‑temperature treatment[J]. Chinese Journal of Explosives & Propellants,2020,43(4):406-412. [百度学术]
尹俊婷,袁宝慧,牛鹏俊,等.炸药损伤及损伤炸药环境适应性的实验研究[J].火炸药学报, 2008,31(2):78-80. [百度学术]
YIN Jun‑ting, YUAN Bao‑hui,NIU Peng‑jun, et al. Experimental study on the explosive damage and environment adaptability of damaged explosive[J]. Chinese Journal of Explosives & Propellants, 2008, 31(2): 78-80. [百度学术]
张冬梅,韩芳,贾林,等.温度循环载荷作用下压装A‑IX‑II装药的裂纹机理研究[J].含能材料, 2016,39(1):89-93. [百度学术]
ZHANG Dong‑mei, HAN Fang, JIA Lin, et al. Study on crack formation mechanism of pressed charge A‑IX‑II under temperature cyclic load[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2016, 39(1):89-93. [百度学术]
刘瑞鹏,王红星,王浩.高低温环境对不同炸药结构影响研究[J].含能材料,2005,13(20):20-22. [百度学术]
LIU Rui‑peng,WANG Hong‑xing, WANG Hao, et al. Effect of environment temperature on different explosive structures[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2005,13(20):2 0-22. [百度学术]
刘本德,陈华,张伟斌,等. 基于CT图像序列的围压TATB基PBX冲击损伤特性[J]. 含能材料,2019,27(3):196-201. [百度学术]
LIU Ben‑de, CHEN Hua, ZHANG Wei‑bin,et al. Impact damage characteristics of TATB based polymer bonded explosive under confining pressure based on the CT image sequences[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2019,27(3):196-201. [百度学术]
RAFAEL C Gonzalez, RICHARD E Woods. 数字图像处理[M].北京:电子工业出版社,2017:443-492. [百度学术]
Rafael C Gonzalez, Richard E Woods. Digital Image Processing[M]. Beijing: Publishing House of Electronics Industry, 2017: 443-492. [百度学术]