摘要
五唑离子化合物是当前新型含能材料的一个研究热点,其制备通常以五唑共价化合物为前体实现。多数情况下,五唑共价化合物的稳定性对能否成功制备五唑离子化合物有很大影响。采用密度泛函理论B3LYP/6-31G**方法重点研究了18个直链取代五唑共价化合物(R—N5或N5—R—N5)的侧链化学键的解离能EBD和N5环的分解能垒Ea,分析了侧链对其稳定性和热解机理的影响。发现当R为羟基或氨基时,侧链容易断裂,N5环也容易破裂,难以得到N
图文摘要
The dissociation energy (EBD) of the bonds in the side chain and the activation energy barrier (Ea) of the N5 ring have been investigated, and meanwhile the factors concerning with selection of precursors and preparation methods of pentazolate salts have also been explored.
全氮含能化合物具有能量密度较高和爆轰产物清洁无污染的优点,有望作为新一代高能材料得到应
自1956年Huisgen
目前N
但由于稳定性不够好,迄今为止五唑前体化合物难以大量合成,所以含N
采用Gaussion 09软件

图1 五唑化合物1~10的分子结构
Fig.1 Molecular structure of pentazolate compounds 1-10

图2 化合物6的侧链C—N和C—C键断裂过程示意图
Fig.2 Schematic diagram of cleavage process of C—N and C—C bonds in the side chain of compound 6
化合物1~10侧链上的C—C、C—N、N—N、N—O等键断裂成两个自由基,键断裂过程所需能量就是这些键的解离能EBD,对于键A—B断裂生成自由基产物A·和B·的反应A—B(g)→A·(g)+B·(g),反应的热效应即为该键的EBD,等于产物与反应物的焓之差:EBD=H(A·)+H(B·)-H(A—B)。
N5环的分解经历过渡态,因此分解所需的最大能量为N5环的分解能垒Ea。Ea由过渡态的焓H(TS)和反应物的焓H(R)求得:Ea=H(TS)-H(R)。个别自由基产物的后续断键过程也经历过渡态,它们的键解离能也由过渡态与反应物的焓之差求得。
EBD和Ea均包含了零点振动能和热焓校正。
由侧链化学键裂解过程的反应物和产物的焓计算得到1~10侧链上的C—C、C—N、N—N或N—O键的EBD结果列于
Note: 1) Obtained from the enthalpies of the transition state and reactant.
EBD越大,键断裂需要的能量越多,键就越稳定。比较
计算发现,N5共价化合物中的N5环容易分解,R—N5→N2+R—N3的分解能垒通常小于90 kJ·mo
根据公式Ea=H(TS)-H(R),由N5环分解过程中反应物和过渡态的焓计算得到1~10的N5环的分解能垒Ea,列于
Note: 1)The decomposition of the N5 ring goes through the transition state, so the maximum energy required for the decomposition is the decomposition barrier Ea of the N5 ring.
N5环的分解能垒Ea比侧链化学键断裂所需EBD小得多,最大不超过87 kJ·mo
在化合物1~10中,化合物中10的Ea最小,其次为2,说明与N5环直接相连的羟基使N5环的稳定性降低最多,其次为氨基,即N5环上连接这些基团的五唑化合物稳定性不高,N5环上连接烷基时稳定性最高。氨基、羟基和烷基都是给电子基团,与N5环相连后会使N5环中共轭体系的能量升高稳定性降低,氨基和羟基是强给电子基,影响大,烷基是弱给电子基,影响小,故N5环上连接烷基时比连接氨基和羟基时稳定性高。
对于双环分子,两个N5环是先后裂解的,没有发现两环同时裂解的过渡态,

图3 化合物6的N5环的裂解过程及能量变化(单位: kJ·mo
Fig.3 Cleavage process and energy variation of the N5 ring of compound 6 (unit in kJ·mo
根据上述研究结果,侧链为烷基的五唑化合物的N5环相对较稳定。为更系统地研究烷基链对Ea和EBD的影响,又设计了8个含更长烷基链的N5化合物(11~18,

图4 含更长烷基链的五唑化合物(11~18)的分子结构
Fig. 4 Molecular structure of compounds 11-18 with longer alkyl chains
采用1~10相同的方法由侧链裂解过程的反应物和产物的焓计算得到11~18侧链化学键的EBD,结果列于
Note: 1) Obtained from the enthalpies of the transition state and reactant.

