摘要
亚稳态分子间复合物(Metastable Intermolecular Composites, MICs)具有超高的反应速率、高体积能量密度、微米级的临界反应传播尺寸等优点,在微型含能器件和火箭推进剂等领域展现出广阔的应用前景。纳米Al/CuO含能复合薄膜是当前亚稳态分子间复合物领域的研究热点之一,其利用气相沉积方法进行制备,与含能微机电系统(Microelectromechanical Systems, MEMS)的微细加工工艺兼容,在集成化含能器件方面具有极大的应用前景。本文综述了纳米Al/CuO含能复合薄膜的制备、热性能、燃烧性能、反应动力学以及过渡层对其反应性的影响、含能器件(点火器)及其应用技术方面的研究,并对纳米Al/CuO含能复合薄膜的发展方向进行了展望。
图文摘要
关键词
纳米Al/CuO 含能复合薄膜指由纳米厚度的铝薄膜和氧化铜薄膜交替叠加得到的含能复合薄膜材料,其中薄膜的总厚度一般在0.1~300 μ
纳米铝热剂的传统制备方法主要有如下几种:机械混合、抑制反应球磨法、溶胶-凝胶法和气相沉积法
国内外研究学者针对Al/CuO纳米铝热复合含能薄膜开展了大量的研究,对于宏观反应性以及其在点火器件上的应用已经较为成熟,在微观反应性上还有待加强,特别是针对其反应机理不清晰、膜间反应性进程不明确等方
纳米Al/CuO含能复合薄膜是按照一定的厚度,周期性、交替沉积制备而成的薄膜材料。在本文中,将单层铝膜与单层氧化铜膜厚度之和视为一个调制周期,将单层铝膜与单层氧化铜膜厚度之比视为一个调制比,调制周期反映了纳米铝热含能复合薄膜的精密程度,调制比反映了纳米铝热含能复合薄膜中两种反应物的相对含量。
磁控溅射的工作原理如

a. schematic diagram of experimental device

b. multilayer coating process diagram
图1 磁控溅射原理图
Fig.1 Schematic diagram of magnetron sputtering
根据化学反应类型,可以将含能复合薄膜分为两类:一类是可以发生氧化还原反应的金属/氧化物含能复合薄膜,例如Al/Cu

图2 几种典型的含能薄膜材料与两种常规炸药的能量密度对比
Fig.2 Comparison of energy density between several typical energetic film materials and two conventional explosives
Al和CuO具有原材料容易得到、价格便宜、无毒以及工艺成熟等优势,Al/CuO体系又具有非常高的产气量、放热量并释放出大量能量,如
对纳米Al/CuO含能复合薄膜的热性能进行研究,可以观测到不同物态的反应进程,在这个过程中,不同的调制周期以及调制比会对纳米Al/CuO含能复合薄膜的热性能以及后续材料的改性和老化产生一定的影

a. DSC curves of Al/CuO nanolaminates heated and heat of reaction as a function of bilayer thickness

b. DSC curves of Al/CuO nanolaminates heated and heat of reaction as a function of the equivalence ratio
图3 不同调制周期和不同调制比纳米Al/CuO复合薄膜DSC曲线及放热量对比
Fig.3 Comparison of DSC curves and heat release of Al/CuO nanocomposite films with different modulation periods and different modulation ratio
Esteve
纳米铝热含能复合薄膜的自蔓延燃烧对其应用具有重要影响,自持燃烧过程中的燃速与燃烧温度反映了纳米铝热含能复合薄膜燃烧过程中能量释放速率的快慢以及燃烧过程的稳定性,是衡量薄膜性能的主要指
2010年,Manesh
Zapata

图4 复合薄膜燃烧示意
Fig.4 Schematic diagram of composite film combustio
2020年,Wang
由于纳米铝热含能复合薄膜具有多层交替沉积的均匀层状结构,两层之间的过渡层对复合薄膜的反应性具有重要影响,一般认为复合薄膜的反应开始于过渡层处的物质交换,在众多含能多层薄膜的相关研究中,过渡层的形成机理及作用时的反应机理一直是研究的重点与难点。
近年来对纳米Al/CuO复合薄膜的过渡层反应以及过程进行分析,并引入新元素对界面层进行改善来调节纳米含能复合薄膜的反应性能。研究内容具体如下。
Blobaum

