摘要
为改善2,6‑二甲基‑4‑羟基苯基五唑的产率和纯度问题,实验探讨了以2,6‑二甲基苯酚为原料,经亚硝化、还原、成盐三步反应制备芳基五唑的母体原料2,6‑二甲基‑4‑氨基苯酚盐酸盐(DMAPH)晶体的方法。采用红外光谱(IR)、X‑射线单晶衍射(SCXRD)、扫描电镜(SEM)、X‑射线粉末衍射(PXRD)、差示扫描量热分析(DSC)和理论计算对其化学结构、晶体结构、晶体形貌和稳定性能进行表征。结果表明:以亚硝酸钠和冰乙酸作为亚硝化试剂,亚硝化产率可达90%以上。通过改变析晶溶剂,可获得片状、针状、块状和板状形貌的盐酸盐晶体,而温度只会影响析出晶体的粒径大小。甲醇溶剂析出的DMAPH晶体主要占比晶面是(400)晶面,其他溶剂析出的主要占比晶面为(214)晶面。DMAPH的分解峰温在220~240 ℃,具有良好的热稳定性,相比无定型的DMAPH粉末,晶体对空气的稳定性较好,比较适合长期储存。
图文摘要
2,6‑Dimethyl‑4‑aminophenol hydrochloride (DMAPH) crystal was prepared from 2,6‑dimethylphenol (DMP) through three steps including nitrification, reduction and salification. Its properties were characterized by SCXRD, SEM, IR, PXRD and DSC methods.
五唑阴离子盐,具有高氮、高生成焓且爆轰产物为无毒的氮气等特性,是第四代含能材料中最受关注的化合物之
当前,文献报道2,6‑二甲基‑4‑氨基苯酚的合成主要涉及两种方法:一是以对氨基苯磺酸和2,6‑二甲基苯酚为原料经过重氮化、偶氮化和还原反
试剂:2,6‑二甲基苯酚和亚硝酸钠,萨恩化学技术(上海)有限公司;连二亚硫酸钠、氢氧化钠,冰乙酸,天津市科密欧化学试剂有限公司;浓盐酸、乙酸乙酯、甲醇、乙醇、四氢呋喃、甲苯、二氯甲烷,国药集团化学试剂有限公司,以上试剂均为分析纯。
仪器:ALPHA II傅里叶变换红外光谱仪(德国Bruker);Apreo s热场发射扫描电子显微镜(美国FEI);SDT‑Q600同步热分析仪(美国TA仪器);D8 ADVANCE X‑射线衍射仪(德国 Bruker);D8 QUEST X‑射线单晶衍射仪(德国Bruker);Avance III 500 MHz核磁共振仪(德国Bruker);LC‑20A高效液相色谱仪(日本岛津)。
通过亚硝化反应,在羟基的对位引入亚硝基(

Scheme 1 Synthetic route of 2,6‑dimethyl‑4‑aminophenol hydrochloride
向上述烧瓶中加入90 mL氢氧化钠溶液(2 mol·
将上述滤饼快速加入500 mL三口烧瓶,然后分别加入乙酸乙酯、四氢呋喃、甲醇、甲苯、二氯甲烷和正丁醇等溶剂使其溶解,控制乙酸乙酯溶剂反应体系温度为10~40 ℃,其它溶剂反应体系为室温(约20 ℃),逐滴加入浓盐酸,收集析出的晶体,真空干燥后得固体质量为14.37~14.85 g,产率为90%~93%,纯度为98.53%±0.3%(HPLC法,流动相是甲醇和水,V甲醇/V水=7/3,流速是0.8 mL·mi
为验证亚硝基是否已经引入到苯环上,采用红外光谱对中间产物2,6‑二甲基‑4‑亚硝基苯酚(DMNP)进行分析,如

a. IR of DMP and DMNP

b. Effect of the materials mole ratio on the yield of DMNP
图1 DMP和DMNP的红外光谱和产率分析
Fig.1 IR spectrum and yield analysis of 2,6‑dimethylphenol (DMP)and 2,6‑dimethyl‑4‑nitrosophenol(DMNP)
在亚硝化反应过程中,亚硝酸盐与酸形成亚硝酸,然后生成N

Scheme 2 Mechanism of nitrosation reaction
采用X‑射线单晶衍射仪在100 K温度下对所得晶体(乙酸乙酯溶液析出)进行测试,晶体结构直接由程序SHELXS⁃97直接法解出,DMAPH晶体数据经过全矩阵最小二乘法修正,最终偏差因子R1=0.0243,wR2=0.0714,GOF=1.116。数据分析表明DMAPH晶体属于正交晶系,空间群是Pbca,晶胞系数a=13.9174,b=8.1902,c=17.1397,α=β=γ=90°。

a. thermal ellipsoid plot

b. hydrogen bond network

c. molecular layer spacing

d. cell stacking digra
图2 2,6‑二甲基‑4‑氨基苯酚盐酸盐的晶体结构
Fig.2 Crystal structure of 2,6‑dimethyl‑4‑aminophenol hydrochloride

a. electron density

b. ELF
图3 2,6‑二甲基‑4‑氨基苯酚和DMAPH电子云密度填充图和DMAPH电子定域化函数图
Fig.3 Electron density and ELF images of 2,6‑dimethyl‑4‑aminophenol and DMAPH
为了进一步探索温度对析出晶体形貌的影响,实验以乙酸乙酯为溶剂,控制晶体在10~40 ℃析出,不同温度下析出晶体的扫描电镜(SEM)测试结果如图