图5 侧链为烷基时C—N键的EBD与碳原子数Nc的关系
Fig.5 Relationship between the EBD of C—N bond and the number of carbon atoms of alkyl chains
比较单环分子3、5、11、13、15、17中C—N键的EBD发现,随烷基链增长(碳原子数Nc从1增加到6),EBD有逐渐增大的趋势,但变化幅度很小,EBD相差不大;由双环分子(6、12、14、16、18,4除外)可发现类似规律,且第二个C—N键断裂所需EBD大于第一个。化合物4(Nc=1)与其它分子不同,第二个C—N键的EBD远大于第一个,也明显大于其他分子,这主要是因为4断裂一个C—N键所得残基CJ1中存在较大的共轭体系(

图6 化合物4断裂一个C—N键后形成的残基CJ1的结构
Fig.6 Structure of CJ1 formed from the rupture of the C—N bond of compound 4
由分解过程中反应物和过渡态的焓计算得到化合物11~18的N5环的分解能垒Ea列于

图7 侧链为烷基时N5环裂解的Ea与碳原子数Nc的关系
Fig.7 Relationship between the Ea of the N5 ring and the number of carbon atoms of alkyl chains
与1~10类似,化合物11~18的N5环的分解能垒Ea远低于侧链断裂的EBD。无论是单环还是双环化合物,随烷基链的增长,N5环的分解能垒都略有增大趋势,但增幅很小;对于双环化合物,第二个环的分解能垒大于第一个,但随烷基链增长差别越来越小,Ea的极限值约为86 kJ·mo
根据