图5 Al/CuO复合薄膜界面
Fig.5 Al/CuO composite film interfacial laye
Zachariah
2015年,Marín
Abdallah

图6 纳米Al/CuO含能复合薄膜过渡层示意
Fig.6 Schematic diagram of Schematic diagram of nano Al /CuO energetic composite film transition laye
2020年Julien
Lanthony

a. deposition Al/CuO of PVD

b. deposition Al/CuO of ALD

c. DSC analysis of sample PVD and ALD diagram
图7 Al/CuO过渡层机理研
Fig.7 Study on mechanism of Al/CuO transition laye
Nicollet

图8 自蔓延燃烧模型示意
Fig.8 Schematic diagram of self propagating combustion mode
Xiong
Brotman
Tichtchenko
由于纳米铝热含能复合薄膜优良的点火燃烧性能,将其应用于点火、电爆等换能装置可以有效提高能量转换效率,加之此种材料可与精密加工技术相结合,易实现与MEMS器件的集成,有利于实现能量输出装置的小型化,因此纳米铝热含能复合薄膜在火工品点火和微烟火装置等方面得到了广泛的应用。近年研究者对Al/CuO复合薄膜点火器的应用进行了深入的研究,取得了丰富的研究成果,主要内容包括纳米铝热含能复合薄膜在爆炸箔、新型换能元、间隙点火等领域的应用。研究内容具体如下。
2013年,法国LAAS/CNRS的Taton
倪德彬
周翔
李杰
Nicollet
Fu

