摘要
分子是含能晶体“大厦”中的“砖”,分子间相互作用就是这些“砖”间的“粘合剂”。因此,分子间相互作用是认知与设计含能晶体的出发点和基础。本文评述了含能晶体中分子间氢键、卤键和π‑π堆积作用及其对分子堆积模式、撞击感度与热安定性的影响。含能晶体中分子间相互作用通常表现出的特点和启示如下: (1) 低感高能晶体有比高感高能晶体更强的氢键作用; (2) 面‑面π‑π堆积是最有效的造就低撞击感度的分子堆积模式; (3) 增强分子间相互作用及其各向异性是一项重要的改善撞击感度的晶体工程策略; (4) 一味地增强分子间氢键可能导致晶体的热安定性变差。此外,分子间相互作用的准确描述与热力作用下的演化规律是今后研究的重点。
图文摘要
The intermolecular hydrogen bonding, halogen bonding and π‑π stacking in energetic crystals, and their influences on molecular stacking pattern, impact sensitivity and thermal stability are reviewed.
分子间相互作用,从物理上讲,包括van de Waals作用力和静电作用力(库仑力);而化学上,它又被区分为氢键(HB)、卤键、π‑π堆积、σ‑π、p‑π等相互作用,这种区分主要是视具体的化学组成和结构而定的,常常无法严格描述其大小。如同一条条网线,分子间相互作用将含能分子或离子约束在固定的晶格里,它是形成含能晶体的原动力。因此,研究分子间的相互作用对认知含能晶体中分子或离子的堆积结构与这些堆积结构对含能材料(EM)性能的影响规律具有重要意义,这些认知将是EM设计的理论基础。
目前,除传统的CHNO分子外,聚合
低感高能材料是EM研究的一个重要方向,如何设计并合成低感高能化合物是获得这类材料的关键。显然,从已有含能化合物中认知分子间相互作用特点及其同宏观性能(如感度)间关系是获得相关设计原理或准则的基础。因此,本文将总结含能分子晶体与含能离子晶体(不包括无机离子盐体系)中分子间相互作用的特点,分子间相互作用对堆积结构、撞击感度和热安定性的影响规律,以及低(降)感高能晶体分子间相互作用对设计的启示,以期提供一个对含能晶体中分子间相互作用的较全面的认知,并有助于理解和设计低感高能化合物。
目前尚无低感高能化合物的明确定义。先前我们考虑到TNT和RDX是现代EM中里程碑式的代表,定义能量(爆速)高于RDX、撞击感度低于TNT的化合物为低感高能化合
含能分子和离子中常常存在H原子,这为分子间HB的存在奠定了元素条件。最近Ma 等系统研究了传统单质CHON EM中的分子间氢键作用,包括11种低感高能化合物TATB、NQ、DAAzF、DAAF、DATB、DNDP、NTO、TNA、α‑FOX‑7、LLM‑105与TNB和10种敏感EM ONDO、PETN、TNAZ、RDX、β‑HMX、BCHMX、ε‑CL‑20、BTF、HNB和ON

图1 传统的单组分含能分子晶体中分子间HB的几何与能量
Fig.1 Geometry and energy of intermolecular HBs in traditional single‑component energetic molecular crystals
相同结论也可以从含能分子共晶中得到。如

图2 CL‑20基共晶中以CL‑20为目标对象的分子间原子间近接触布居数
Fig.2 Populations of close intermolecular interatomic contacts of the CL‑20 molecules in CL‑20‑based cocrystals
此外,Meng

图3 含能离子盐与传统含能分子晶体中分子间HB的比较
Fig.3 Comparison in intermolecular HB between energetic ionic salts and traditional energetic molecular crystals
π‑π堆积主要是针对含有π键的分子或离子体系而言的,特别是含有大π键的体系。由于组成EM的许多分子为大π键分子,这是π‑π堆积的分子基础。由于大π键分子中的电子离域效应,分子的稳定性增加,有助于相应EM的低感度;因此,大π键分子常常出现于低感含能晶体中。如

图4 含氢含能大π键分子的正面与侧面视图
Fig.4 Front and side views of planar π‑bonded structures of hydrogenous energetic molecules
π‑π堆积模式可分为如

图5 含能晶体中的四种π‑π堆积模式及分子间/分子内势能(p)‑滑移距离(d)间关系, a和b分别表示滑移方向为左右与前后
Fig.5 Four types of π‑π stacking in energetic crystals and inter/intra‑molecular potential (p)‑sliding distance (d) dependences of the four kinds of stacking. a and b denote the sliding along right/left and front/back, respectively