图8 残基CJ1~CJ5的结构
Fig.8 Structures of radicals CJ1-CJ5
比较

图9 残基的C—N键EBD及N5环破裂的Ea与残基的碳原子数Nc的关系
Fig.9 Relationship between the EBD of C—N bond or the Ea of rupture of N5 ring and the number of carbon atoms in radicals
根据
与文献[
对系列直链取代N5共价化合物(R—N5或N5—R—N5)中侧链化学键的解离能EBD和N5环的分解能垒Ea进行了计算研究,发现:
(1)当R为羟基或氨基时,侧链和N5环都易破裂,化合物不稳定,不能作为前体来制备N
(2)R为烷基时,随碳原子数增多,侧链化学键的EBD和N5环的Ea都略有增大,但增幅很小,即侧链C—N键和N5环的稳定性受烷基链长影响不大。
(3)双环分子中的N5环的稳定性低于单环分子,双环分子的两个N5环的裂解是先后发生的,裂解生成N2和叠氮化物,后一个环裂解的能垒比前一个约高8 kJ·mo
(4)C—C键的强度较弱,会先于C—N键断裂。C—C键断裂可使C—N键的EBD明显降低而对N5环的Ea影响不大,因此在由五唑共价化合物制备五唑盐的过程中,先切断C—C键产生含两个碳的残基N5—CH2—CH2·会更有利于获得N
参考文献
李玉川, 庞思平. 全氮型超高能含能材料研究进展[J]. 火炸药学报, 2012, 35(1): 1-8. [百度学术]
LI Yu‑chuan, PANG Si‑ping. Progress of allnitrogen ultra high energetic materials[J]. Chinese Journal of Explosives & Propellants, 2012, 35(1): 1-8. [百度学术]
陆明. 对全氮阴离子N
LU Ming. Understanding of the energy performances of non‑metallic salt based on pentazole N
陆明. 对全氮阴离子N
LU Ming. Consideration of the density and energetic level of the all nitrogen N
Zhang C,Sun C G,Hu B C, et al.Synthesis and characterization of the pentazolate anion cyclo‑N
Xu Y G, Wang Q, Lin Q H, et al. A series of energetic metal pentazolate hydrates[J]. Nature, 2017, 549(7670): 78-81. [百度学术]
Yang C, Zhang C, Zhang Z S, et al. Synthesis and characterization of cyclo‑pentazolate salts of NH
Huisgen R, Ugi I. Zur lǒsung eiens klassischen problems der organischen stickstoff‑chemie[J]. Angwandte Chemie, 1956, 68(22): 705-706. [百度学术]
Östmark H, Wallin S, Brinck T, et al. Detection of pentazolate anion (cyclo‑N
Benin V, Kaszynski P, Radziszewski G. Arylpentazoles revisited: experimental and theoretical studies of 4‑hydroxyphenylpentazole and 4‑hydroxyphenylpentazole anion[J]. The Journal of Organic Chemistry, 2002, 67(4): 1354-1358. [百度学术]
张佳利, 庞思平, 李玉川, 等. 1‑(对二甲氨基苯基)五唑的合成研究[J]. 含能材料, 2006, 14(5):355-357. [百度学术]
ZHANG Jia‑li, PANG Si‑ping, LI Yu‑chuang, et al. Synthesis of 1‑(p‑dimethylaminophenyl) pentazole[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2006,14(5):355-357. [百度学术]
毕福强, 许诚, 樊学忠, 等. 对叔丁基苯基五唑的合成及分解动力学[J]. 火炸药学报, 2012, 35(2): 15-18. [百度学术]
BI Fu‑qiang, XU Cheng, FAN Xue‑zhong, et al. Synthesis and decomposition kinetics of p‑tert‑butylphenylpentazole[J]. Chinese Journal of Explosives & Propellants, 2012, 35(2): 15-18. [百度学术]
Vij A, Pavlovich J G, Wilson W W, et al. Experimental detection of the pentaazacyclopentadienide(pentazolate)anion, cyclo‑N
Richard N, John M, John C, et al. A ceric ammonium nitrate N‑dearylation of N‑p‑anisylazoles applied to pyrazole, triazole, tetrazole, and pentazole rings: Release of parent azoles. Generation of unstable pentazole, HN5/N
Boris B, Uzi G, Raanan C, et al. Detection of cyclo‑N
Xu Y G, Lin Q H, Wang P C, et al. Stabilization of the pentazolate anion in three anhydrous and metal‑free energetic salts (N
Laniel D, Weck G, Gaiffe G, et al. A high‑pressure synthesized lithium pentazolate compound metastable at ambient conditions[J]. Physical Chemistry Letters, 2018, 4(14): 1-18. [百度学术]
Xu Y G, Tian L L, Wang P C, et al. Hydrogen bonding network: stabilization of the pentazolate anion in two nonmetallic energetic salts[J]. Crystal Growth & Design, 2019, 19(3): 1853-1859. [百度学术]
Carlqvist P, Östmark H, Brinck T. The stability of arylpentazoles[J]. Journal of Physical Chemistry A, 2004, 108(36): 7463-7467. [百度学术]
Zhang X L, Yang J Q Lu M, et al. Pyridylpentazole and its derivatives: A new source of N
Zhang X L, Ma C, Zhang Y L, et al. Screening benzylpentazoles for replacing PhN5 as cyclo‑N
Frisch M J, Trucks G, Schlegel W H B, et al. Gaussian 09(CP), Revision E.01, Gaussian: Wallingford, 2016. [百度学术]
Becke A D. Density‑functional exchange‑energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38(6): 3098-3100. [百度学术]
Lee C, Yang W T, Parr R G. Development of the colle‑salvetti correlation‑energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789. [百度学术]
Zhang X L, Yang J Q, Lu M, et al. Theoretical studies on the stability and pyrolysis mechanism of salts formed by N
Zhang X L, Gong X D. Theoretical investigations on the stability of alkali metal substituted phenylpentazole[J]. Journal of Molecular Modelling, 2016, 22(5): 106-113. [百度学术]
Zhang X L, Gong X D. Theoretical investigations on stability of pyridylpentazoles, pyridazylpentazoles, triazinylpentazoles, tetrazinylpentazoles, and pentazinylpentazole searching for a replacement of phenylpentazole as N
Zhang X L, Yang J Q, Lu M, et al.Theoretical studies on the stability of phenylpentazole and its substituted derivatives of —OH, —OCH3, —OC2H5 and —N(CH3)2[J]. RSC Advances, 2014, 4(99): 56095-56101. [百度学术]