图9 MIM‑Al/CuO换能元的制备流程示意
Fig.9 Schematic diagram of preparation process of MIM‑Al/CuO energy exchange elemen
杨腾龙
磁控溅射法制备纳米Al/CuO含能复合薄膜已经广泛用于爆炸箔、微推进系统以及导弹、火箭和其他武器系统中使用的点火装置。随着磁控溅射法制备纳米Al/CuO含能复合薄膜的研究不断深入,当前已具备较为丰富的研究积累,在宏观反应性、新型点火器应用方面已经非常成熟,但对于薄膜制备原位检测、微观反应性研究、自身长储性等理论研究方面都还停留在初步实验阶段,并没有形成完整的体系,针对当前研究和应用中纳米Al/CuO含能复合薄膜所存在的不足,对其未来的研究重点从以下几个层面提出建议:
从制备以及测试层面来看,经过近30年的发展,磁控溅射法制备纳米Al/CuO含能复合薄膜的工艺已经非常成熟,受限于磁控溅射法制备过程中需要的高真空以及磁场条件的制约,在制备过程中的原位检测手段一直没能够得到进一步发展,目前已经有实现原位XRD以及DSC检测的设备被研发,如能将原位XRD和DSC技术与含能复合薄膜制备相结合,会对我们了解纳米Al/CuO含能复合薄膜的微观结构提供新思路,可以为薄膜层间过渡层的成分以及反应性研究提供定量依据。
从纳米Al/CuO含能复合薄膜的反应性研究层面来看,当前的研究报道集中在燃速、放热量以及点火应用等方面,对于薄膜层间反应性少有涉及,过渡层能量的改变会成为对纳米Al/CuO含能复合薄膜微观调控的重要决定因素,而对于过渡层成分的定量分析以及层间反应进程的研究能够为薄膜能量传输理论探究提供支持。
从纳米Al/CuO含能复合薄膜在武器系统的应用层面来看,其自身各组分会发生预反应和组分扩散、迁移等内相容问题,在封闭微环境体系中各种材料之间会发生物质迁移和扩散等外相容问题。这些问题会加速材料老化和失效,直接影响到武器系统的安全性、可靠性和寿命。多年来纳米铝热含能复合薄膜自身的老化问题、寿命评估问题没有形成体系,尤其是在基础性和共性的相容性研究方面显得十分薄弱,在理论研究方面还需进一步加强以推动基础理论和工程应用的发展。
参考文献
Adams D P.Reactive multilayers fabricated by vapor deposition: A critical review[J]. Thin Solid Films, 2015(576): 98-128. [百度学术]
He W,Liu P J, He G Q, et al. Highly reactive metastable intermixed composites(mics):Preparation and characterization[J]. Advanced Materials, 2018, 30(41): 1706293. [百度学术]
Zhou X, Torabi M, Lu J, et al. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications [J]. ACS Applied Materials & Interfaces, 2014, 6(5): 3058-3074. [百度学术]
Rossi C, Zhang K, Esteve D, et al. Nanoenergetic materials for mems: A review[J]. Journal of Microelectromechanical Systems, 2007, 16(4): 919-931. [百度学术]
Azadmanjiri J, Berndt C C, Wang J, et al.Nanolaminated composite materials: Structure, interface role and applications[J]. Rsc Advances, 2016, 6(111): 109361-109385. [百度学术]
Taton G, Lagrange D, Conedera V, et al. Micro‑chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane[J]. Journal of Micromechanics and Microengineering, 2013, 23(10): 105009. [百度学术]
Kinsey A H, Slusarski K, Krumheuer E, et al. Enhanced reaction velocity and diluent homogenization in Redox Foils using arrested reactive milling thermite powder[J]. Journal of Materials Science, 2017, 52(18): 11077-11090. [百度学术]
马景灵, 任风章, 孙浩亮. 磁控溅射镀膜技术的发展及应用[J]. 中国科教创新导刊, 2013, 29: 136. [百度学术]
MA Jing‑ling,REN Feng‑zhang,SUN Hao‑liang.Development and application of magnetron sputtering coating technology[J]. China Education Innovation Herald, 2013, 29: 136. [百度学术]
Simoes S, Viana F, Kocak M, et al. Microstructure of reaction zone formed during diffusion bonding of Ti/Al with Ni/Al multilayer[J]. Journal of Materials Engineering and Performance, 2012, 21(5): 678-682. [百度学术]
Grieseler R, Welker T, Muller J, et al. Bonding of low temperature co‑fired ceramics to copper and to ceramic blocks by reactive aluminum/nickel multilayers[J]. Physica Status Solidi A, 2012, 209(3): 512-518. [百度学术]
Simoes S, Viana F, Kocak M, et al. Diffusion bonding of Ti/Al using reactive Ni/Al nanolayers and Ti and Ni foils[J]. Materials Chemistry and Physics, 2011, 128(1-2): 202-207. [百度学术]
Tong M, Sriram V, Minor A, et al. In situ and ex situ nanomechanical analysis of reactive nanolayer solder joints[J]. Advanced Engineering Materials, 2009, 11(8): 645-649. [百度学术]
Tu K N, Tian T. Metallurgical challenges in microelectronic 3D IC packaging technology for future consumer electronic products[J]. Science China Technological Sciences, 2013, 56(7): 1740-1748. [百度学术]
Boettge B, Braeuer J, Wiemer M, et al. Fabrication and characterization of reactive nanoscale multilayer systems for low‑temperature bonding in microsystem technology[J]. Journal of Micromechanics and Microengineering, 2010, 20(6): 064018. [百度学术]
程龙, 李杰, 官震, 等. Al/Ni自支撑纳米含能薄膜制备及在热电池中的应用[J]. 爆破器材, 2015, 44(5): 18-22. [百度学术]
CHENG Long, LI Jie, GUAN Zhen, et al. Preparation of Al/Ni self‑supporting energetic nanofilms and its application in the thermal battery[J]. Explosive Materials, 2015, 44(5): 18-22. [百度学术]