图6 含能晶体中HB协助的面‑面π‑π堆积. 每个子图中的上下分别表示层内的分子间HB(绿色虚线)和π‑π堆积
Fig.6 HB‑aided face‑to‑face π‑π stacking in energetic crystals. The top and the bottom in each plot show the intralayered intermolecular HBs represented by green dash and the π‑π stacking, respectively

图7 无HB协助的π‑π堆积
Fig.7 Non‑HB‑aided π‑π stacking in energetic crystals
总体上,含卤素的EM比较少见;但有时为了满足除剂的需要而将卤素引入EM。最近,三种含卤素的含能共晶被制备出来了,它们分别是DADP/TCTNB、DADP/TBTN
其中,DADP/TITNB是一个典型的通过共晶增强分子间相互作用与改善分子堆积模式而实现撞击感度较原有两种单组分都降低的例子。

图8 三种含卤共晶中层内(左)和层间(右)分子间相互作用,分别以绿色和紫色虚线示
Fig.8 Intra‑(left) and inter‑(right) layered intermolecular interactions of the three cocrystals represented by green and purple dashes, respectively

图9 三种含卤共晶中卤键距离与其范德华半径之和的比值(R)
Fig.9 Ratio (R) of the halogen bonding distances to combined van der Waals radii of the three halogen cocrystals.
含能晶体中分子间相互作用对其堆积结构产生显著的影响,即,分子相互作用增强将导致更紧密的堆积。例如,对于TNB和其三种硝基衍生物TNA、DATB与TATB,它们的PC随着越来越多的H原子被氨基取代而增加,分别是0.72、0.74、0.78和0.7
另外一个强分子间HB有助于提高dc的例子是羟胺盐。Meng
分子间相互作用会影响含能晶体中分子堆积模式,进而影响其剪切滑移性能与撞击感度。事实上,具有π‑π堆积结构的EM,其撞击感度较低,如
此外,相变导致的堆积模式的变化,将是决定EM表现出感度高低的决定因素之一。最近,Bu

图10 FOX‑7各晶型中的分子结构与堆积结构: (a) α‑ (b) β‑ (c) γ‑ (d) α′‑ 和 (e) ε‑型
Fig.10 Molecular structures and crystal packing patterns of the polymorphs of FOX‑7: (a) α‑, (b) β‑, (c) γ‑, (d) α′‑ and (e) ε‑forms. The top, middle, and bottom in each shot show molecular structures, intralayered HBs represented by green dash and π‑π stacking, respectively

图9 π‑堆积结构与撞击感度的关系
Fig.9 Relationship between π‑stacked structure and impact sensitivity of EMs
如前所述,增强分子间相互作用可提高晶体PC,也可以改善分子堆积模式,使其有利于剪切滑移和低撞击感度。但是,增加分子间相互作用并非一味地有利于改善EM的性能,例如,分子间的强HB可导致热安定性的恶化。这就是分子间HB对EM安全性影响的两面
从上可以看出,分子间相互作用的强弱与决定于分子间相互作用的分子堆积模式都是影响EM能量和感度的重要因素。晶体设计大致包括两部分的含义:一是进行未合成分子设计,进而进行分子堆积得到晶体;一是通过对已知不同的分子/离子进行组合,获得共晶或盐。事实上,当前的晶体设计还存在极大的困难。例如,目前尚缺乏明确的分子结构与其堆积结构间的关系,遍历并获得一种分子的准确的晶体堆积结构需要海量的计算,一般的实验室难以承受。然而,He等最近的研究表明,通过计算量较小的搜索能量占优的二聚体结构以确定可能的堆积模式也是可能
含能有机小分子可以分成两部分,一部分为中心的骨架部分,另一部分为外围的取代基部分。由于分子间相互作用主要通过不同分子取代基间的接触来实现,取代基在决定分子堆积模式中起到了重要作用。原则上,对于平面分子,π分子骨架上的取代基可增加电子的离域程度,减少或增加骨架上的电子密度;进而影响整个分子的静电势及分子间相互作用。NH2是含能分子中一种代表性的取代基,引入NH2是匹配共轭体系中氧化性基团或吸电子基团(如NO2和N→O)并提高稳定性的重要策略。但需要指出的是,NH2的这种作用仅能在共轭体系中体

图11 取代基对晶体堆积模式的影响
Fig.11 Substituent Effect on the crystal stacking type
同样,取代基的不同类型也可以影响分子在晶体中的堆积模式,如
通过共晶,含能材料的性质有望通过改变结构与组成而获得调节,因此也被认为是获得新型EM的一种途径。例如,ANTA本身是一种交叉型堆积的晶体,但同水共晶后,则为面‑面堆积,有利于剪切滑移及低撞击感