图4 在不同温度和溶剂条件下2,6‑二甲基‑4‑氨基苯酚盐酸盐析出晶体的扫描电镜图
Fig.4 SEM images of 2,6‑dimethyl‑4‑ aminophenol hydrochloride crystal in different temperatures and solvents
利用红外对DMAPH晶体进行分析,如

a. IR

b. XRD
图5 2,6‑二甲基‑4‑氨基苯酚盐酸盐晶体的红外光谱和XRD图谱
Fig.5 IR and XRD spectra of 2,6‑dimethyl‑4‑ aminophenol hydrochloride crystals
为了进一步研究晶型的不同,采用Diamond软件对DMAPH晶体进行了XRD模拟,如
对不同溶剂中析出DMAPH晶体的热稳定性能进行DSC测试,升温温度范围是40~400 ℃,升温速率为10 ℃·mi
由于供电子基团对苯环电子云密度的影响,2,6‑二甲基‑4‑氨基苯酚暴露在空气中,颜色会发生变化,如

a. DSC

b. DMAP in air at 20 ℃

c. amorphous DMAPH powders at 50 ℃

d. DMAPH crystal in ethyl acetate at 50 ℃

e. DMAPH crystal in toluene at 50 ℃
图6 2,6‑二甲基‑4‑氨基苯酚盐酸盐晶体的DSC图和DMAP、DMAPH的颜色变化
Fig.6 DSC curves of DMAPH crystals and color changes of DMAP and DMAPH
(1)以2,6‑二甲基苯酚为原料,冰乙酸和亚硝酸钠为亚硝化试剂,经过亚硝化反应,制备了2,6‑二甲基‑4‑亚硝基苯酚,当n(2,6‑二甲基苯酚)∶n(亚硝酸钠)∶n(冰乙酸)为1∶1.2∶1.8时,亚硝化产率高达92.5%。
(2)以乙酸乙酯为溶剂,采用缓慢挥发法得到DMAPH晶体,属正交晶系,空间群是Pbca,量子计算表明酸化后的DMAP稳定性更高。
(3)用二氯乙烷、甲醇、乙酸乙酯、甲苯、四氢呋喃和正丁醇作为析晶溶剂,获得了针状、片状、块状和板状的DMAPH晶体,甲醇溶剂析出的DMAPH晶体最优暴露面是(400)晶面,其他溶剂析出的最优暴露面为(214)晶面。
(4)DMAPH晶体DSC曲线的分解峰温在220~240 ℃,特定晶型的DMAPH晶体的热稳定性和抗氧化性能最好,适合长期保存。
致谢
感谢南京理工大学化学与化工学院胡炳成、章冲、高超及杜杨老师给予的实验指导和帮助。
参考文献
ZHANG Chong,SUN Cheng‑guo,HU Bing‑cheng,et al. Synthesis and characterization of the pentazolate anion cyclo‑N
XU Yuan‑gang, WANG Qian, SHEN Cheng, et al. A series of energetic metal pentazolate hydrates[J]. Nature, 2017, 549(7670): 78‑81. [百度学术]
ZHANG Chong, YANG Chen, HU Bing‑cheng, et al. A symmetric Co(N5)2(H2O)4⋅4 H2O high‐nitrogen compound formed by cobalt (Ⅱ) cation trapping of a Cyclo‐N
SUN Cheng‑guo, ZHANG Chong, JIANG Chao, et al. Synthesis of AgN5 and its extended 3D energetic framework[J]. Nature Communications, 2018, 9(1): 1-7. [百度学术]
邢晓玲, 赵省向, 肖川. 全氮与多氮高能材料结构与能量性能分析及展望 [J]. 化工新型材料, 2015, 43(10): 240-243. [百度学术]
XING Xiao‑ling, ZHAO Sheng‑xiang, XIAO Chuan. Research on the structure and energy analysis of all/poly nitrogen high energetic materials[J].New Chemical Materials,2015,43(10): 240-243. [百度学术]
DONG Zhen, YE Zhi‑wen. Synthesis and properties of salts derived from C4N1
ZHOU Miao, SUI Ming‑hong, SHI Xu‑han, et al. Lithium pentazolate synthesized by laser heating‑compressed lithium azide and nitrogen[J]. The Journal of Physical Chemistry C, 2020, 124(22): 11825-11830. [百度学术]
JIAO Fang‑bao,ZHANG Chao‑yang,XIE Wei‑yu. High‑pressure FeNx: Stability, phase transition, and energetic characteristic[J]. The Journal of Physical Chemistry C, 2020, 124(37): 19953-19961. [百度学术]
张文志. 五唑胍盐的制备、表征及性能研究 [D]. 鞍山: 辽宁科技大学, 2020. [百度学术]
ZHANG Wen‑zhi. Synthesis, characterization and performance of guanidinium pentazolate[D]. Anshan: University of Science and Technology Liaoning, 2020. [百度学术]
YANG Chen, ZHANG Chong, ZHENG Zhan‑sheng, et al. Synthesis and characterization of cyclo‑pentazolate salts of NH