张彬, 褚恩义, 任炜, 等. MEMS火工品换能元的研究进展[J]. 含能材料, 2017, 25(5): 428-436. [百度学术]
ZHANG Bin, CHU En‑yi, REI Wei, et al. Research progress in energy conversion components for MEMS initiating explosive device[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(5): 428-436. [百度学术]
Salvagnac L, Assie‑Souleille S, Rossi C. Layered Al/CuO thin films for tunable ignition and actuations[J]. Nanomaterials (Basel), 2020, 10(10):2009. [百度学术]
Rossi C.Two decades of research on nano‑energetic materials[J]. Propellants,Explosives,Pyrotechnics, 2014, 39(3): 323-327. [百度学术]
Tai Y, Xu J B, Wang F, et al. Experimental and modeling investigation on the self‑propagating combustion behavior of Al‑MoO3 reactive multilayer films[J]. Journal of Applied Physics, 2018, 123(23): 235302. [百度学术]
Dutro G M, Yetter R A, Risha G A, et al. The effect of stoichiometry on the combustion behavior of a nanoscale Al/MoO3 thermite[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1921-1928. [百度学术]
Zhou X, Zhu Y, Ke X, et al. Exploring the solid‑state interfacial reaction of Al/Fe2O3 nanothermites by thermal analysis[J]. Journal of Materials Science, 2019, 54(5): 4115-4123. [百度学术]
Zhang W C, Yin B Q, Shen R Q, et al. Significantly Enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film[J]. ACS Applied Materials & Interfaces, 2013, 5(2): 239-242. [百度学术]
Firat Y E. Influence of current density on Al:NiO thin films via electrochemical deposition: Semiconducting and electrochromic properties[J]. Materials Science in Semiconductor Processing, 2020, 109: 104958. [百度学术]
Yan Y C, Shi W, Jiang H C, et al. Fabrication and characterization of Al/NiO energetic nanomultilayers[J]. Journal of Nanomaterials, 2015, 2015: 964135. [百度学术]
Baras F, Turlo V, Politano O, et al. SHS in Ni/Al nanofoils: a review of experiments and molecular dynamics simulations[J]. Advanced Engineering Materials, 2018, 20(8): 1800091. [百度学术]
Dreizin E L. Metal‑based reactive nanomaterials[J]. Progress in Energy and Combustion Science, 2009, 35(2): 141-167. [百度学术]
Fu K K, Sheppard L, Chang L, et al. Comparative study on plasticity and fracture behaviour of Ti/Al multilayers[J]. Tribology International, 2018, 126: 344-351. [百度学术]
Sen S, Lake M, Kroppen N, et al. Self‑propagating exothermic reaction analysis in Ti/Al reactive films using experiments and computational fluid dynamics simulation[J]. Applied Surface Science, 2017, 396: 1490-1498. [百度学术]
Sen S, Lake M, Wilden J, et al. Synthesis and characterization of Ti/Al reactive multilayer films with various molar ratios[J]. Thin Solid Films, 2017, 631: 99-105. [百度学术]
Zhang Y X,Wang Y,Ai M T,et al.Reactive B/Ti nano‑multilayers with superior performance in plasma generation[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21582-21589. [百度学术]
Reeves R V,Rodriguez M A,Jones E D,et al. Condensed‑phase and oxidation reaction behavior of Ti/2B foils in varied gaseous environments[J]. The Journal of Physical Chemistry C, 2012, 116(33): 17904-17912. [百度学术]
Fischer S H, Grubelich M C. Theoretical energy release of thermites, intermetallics, and combustible metals[R]. SAND‑98‑ 1176 [百度学术]
C, 1998. [百度学术]
Rossi C. Engineering of Al/CuO reactive multilayer thin films for tunable initiation and actuation[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(1): 94-108. [百度学术]
Shi A, Zhang W, Shen R. Self‑propagating combustion simulation of sputter‑deposited nano‑energetic multilayer films[J]. Journal of Physics:Conference Series,2021, 1721(1):012003. [百度学术]
Blobaum K J,Wagner A J,Plitzko J M,et al. Investigating the reaction path and growth kinetics in CuOx/Al multilayer foils[J]. Journal of Applied Physics, 2003, 94(5): 2923-2929. [百度学术]