图12 通过共晶获得的π‑π堆积结构
Fig.12 Modification to face‑to‑face π‑π stacking by cocrystallization
成盐也是一种改善含能晶体堆积结构与性能的有效途径。同中性的含能分子相比,含能离子盐中常因富含C─N键而具有较正的生成焓和较大的放热量;同时,离子化可增加分子稳定性、增强分子间相互作用与堆积密度。对于高能低感的含能离子盐的设计,Shreeve课题

图13 Modification of π‑π stacking by salification
Fig.13 通过成盐改变 π‑π堆积
分子间相互作用是晶体中分子堆积的原动力,是决定EM能量、安全性、力学性能等的本质因素,也是我们从低感高能化合物的本征结构——分子结构与晶体结构认知其组成、结构与性能及其相互关系的出发点。认知含能晶体中的分子间相互作用将有助于丰富含能化合物设计理论、提高低感高能化合物的设计效率和加快低感高能材料的创制。总之,含能晶体中分子间相互作用具有以下特点: (1) 低感高能晶体一般具有强于高感高能晶体的HB; (2) 面‑面π‑π堆积是成就低感最具优势的分子堆积模式; (3) 通过增强分子间相互作用并增加分子堆积的各向异性,是从晶体本征结构上实现降感的重要途径,更具有晶体工程的意义; (4) 尽管增强分子间HB有利于低撞击感度,但有可能导致热安定性下降,因为强HB为H转移准备了条件。
此外,分子间弱相互作用的准确描述、分子结构与堆积结构的关系及热力作用分子间相互作用的演化规律还有待于我们进一步研究,因为这些内容是我们探索EM组成、结构与性能关系和设计新材料的基础。
参考文献
Eremets M I, Gavriliuk A G, Trojan I A, et al. Single‑bonded cubic form of nitrogen[J]. Nature Materials, 2004, 3(8): 558-563. [百度学术]
Zhang C, Sun C, Hu B, et al. Synthesis and characterization of the pentazolate anion cyclo‑N5‑in (N5)6(H3O)3(NH4)4Cl[J]. Science, 2017, 355(6323): 374-376. [百度学术]
Xu Y, Wang Q, Shen C, et al. A series of energetic metal pentazolate hydrates[J]. Nature, 2017, 549(7670): 78-81. [百度学术]
Gao H, Shreeve J M. Azole‑based energetic salts[J]. Chemical Reviews, 2011, 111(11): 7377-7436. [百度学术]
Fu W, Zhao B, Zhang M, et al. 3,4‑Dinitro‑1‑(1H‑tetrazol‑5‑yl)‑1H‑pyrazol‑5‑amine (HANTP) and its salts: primary and secondary explosives[J]. Journal of Materials Chemistry A, 2017, 5(10): 5044-5054. [百度学术]
Li S, Wang Y, Qi C, et al. 3D Energetic metal‑organic frameworks: synthesis and properties of high energy materials[J]. Angewandte Chemie International Edition, 2013, 52(52): 14031-14035. [百度学术]
Landenberger K B, Bolton O, Matzger A J. Energetic-energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization[J]. Journal of the American Chemical Society, 2015, 137(15): 5074-5079. [百度学术]
Chen S, Yang, Zi, Wang B, et al. Molecular perovskite high‑energetic materials[J]. Science China Materials, 2018, 61(8): 1123-1128. [百度学术]
彭翠枝, 郑斌, 秦涧, 等. 颠覆性含能材料——高风险/高回报的远期战略性基础材料[J]. 含能材料, 2018, 26(3): 198-200. [百度学术]
PENG Cui‑zhi, ZHENG Bin, QIN Jian, et al. 颠覆性含能材料——高风险/高回报的远期战略性基础材料[J]. Chinese Journal of Energetic Materials, 2018, 26(3): 198-200. [百度学术]
Lyu J Y, Yu J H, Tang D Y, et al. Unexpected burning rate independence of composite propellants on the pressure by fine interfacial control of fuel/oxidize[J]. Chemical Engineering Journal, 2020, 388: 124320-124345. [百度学术]
Cao X, Wen Y, Xiang B, et al. Are Amino groups advantageous to insensitive high explosives (IHEs)?[J]. Journal of Molecular Modeling, 2012, 18(10): 4729-4738. [百度学术]
Ma Y, Zhang A, Zhang C, et al. Crystal packing of low sensitive and high energetic explosives[J]. Crystal Growth & Design, 2014, 14(9): 4703-4713. [百度学术]
Ma Y, Zhang A, Xue X, et al. Crystal packing of impact sensitive high energetic explosives[J]. Crystal Growth & Design, 2014, 14(11): 6101-6114. [百度学术]
Bu R, Xiong Y, Wei X, et al. Hydrogen bonding in CHON contained energetic crystals: a review[J]. Crystal Growth & Design, 2019, 19(10): 5981-5997. [百度学术]
Jeffrey G A. An Introduction to Hydrogen Bonding[M]. New York: Oxford University Press, 1997. [百度学术]
Liu G, Li H, Gou R, et al. Packing structures of the CL‑20‑based cocrystals[J]. Crystal Growth & Design, 2018, 18(12): 7065-7078. [百度学术]
Wei X, Zhang A, Ma Y, et al. Toward low‑sensitive and high‑energetic cocrystal III: thermodynamics of energetic‑energetic cocrystal formation[J]. Cryst Eng Comm, 2015, 17(47): 9034-9047. [百度学术]