ZHANG Wen‑quan, WANG Kang‑cai, LI Jue‑cheng, et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages[J]. Angewandte Chemie, 2018, 130(10): 2622-2625. [百度学术]
LUO Jin, XIA Hong‑lei, ZHANG Wen‑quan, et al. A promising hydrogen peroxide adduct of ammonium cyclopentazolate as a green propellant component[J]. Journal of Materials Chemistry A, 2020, 8(25): 12334-12338. [百度学术]
李珏成. 新型全氮五唑离子材料合成探索研究 [D]. 绵阳: 中国工程物理研究院, 2019. [百度学术]
LI Jue‑cheng. Study on the synthesis of a new type of total nitrogen pentazole ionic material[D]. Mianyang: China Academy of Engineering Physics, 2019. [百度学术]
祁世宇. 2,6‑二甲基‑4‑亚硝基苯酚的合成研究 [J]. 合成材料老化与应用, 2019, 48(3): 64-66. [百度学术]
QI Shi‑yu. The synthesis research of 2,6‑dimethyl‑4‑nitrosophenol[J]. Synthetic Materials Aging and Application, 2019, 48(3): 64-66. [百度学术]
柯中炉, 蒋军荣, 徐峰, 等. 2,6‑二叔丁基‑4‑氨基苯酚的合成工艺研究 [J]. 应用化工, 2014, 43(10): 1835-1839. [百度学术]
KE Zhong‑lu, JIANG Jun‑rong, XU Feng, et al. Studies on synthetic process for 2,6‑ditert‑butyl‑4‑aminophenol [J]. Applied Chemical Industry, 2014, 43(10): 1835-1839. [百度学术]
FERNANDO C R, CALDER I C, HAM K N. Studies on the mechanism of toxicity of acetaminophen. Synthesis and reactions of N‑acetyl‑2,6‑dimethyl‑ and N‑acetyl‑3,5‑dimethyl‑p‑benzo‑ quinone imines[J]. Journal of Medicinal Chemistry, 1980, 23(11): 1153-1158. [百度学术]
王蕾,陈东,李洪珍,等. 八种溶剂体系中HMX晶体形貌的分子动力学模拟和实验研究(英文)[J].含能材料, 2020, 28(4): 317-329. [百度学术]
WANG Lei, CHEN Dong,LI Hong‑zhen,et al. Crystal morphology of β⁃HMX under eight solvents system using molecular dynamics simulation and experiment[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2020,28(4): 317‑329. [百度学术]
樊思琪, 顾晓飞, 段晓惠, 等. FOX‑7在八种不同溶剂体系下的晶体形貌预测[J]. 含能材料: 2021, 29(11): 1132-1141. [百度学术]
FAN Si⁃qi,GU Xiao⁃fei,DUAN Xiao⁃hui,et al.Crystal morphology prediction of FOX⁃7 in eight different solvent systems[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2021, 29(11):1132-1141. [百度学术]
杨静, 陈明洋, 许史杰, 等. 无机盐晶体形貌调控研究进展 [J]. 无机盐工业, 2018, 50(8): 11-15. [百度学术]
YANG Jing, CHEN Ming‑yang, XU Shi‑jie, et al. Progress on crytal shape control of inorganic salts[J]. Inorganic Chemicals Industry, 2018, 50(8): 11-15. [百度学术]
李洪珍. 炸药晶体结构形态调控——研究进展及发展建议 [J]. 含能材料, 2020, 28(9): 874‑888. [百度学术]
LI Hong‑zhen. Research progress and suggestion for the modification the explosive crystal characteristics[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020, 28(9): 874-888. [百度学术]
LU Tian, CHEN Fei‑wei. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. [百度学术]
YI Wen‑cai, JIANG Xin‑gang, YANG Tao, et al. Crystalline structures and energetic properties of lithium pentazolate under ambient conditions[J]. ACS Omega,2020,5(38): 24946-24953. [百度学术]
HE Xiao‑hui, ZHANG Tiantian, ZHANG Quan, et al. Iron pentazolate complex: Isoelectronic species of ferrocene but with a planer structure[J]. European Journal of Inorganic Chemistry, 2021, DOI:10.1002/ejic.202100588. [百度学术]