Blobaum K J,Van Heerden D, Wagner A J, et al. Sputter‑de‑ position and characterization of paramelaconite[J]. Journal of Materials Research, 2003, 18(7): 1535-1542. [百度学术]
Blobaum K J, Reiss M E, Plitzko J M, et al. Deposition and characterization of a self‑propagating CuOx/Al thermite reaction in a multilayer foil geometry[J]. Journal of Applied Physics, 2003, 94(5): 2915-2922. [百度学术]
Petrantoni M, Rossi C, Salvagnac L, et al. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro[J]. Journal of Applied Physics, 2010, 108(8): 084323. [百度学术]
Bahrami M, Taton G, Conédéra V, et al. Magnetron sputtered Al‑CuO nanolaminates: effect of stoichiometry and layers thickness on energy release and burning rate[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(3): 365-373. [百度学术]
Esteve A, Lahiner G, Julien B, et al. How Thermal aging affects ignition and combustion properties of reactive Al/CuO nanolaminates: A joint theoretical/experimental study[J]. Nanomaterials, 2020, 10(10): 2087. [百度学术]
Manesh N A, Basu S, Kumar R. Experimental flame speed in multi‑layered nano‑energetic materials[J]. Combustion and Flame, 2010, 157(3): 476-480. [百度学术]
Amini‑Manesh N, Basu S, Kumar R. Modeling of a reacting nanofilm on a composite substrate[J]. Energy, 2011, 36(3): 1688-1697. [百度学术]
Zapata J, Nicollet A, Julien B, et al. Self‑propagating combustion of sputter‑deposited Al/CuO nanolaminates[J]. Combustion and Flame, 2019, 205: 389-396. [百度学术]
Wang H, Julien B, Kline D J, et al. Probing the reaction zone of nanolaminates at ∼μs time and ∼μm spatial resolution[J]. The Journal of Physical Chemistry C, 2020, 124(25): 13679-13687. [百度学术]
DeLisio J B, Yi F, LaVan D A, et al. High heating rate reaction dynamics of Al/CuO nanolaminates by nanocalorimetry‑cou‑ pled time‑of‑flight mass spectrometry[J]. Journal of Physical Chemistry C, 2017, 121(5): 2771-2777. [百度学术]
Egan G C, Mily E J, Maria J P, et al. Probing the reaction dynamics of thermite nanolaminates[J]. Journal of Physical Chemistry C, 2015, 119(35): 20401-20408. [百度学术]
Marin L, Nanayakkara C E, Veyan J F, et al. Enhancing the reactivity of Al/CuO nanolaminates by Cu incorporation at the interfaces[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 11713-11718. [百度学术]
Marin L, Warot‑Fonrose B, Esteve A, et al. Self‑organized Al2Cu nanocrystals at the interface of aluminum‑based reactive nanolaminates to lower reaction onset temperature[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 13104-13113. [百度学术]
Marin L, Gao Y, Vallet M, et al. Performance enhancement via incorporation of ZnO nanolayers in energetic Al/CuO multilayers[J]. Langmuir, 2017, 33(41): 11086-11093. [百度学术]
Abdallah I, Zapata J, Lahiner G, et al. Structure and chemical characterization at the atomic level of reactions in Al/CuO multilayers[J]. ACS Applied Energy Materials, 2018, 1(4): 1762-1770. [百度学术]
Julien B,Cure J,Salvagnac L, et al. Integration of gold nanoparticles to modulate the ignitability of nanothermite films[J]. ACS Applied Nano Materials, 2020, 3(3): 2562-2572. [百度学术]
Kinsey A H,Slusarski K,Sosa S, et al. Gas suppression via copper interlayers in magnetron sputtered Al‑Cu2O multilayers[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 22026-22036. [百度学术]
Lanthony C, Ducéré J M, Estève A, et al.Formation of Al/CuO bilayer films: Basic mechanisms through density functional theory calculations[J]. Thin Solid Films, 2012, 520(14): 4768-4771. [百度学术]
Kwon J, Ducere J M, Alphonse P, et al. Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 605-613. [百度学术]
Nicollet A,Lahiner G,Belisario A,et al.Investigation of Al/CuO multilayered thermite ignition[J]. Journal of Applied Physics, 2017, 121(3): 034503. [百度学术]
Lahiner G, Nicollet A, Zapata J, et al. A diffusion‑reaction scheme for modeling ignition and self‑propagating reactions in Al/CuO multilayered thin films[J]. Journal of Applied Physics, 2017, 122(15): 155105. [百度学术]