Meng L, Lu Z, Ma Y, et al. Enhanced intermolecular hydrogen bonds facilitating the highly dense packing of energetic hydroxylammonium salts[J]. Crystal Growth & Design, 2016, 16(12): 7231-7239. [百度学术]
Cady H H, Larson A C, Cromer D T. The crystal structure of benzotrifuroxan (hexanitrosobenzene)[J]. Acta Crystallographica, 1966, 20(3): 336-341. [百度学术]
Miller D R, Swenson D C, Edward G G. Synthesis and structure of 2,5,8‑triazido‑s‑heptazine: an energetic and luminescent precursor to nitrogen‑rich carbon nitrides[J]. Journal of the American Chemical Society, 2004, 126(17): 5372-5373. [百度学术]
Yang J, Wang G, Gong X, et al. High‑pressure behavior and hirshfeld surface analysis of nitrogen‑rich materials: Triazido‑s‑triazine (TAT) and Triazido‑s‑heptazine (TAH)[J]. Journal of Materials Science, 2018, 53(23): 15977-15985. [百度学术]
Landenberger K B, Bolton O, Matzger A J. Two isostructural explosive cocrystals with significantly different thermodynamic stabilities[J]. Angewandte Chemie International Edition, 2013, 52(25): 6468-6471. [百度学术]
Landenberger K B, Bolton O, Matzger A J. Energetic–energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent densitivity modifications via cocrystallization[J]. Journal of the American Chemical Society, 2015, 137(15): 5074-5079. [百度学术]
Ma Y, Meng L, Li H, et al. Enhancing intermolecular interactions and their anisotropy to build low impact sensitivity energetic crystals[J]. CrystEngComm, 2017, 19(23): 3145-3155. [百度学术]
Goud N R, Bolton O, Burgess E C, et al. Unprecedented size of the σ‑holes on 1,3,5‑Triiodo‑2,4,6‑trinitrobenzene begets unprecedented intermolecular interactions[J]. Crystal Growth & Design, 2016, 16(3): 1765-1771. [百度学术]
He X, Wei X, Ma Y, et al. Crystal packing of cubane and its nitryl‑derivatives: a case of the discrete dependence of packing densities on substituent quantities[J]. Cryst Eng Comm, 2017, 19(19): 2644-2652. [百度学术]
Jiao F, Xiong Y, Li H, et al. Alleviating the energy & safety contradiction to construct new low sensitivity and highly energetic materials through crystal engineering[J]. Cryst Eng Comm, 2018, 20(13): 1757-1768. [百度学术]
Zhang C. On the energy & safety contradiction of energetic materials and the strategy for developing low‑sensitive high‑energetic materials[J]. Chinese Journal of Energetic Materials, 2018, 26(1): 2-10. [百度学术]
Zhang C, Jiao F, Li H. Crystal engineering for creating low sensitivity and highly energetic materials[J]. Crystal Growth & Design, 2018, 18(10): 5713-5726. [百度学术]
Zhang C, Wang X, Huang H. π‑stacked interactions in explosive crystals: buffers against external mechanical stimuli[J]. Journal of the American Chemical Society, 2008, 130(26): 8359-8365. [百度学术]
Tian B, Xiong Y, Chen L, et al. Relationship between the crystal packing and impact sensitivity of energetic materials[J]. CrystEngComm, 2018, 20(6): 837-848. [百度学术]
Cady H H, Larson A C. The crystal structure of 1,3,5‑triamino‑2,4,6‑trinitrobenzene[J]. Acta Crystallographica, 1965, 18(3): 485-496. [百度学术]
Bu R, Xie W, Zhang C. Heat‑induced polymorphic transformation facilitating the low impact sensitivity of 2,2‑dinitroethylene‑1,1‑diamine (FOX‑7)[J]. The Journal of Physical Chemistry C, 2019, 123(25): 16014-16022. [百度学术]
Meng L, Lu Z, Wei X, et al. Two‑sided effects of strong hydrogen bonding on the stability of dihydroxylammonium 5,5'‑bistetrazole‑1,1'‑diolate (TKX‑50)[J]. Cryst Eng Comm, 2016, 18(13): 2258-2267. [百度学术]
Xiong Y, Ma Y, He X, et al. Reversible intramolecular hydrogen transfer: a completely new mechanism for low impact sensitivity of energetic materials [J]. Physical Chemistry Chemical Physics, 2019, 21(20): 2397-2409. [百度学术]
Lu Z, Xiong Y, Xue X, et al. Unusual protonation of the hydroxylammonium cation leading to the low thermal stability of hydroxylammonium‑based salts [J]. The Journal of Physical Chemistry C, 2017, 121(50): 27874-27885. [百度学术]
Lu Z, Zhang C. Reversibility of the hydrogen transfer in TKX‑50 and its influence on impact sensitivity: an exceptional case from common energetic materials[J]. The Journal of Physical Chemistry C, 2017, 121(39): 21252-21261. [百度学术]
Wang J, Xiong Y, Li H, et al. Reversible hydrogen transfer as new sensitivity mechanism for energetic materials against external stimuli: a case of the insensitive 2,6‑diamino‑3,5‑dinitropyrazine‑1‑oxide[J]. The Journal of Physical Chemistry C, 2018, 122(2): 1109-1118. [百度学术]
Jiang H, Jiao Q, Zhang C. Early events when heating 1,1‑diamino‑2,2‑dinitroethylene: self‑consistent charge density‑functional tight‑binding molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2018, 122(27): 15125-15132. [百度学术]
He X, Xiong Y, Wei X, et al. High throughput scanning of dimer interactions facilitating to confirm molecular stacking mode: a case of 1, 3, 5‑trinitrobenzene and its amino‑derivatives[J]. Physical Chemistry Chemical Physics, 2019, 21: 17868-17879. [百度学术]
Evrard G, Durant F, Michel A, et al. Crystal structure of 3‑nitro‑1,2,4‑triazole[J]. Bulletin Des Sociétés Chimiques Belges, 1984, 93(3): 233-234. [百度学术]
Garcia E, Lee K Y. Structure of 3‑amino‑5‑nitro‑l,2,4‑triazole[J]. Acta Crystallographica Section C Crystal Structure Communications, 1992, 48(9): 1682-1683. [百度学术]
Dippold A A, Klapotke T M, Martin F A, et al. Nitraminoazoles based on ANTA‑a comprehensive study of structural and energetic properties[J]. European Journal of Inorganic Chemistry, 2012, 2012(14): 2429-2443. [百度学术]
Izsák D, Klapötke T M. Preparation and crystal structure of 5‑azido‑3‑nitro‑1H‑1,2,4‑triazole, its methyl derivative and potassium salt[J]. Crystals, 2012, 2(2): 294-305. [百度学术]
Fischer N, Fischer D, Klapötke T, et al. Pushing the limits of energetic materials‑the synthesis and characterization of dihydroxylammonium 5,5′‑bistetrazole‑1,1′‑diolate[J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422. [百度学术]
Li Y, Shu Y, Wang B, Zhang S, et al. Synthesis, structure and properties of neutral energetic materials based on N‑functionalization of 3,6‑dinitropyrazolo[4,3‑c]pyrazole[J]. RSC Advances, 2016, 6(88): 84760-84768. [百度学术]
Bennion J C, McBain A, Son S F, et al. Design and synthesis of a series of nitrogen‑rich energetic cocrystals of 5,5'‑dinitro‑2H,2H'‑3,3'‑bi‑1,2,4‑triazole (DNBT)[J]. Crystal Growth & Design, 2015, 15(5): 2545-2549. [百度学术]
Zhang J, Mitchell L A, Parrish D A, et al. Enforced layer‑by‑layer stacking of energetic salts towards high‑performance insensitive Energetic Materials[J]. Journal of the American Chemical Society, 2015, 137(33): 10532-10535. [百度学术]
Göbel M, Karaghiosoff K, Klapötke T, et al. Nitrotetrazolate‑2N‑oxides and the strategy of N‑oxide introduction[J]. Journal of the American Chemical Society, 2010, 132(48): 17216-17226. [百度学术]