Lahiner G, Zappata J, Cure J, et al. A redox reaction model for self‑heating and aging prediction of Al/CuO multilayers[J]. Combustion Theory and Modelling, 2019, 23(4): 700-715. [百度学术]
Xiong G, Yang C, Zhu W, et al. Density functional theory study of high‑energy metal (Al, Mg, Ti, and Zr)/CuO composites[J]. RSC Advances, 2016, 6(93): 90206-90211. [百度学术]
Xiong G, Yang C, Zhu W. Interface reaction processes and reactive properties of Al/CuO nanothermite: An ab initio molecular dynamics simulation[J]. Applied Surface Science, 2018, 459: 835-844. [百度学术]
Xiong G, Yang C, Feng S, et al. Ab initio molecular dynamics studies on the transport mechanisms of oxygen atoms in the adiabatic reaction of Al/CuO nanothermite[J]. Chemical Physics Letters, 2020, 745: 137278. [百度学术]
Brotman S, Rouhani M D, Rossi C, et al. A condensed phase model of the initial Al/CuO reaction stage to interpret experimental findings[J]. Journal of Applied Physics, 2019, 125(3): 035102. [百度学术]
Tichtchenko E,Esteve A,Rossi C.Modeling the self‑propagation reaction in heterogeneous and dense media: Application to Al/CuO thermite[J].Combustion and Flame,2021,228: 173-183. [百度学术]
Nicollet A,Lahiner G,Belisario A,et al.Investigation of Al/CuO multilayered thermite ignition[J]. Journal of Applied Physics, 2017, 121(3): 034503. [百度学术]
倪德彬, 于国强, 史胜楠, 等. Al/CuO二维多层薄膜点火药的制备与性能研究[J]. 火工品, 2018, 01: 28-31. [百度学术]
NI De‑bin, YU Guo‑qiang, SHI Sheng‑nan, et al. Synthesis and properties of multilayered Al/CuO thermite[J]. Initiators and Pyrotechnics, 2018, 01: 28-31. [百度学术]
Ni D, Yu G, Shi S, et al. Gap initiation with 20.35 mm: an initiator integrating the Al/CuOx multilayer film and traditional electronic plug to enhance the ignition ability[J]. Royal Society open science, 2019, 6(5): 181686. [百度学术]
倪德彬, 于国强, 史胜楠, 等. 基于Al/CuOx复合薄膜半导体桥间隙点火性能研究[J]. 含能材料, 2019, 27(2): 149-154. [百度学术]
Nl De‑bin, YU Guo‑qiang, SHl Sheng‑nan,et al. The gap ignition performances of semiconductor bridge based on Al/CuOx multilayer films[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2019, 27(2): 149-154. [百度学术]
Zhou X, Shen R Q, Ye Y H, et al. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator[J]. Journal of Applied Physics, 2011, 110(9): 094505. [百度学术]
李勇, 王军, 高泽志, 等. 多晶硅与Al/CuO复合薄膜集成的含能点火器件的点火性能[J]. 含能材料, 2016, 24(2): 182-187. [百度学术]
LI Yong, WANG Jun, GAO Ze‑zhi, et al. Ignition performances of energetic igniters integrated by integrating polysilicon with al/cuo multilayer films[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(2): 182-187. [百度学术]
李杰, 朱朋, 胡博, 等. Al/CuO肖特基结换能元芯片的非线性电爆换能特性[J]. 含能材料, 2016, 24(3): 279-283. [百度学术]
LI Jie, ZHU Peng, HU Bo, et al. Nonlinear energy conversion performance of electrical explosion of schottky barrier structured Al/CuO transduction chip[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(3): 279-283. [百度学术]
Fu S, Zhu P, Shen R, et al. Pulsed voltage breakdown of Al/CuO reactive multilayer films in metal‑interlayer‑metal structures[J]. Journal of Applied Physics, 2018, 124(11): 115103. [百度学术]
Fu S, Shen R, Zhu P, et al. Metal‑interlayer‑metal structured initiator containing Al/CuO reactive multilayer films that exhibits improved ignition properties[J]. Sensors and Actuators A: Physical, 2019, 292: 198-204. [百度学术]
杨腾龙, 沈云, 代骥, 等. 一种Ni‑Cr@Al/CuO钝感含能元件的制备及性能[J]. 含能材料, 2019, 27(10): 830-836. [百度学术]
YANG Teng⁃long, SHEN Yun, DAI Ji, et al. Fabrication and characterization of a Ni‑Cr@Al/CuO insensitive energetic element[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2019, 27(10): 830-836. [百度学术]
Shen Y, Xu J, Wang C, et al. Ignition characteristics of energetic nichrome bridge initiator based on Al/CuO reactive multilayer films under capacitor discharge and constant current conditions[J]. Sensors and Actuators A: Physical, 2020, 313: 112200. [百度学术]